SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY CONTINUUM MECHANICS Andreas Öchsner Partial Differential Equations of Classical Structural Members A Consistent Approach SpringerBriefs in Applied Sciences and Technology Continuum Mechanics Series Editors Holm Altenbach, Institut für Mechanik, Lehrstuhl für Technische Mechanik, Otto von Guericke University Magdeburg, Magdeburg, Sachsen-Anhalt, Germany Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen am Neckar, Germany These SpringerBriefs publish concise summaries of cutting-edge research and practical applications on any subject of Continuum Mechanics and Generalized Continua, including the theory of elasticity, heat conduction, thermodynamics, electromagnetic continua, as well as applied mathematics. SpringerBriefs in Continuum Mechanics are devoted to the publication of fundamentals and applications, presenting concise summaries of cutting-edge research and practical applications across a wide spectrum of fields. Featuring compact volumes of 50 to 125 pages, the series covers a range of content from professional to academic. More information about this subseries at http://www.springer.com/series/10528 Ö Andreas chsner Partial Differential Equations of Classical Structural Members A Consistent Approach 123 Andreas Öchsner Faculty of MechanicalEngineering Esslingen University of Applied Sciences Esslingen, Baden-Württemberg, Germany ISSN 2191-530X ISSN 2191-5318 (electronic) SpringerBriefs inApplied SciencesandTechnology ISSN 2625-1329 ISSN 2625-1337 (electronic) SpringerBriefs inContinuum Mechanics ISBN978-3-030-35310-0 ISBN978-3-030-35311-7 (eBook) https://doi.org/10.1007/978-3-030-35311-7 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Partial differential equations (PDEs) form the basis to mathematically describe the mechanical behavior of all classical structural members known in engineering mechanics. Nevertheless, there are concerning trends in some places of tertiary education to no more derive and work with these equations. This may lead to a serious lack of knowledge and may affect the reliable design of engineering structures and processes. The derivation and understanding of PDEs relies heavily on the fundamental knowledge of the first years of engineering education, i.e., higher mathematics, physics, materials science, applied mechanics, design, and programming skills. Thus, it is definitely a challenging topic for prospective engineers. ThisvolumeintheSpringerBriefsseriesshouldprovideacompactoverviewon theclassicalPDEsofstructuralmembersandtoprovideaformalwaytouniformly describetheseequationsinasimilarway.Allderivationsinthefollowingchapters follow a common approach: the three fundamental equations of continuum mechanics, i.e., the kinematics equation, the constitutive equation, and the equi- librium equation, are combined to construct the partial differential equations. The structural members covered in this book are rods, thin and thick beams, plane elasticity members, thin and thick plates, and three-dimensional solids. The last chapter gives a brief introduction to the topic of transient analysis. Esslingen, Germany Andreas Öchsner October 2019 v Contents 1 Introduction to Structural Modeling. . . . . . . . . . . . . . . . . . . . . . . . . 1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Rods or Bars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 Euler–Bernoulli Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4 Timoshenko Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5 Plane Members. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 vii viii Contents 5.3.1 Plane Stress Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.3.2 Plane Strain Case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6 Classical Plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 7 Shear Deformable Plates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 8 Three-Dimensional Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 8.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 8.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 9 Introduction to Transient Problems: Rods or Bars. . . . . . . . . . . . . . 89 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.2 Kinematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.3 Constitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 9.4 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9.5 Differential Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter 1 Introduction to Structural Modeling Abstract The first chapter classifies the content as well as the focus of this text- book.Inengineeringpractice,thedescriptionofprocessesiscenteredaroundpartial differential equations, and all the classical approximation methods such as the fi- niteelementmethod,thefinitedifferencemethod,thefinitevolumemethod,andthe boundaryelementmethodofferdifferentwaysofsolvingtheseequations. Engineersdescribephysicalphenomenaandprocessestypicallybyequations,par- ticularlybypartialdifferentialequations[3, 4, 9].Inthiscontext,thederivationand the solution of these differential equations (see Fig.1.1) is the task of engineers, obviously requiring fundamental knowledge from physics and engineering mathe- matics. The classical engineering methods for providing approximate solutions of partialdifferentialequationsarethefiniteelementmethod(FEM),thefinitediffer- ence method (FDM), the finite volume method (FVM), and the boundary element method(BEM)[1, 2, 8]. Theimportanceofpartialdifferentialequationsisclearlyrepresentedinthefol- lowingquote:‘Formorethan250yearspartialdifferentialequationshavebeenclearly themostimportanttoolavailabletomankindinordertounderstandalargevariety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications werethefirsttobenefitfromtheimpactofpartialdifferentialequationsonmodeling anddesign,...’[5]. Intheone-dimensionalcase,aphysicalproblemcanbegenerallydescribedina spatialdomainΩ bythedifferentialequation L{y(x)}=b (x ∈Ω) (1.1) and by the conditions which are prescribed on the boundary Γ. The differential equationisalsocalledthestrongformortheoriginalstatementoftheproblem.The expression‘strongform’comesfromthefactthatthedifferentialequationdescribes exactlyeachpointx inthedomainoftheproblem.TheoperatorL{...}inEq.(1.1) isanarbitrarydifferentialoperatorwhichcantake,forexample,thefollowingforms: ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 1 A.Öchsner,PartialDifferentialEquationsofClassicalStructuralMembers, SpringerBriefsinContinuumMechanics, https://doi.org/10.1007/978-3-030-35311-7_1 2 1 IntroductiontoStructuralModeling Fig.1.1 Modelingbasedon partialdifferentialequations d2 L{...}= {...}, (1.2) dx2 d4 L{...}= {...}, (1.3) dx4 d4 d L{...}= {...}+ {...}+{...}. (1.4) dx4 dx Furthermore, variable b in Eq. (1.1) is a given function, and in the case of b=0, theequationreducestothehomogeneousdifferentialequation:L{y(x)}=0.More specificexpressionsofEqs.(1.3)till(1.4)cantakethefollowingform[6]: d2y(x) a =b, (1.5) dx2 d4y(x) a =b, (1.6) dx4 andwillbeusedtodescribethebehaviorofrodsandbeamsinthefollowingsections. Let us highlight at the end of this section that the derivations in the following chaptersfollowacommonapproach,seeFig.1.2[7]. Acombinationofthekinematicsequation(i.e.,therelationbetweenthestrainsand displacements)withtheconstitutiveequation(i.e.,therelationbetweenthestresses andstrains)andtheequilibriumequation(i.e.,theequilibriumbetweentheinternal reactions and the external loads) results in a partial differential equation. Limited to simple cases, analytical solutions can be derived and are exact under the given assumptions.Formorecomplexproblems,engineersrelyontheclassicalnumerical methodsasalreadymentionedinthischapter.