Partial Oxidative Cracking of Polycyclic Aromatic Compounds under Supercritical Water Conditions for Heavy Hydrocarbons Upgrading Ahmad Rafizan Mohamad Daud Department of Chemical Engineering Imperial College London of Science, Technology and Medicine Thesis submitted for the degree of Doctor of Philosophy (PhD) to Imperial College London of Science, Technology and Medicine October 2011 DECLARATION OF ORIGINALITY This is to certify that this thesis was carried out by the author. The contents stated in this work are the original effort of the author and all else is appropriately referenced. Ahmad Rafizan Mohamad Daud 2 ABSTRACT Heavy hydrocarbon upgrading is attracting more interest amidst growing supply of heavier crudes. These materials, often distinguished by high aromatic and asphaltene contents generate larger volumes of residue upon processing. The present study investigates the potential of partial oxidative cracking in water as an alternative to the conventional thermal cracking or hydrocracking upgrading routes. Sub and supercritical water partial oxidative cracking experiments have been carried out in a batch micro-bomb reactor using model compounds of three to five-membered ring polycyclic aromatic hydrocarbons (PAHs). The goal is twofold; to establish the optimum operating window for the PAH oxidative cracking and to evaluate the reactivity patterns between different PAH compounds. It was found that partial oxidative cracking of PAH depends strongly on reaction temperature and oxidant concentration. Using a 0.38 O/O atomic ratio (38% of the stoic oxygen needed for complete combustion), phenanthrene and anthracene were converted at short reaction time of 0 min into mostly oxygenated intermediates (DCM solubles) at subcritical water conditions. Under the more reactive supercritical water conditions, ring cleavage products, which include phenols, aromatic acids, ketones and unsubstituted aromatics (DCM solubles) were favoured. Most of these intermediates were formed via middle ring oxygenation which could potentially contribute to higher cracking efficiency upon subsequent thermal treatment. In addition to the target compounds, polymerized materials (DCM insolubles) were also produced under both conditions. A good compromise between the two major product streams was obtained at 400 oC whereby the DCM fraction contains a balanced mixture of oxygenated and cracking compounds. PAHs exhibit higher degree of stability with increasing ring size. A higher reaction temperature of 450 oC was needed in order to convert pyrene and benzo[a]pyrene. The reactivity order with respect to PAH conversion into the desirable DCM soluble fraction was established as follows: anthracene > phenanthrene > pyrene > benzo[a]pyrene. 3 ACKNOWLEDGEMENT A special thank is due to my supervisors, Dr. Marcos Millan G-Agorio, Dr. Klaus Hellgardt and Prof. Rafael Kandiyoti. Their guidance and knowledge have enabled me to see through the difficulties and challenges in completing this research work. Likewise, they have always been a source of great encouragement and their assistances either help solved the enormous research related issues, or simply a source of inspiration that keeps my motivation going. I am also very grateful to both of my sponsors, Universiti Teknologi MARA and The Ministry of Higher Education of Malaysia for giving me this marvellous opportunity and the much needed monetary support. This study also benefited from invaluable contributions provided by members of the department and colleagues for the past four enduring years. To name a few: Mrs. S. Payne, Mrs. S. Underwood, Dr. Trevor Morgan, Dr. Cesar Berrueco, Dr. Fessehaye Zemichael, Dr. Silvia Venditti, Dr. Yatika Somrang, Dr. Nicolas Spiegl and John Blamey. A massive thank you to all wonderful friends in the group: Pedro Arcelus, Khairul Rostani, Holda Puron and others who make this research group a great place for studying and having fun. Finally, I would also like to present my heartiest appreciation to my beloved wife, Nadiah Saari (good luck with your thesis too) and our little “moonlight”, Aiyla Nuha for their love, care and understanding. We did it! 4 TABLE OF CONTENTS DECLARATION OF ORIGINALITY .............................................................................. 2 ABSTRACT .................................................................................................................. 3 ACKNOWLEDGEMENT ............................................................................................... 4 TABLE OF CONTENTS ............................................................................................... 5 LIST OF TABLES ......................................................................................................... 9 LIST OF FIGURES .................................................................................................... 11 LIST OF FIGURES .................................................................................................... 11 1 INTRODUCTION ................................................................................................ 17 1.1 Petroleum Residue ..................................................................................... 17 1.2 Residue Upgrading Approach ..................................................................... 18 1.3 The Concept of Partial Oxidative Cracking ................................................. 20 1.4 Objectives of the Present Study .................................................................. 22 1.5 Outline of the Thesis ................................................................................... 23 2 BACKGROUND .................................................................................................. 25 2.1 Properties of Heavy Hydrocarbons ............................................................. 25 2.1.1 Physicochemical properties of vacuum residues ..................................... 25 2.1.2 Vacuum residue compositions ................................................................ 26 2.1.3 Structural properties of asphaltenes ....................................................... 28 2.2 Residue Upgrading Technologies ............................................................... 30 2.2.1 Recent development in residue upgrading technologies ......................... 32 2.2.2 Challenges in processing high aromatic concentration feeds .................. 36 2.3 Partial Oxidative Cracking under Sub and Supercritical Water Conditions .. 40 2.3.1 Properties and role of supercritical water ................................................ 40 2.3.2 Hydrocarbon conversion in sub and supercritical water without the addition of oxidant ............................................................................................................ 45 2.3.3.1 Saturate, aromatic and heteroatomic compounds ........................... 45 2.3.3.2 Heavy hydrocarbons ....................................................................... 48 2.3.3 Elements of partial oxidative cracking investigations ............................... 50 2.3.3.1 Reactor setup ................................................................................. 50 2.3.3.2 Choice of oxidant ............................................................................ 52 2.3.3.3 Choice of catalyst ............................................................................ 54 2.3.4 Effect of Operating Parameters ............................................................... 56 3 EXPERIMENTAL ................................................................................................ 62 3.1 Materials ..................................................................................................... 62 5 3.2 Batch Reactor Setup .................................................................................. 62 3.3 Experimental Procedure ............................................................................. 65 3.4 Analytical Techniques ................................................................................. 68 3.4.1 Ultraviolet Fluorescence Spectroscopy (UV-F) ....................................... 68 3.4.2 Gas Chromatography (GC) ..................................................................... 69 3.4.3 Gas Chromatography/Mass Spectroscopy (GC/MS) ............................... 71 3.4.4 Size Exclusion Chromatography (SEC) .................................................. 71 3.4.5 Fourier Transform-Infrared Spectroscopy (FT-IR) ................................... 72 3.4.6 Surface area measurements ................................................................... 73 4 DETERMINATION OF OXIDANT CONCENTRATION AND CHANGES TO EXPERIMENTAL PROCEDURE ................................................................................ 74 4.1 Reactor Evaluation ..................................................................................... 74 4.2 Temperature Profile .................................................................................... 76 4.3 Repeatability and Errors Estimation ............................................................ 79 4.4 Non-oxidative Cracking in Supercritical Water ............................................ 81 4.5 Oxidative Cracking in Supercritical Water ................................................... 84 4.5.1 Conversion and products yield ................................................................ 85 4.5.2 Characterization of the DCM soluble fraction .......................................... 86 4.5.3 Characterization of the DCM insoluble fraction ....................................... 92 4.6 Modifications to the Experimental Procedure .............................................. 93 5 EFFECT OF KEY OPERATING PARAMETERS ON THE CRACKING OF PHENANTHRENE ..................................................................................................... 97 5.1 Introduction ................................................................................................. 97 5.2 Experimental .............................................................................................. 98 5.3 Results and Discussion .............................................................................. 99 5.3.1 Effect of temperature .............................................................................. 99 5.3.1.1 Conversion and product distributions .............................................. 99 5.3.1.2 Characterization of DCM soluble fraction ...................................... 105 5.3.1.3 Characterization of DCM insoluble fraction ................................... 111 5.3.1.4 Characterization of water soluble fractions .................................... 115 5.3.1.5 Summary ...................................................................................... 116 5.3.2 Effect of reaction time ........................................................................... 117 5.3.2.1 Conversion and product distributions ............................................ 117 5.3.2.2 Characterization of DCM soluble fraction ...................................... 121 5.3.2.3 Characterization of DCM insoluble fraction ................................... 125 5.3.2.4 Summary ...................................................................................... 129 5.4 Kinetic Analysis ........................................................................................ 130 6 5.5 Conclusions .............................................................................................. 134 6 INFLUENCE OF WATER DENSITY AND AIR AS OXIDANT ON THE CONVERSION OF PHENANTHRENE ..................................................................... 135 6.1 Introduction ............................................................................................... 135 6.2 Experimental ............................................................................................ 136 6.3 Results and Discussion ............................................................................ 137 6.3.1 Influence of water density ..................................................................... 137 6.3.1.1 Conversion and product distributions ............................................ 137 6.3.1.2 Characterization of DCM soluble products .................................... 139 6.3.1.3 Characterization of DCM insoluble products. ................................ 143 6.3.1.4 Summary ...................................................................................... 144 6.3.2 Molecular oxygen from air as oxidant.................................................... 144 6.3.2.1 Conversion and product distributions ............................................ 144 6.3.2.2 Characterization of the DCM soluble fraction ................................ 147 6.3.2.3 Characterization of the DCM insoluble fraction.............................. 148 6.3.2.4 Summary ...................................................................................... 149 6.3.3 Reaction pathways in supercritical water partial oxidation system ........ 149 6.4 Transport Limitations on Rates of Solid Catalyzed Reactions ................... 151 6.5 Conclusions .............................................................................................. 154 7 REACTIVITY OF THREE TO FIVE-MEMBERED RING PAH TOWARD PARTIAL OXIDATIVE CRACKING .......................................................................................... 155 7.1 Introduction ............................................................................................... 155 7.2 Experimental ............................................................................................ 156 7.3 Results and Discussion ............................................................................ 157 7.3.1 Effect of reaction temperature ............................................................... 157 7.3.1.1 PAH conversion and yield of DCM soluble and insoluble fractions 157 7.3.1.2 Characterization of DCM soluble fraction ...................................... 160 7.3.1.3 Kinetics of partial oxidation of polycyclic aromatic hydrocarbon .... 166 7.3.2 Effect of reaction time ........................................................................... 167 7.3.3 Anthracene oils ..................................................................................... 170 7.4 Conclusions .............................................................................................. 171 8 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK .............. 172 8.1 Conclusions .............................................................................................. 172 8.2 Recommendations for Future Work .......................................................... 175 REFERENCES ........................................................................................................ 176 APPENDIX............................................................................................................... 184 A. ............................................................................................................................. 184 7 A.1 Calibration Curves .................................................................................... 184 A.2 Experimental Data .................................................................................... 185 8 LIST OF TABLES Table 2-1 Yield of AR and VR as volume % of crude oil. Data adapted from Furimsky [11]............................................................................................................................. 26 Table 2-2 SARA components of several Venezuelan vacuum residues as published in [47]............................................................................................................................. 26 Table 2-3 Residue conversion technologies commercially available to refiners. ......... 33 Table 2-4 Comparison of water properties at ambient and supercritical condition. Reproduced from [84]. ............................................................................................... 41 Table 2-5 Comparison of phenanthrene degradation per millilitre of water obtained from studies under sub and supercritical condition. .................................................... 48 Table 3-1 Regions of the infrared spectrum adapted from [131]. ................................ 73 Table 4-1 Conversion and products yield for phenanthrene partial oxidative cracking obtained at 450 oC, 60 min reaction time, 0.38 O/O atomic ratio and 0.18 g/mL stoic water density. ............................................................................................................. 81 Table 4-2 Phenanthrene (PHT) degradation under non-oxidative supercritical water at 450 oC, 10 min reaction time and 0.18 g/mL water density. ........................................ 82 Table 4-3 Comparison of the phenanthrene degradation obtained from present study to those from literature. .............................................................................................. 83 Table 4-4 Likely products obtained from the DCM soluble fraction as identified by a GC/MS. ...................................................................................................................... 84 Table 4-5 Oxidative cracking of Phenanthrene (PHT) at 450 oC, 34 MPa and 60 minute reaction time at different oxidant concentrations. ....................................................... 85 Table 5-1 Conversion and product yield for phenanthrene partial oxidative cracking as a function of temperature. Experiments were carried out at 0 min reaction time using 0.38 O/O atomic ratio and 0.16 g/mL water density. ............................................ 100 stoic Table 5-2 Molecular mass of the DCM soluble fractions obtained at different temperatures. ........................................................................................................... 111 Table 5-3 Conversion and product yields of phenanthrene partial oxidative cracking as a function of reaction time. Experiments were carried out at between 280-450 oC using 0.38 O/O atomic ratio and 0.16 g/mL water density. ............................................ 118 stoic Table 5-4 Product distribution of phenanthrene partial oxidative cracking produced at 400 oC for different reaction times. xx represents major species identified and x represents the minor species found in the fraction. .................................................. 122 Table 5-5 Experimental measurements of reaction rate constants for partial oxidative cracking of phenanthrene at reaction temperatures between 280-350 oC. ............... 132 9 Table 6-1 Product distribution of phenanthrene partial oxidative cracking produced at 300 and 400 oC for 0 min and 0.35 g/mL water density. xx represents major species and x represents minor species identified in the DCM soluble fraction. .................... 140 Table 6-2 Characteristics of the fresh and spent catalysts ....................................... 146 Table 7-1 Experimental measurements of reaction rate constants for partial oxidative cracking of polycyclic aromatic hydrocarbon at reaction temperatures between 280- 450 oC. ..................................................................................................................... 166 Table 7-2 DCM soluble and DCM insoluble yields of polycyclic aromatic hydrocarbon partial oxidative cracking as a function of reaction time. Experiments were carried out at 450 oC using 0.38 O/O atomic ratio and 0.16 g/mL water density. ................... 168 stoic Table 7-3 Yields of DCM solubles and DCM insolubles obtained from anthracene oil partial oxidative cracking at 400 oC for 0-60 min reaction time ................................. 170 10
Description: