ebook img

Partial Differential Equations in Action: Complements and Exercises PDF

433 Pages·2015·3.962 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Partial Differential Equations in Action: Complements and Exercises

Sandro Salsa Gianmaria Verzini Partial Differential Equations in Action Complements and Exercises TT XX EE TT II NN 123 UU UNITEXT – La Matematica per il 3+2 Volume 87 Moreinformationaboutthisseriesat http://www.springer.com/series/5418 (cid:2) Sandro Salsa Gianmaria Verzini Partial Differential Equations in Action Complements and Exercises SandroSalsa GianmariaVerzini DipartimentodiMatematica DipartimentodiMatematica PolitecnicodiMilano PolitecnicodiMilano Milano,Italy Milano,Italy TranslatedbySimonG.Chiossi,UFBA–UniversidadeFederaldaBahia,Salvador(Brazil). TranslationfromtheItalianlanguageedition:Equazioniaderivateparziali.Complementiedesercizi, SandroSalsaeGianmariaVerzini,©Springer-VerlagItalia,Milano2005.Allrightsreserved. UNITEXT–LaMatematicaperil3+2 ISBN978-3-319-15415-2 ISBN978-3-319-15416-9(eBook) DOI10.1007/978-3-319-15416-9 SpringerChamHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2015930285 ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknown orhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforanyerrorsor omissionsthatmayhavebeenmade. CoverDesign:SimonaColombo,GiochidiGrafica,Milano,Italy TypesettingwithLATEX:PTP-Berlin,ProtagoTEX-ProductionGmbH,Germany(www.ptp-berlin.eu) SpringerisapartofSpringerScience+BusinessMedia(www.springer.com) Preface Thisbookisdesignedforadvancedundergraduatestudentsfromvariousdisciplines,in- cludingappliedmathematics,physics,andengineering.ItevolvedduringthePDEcourses thatbothauthorshavetaughtduringrecentdecadesatthePolitecnicodiMilano,andcon- sistsofproblemsofvarioustypesanddifficulties. Inthefirstpartofthebook,whilemuchemphasisisplacedonthemostcommonmeth- odsofresolution,suchasseparationofvariablesorthemethodofcharacteristics,wealso invitethestudenttohandlethebasictheoreticaltoolsandpropertiesofthesolutionstothe fundamentalequationsofmathematicalphysics. The second part is slightly more advanced and requires basic tools from functional analysis. A small number of exercises aims to familiarize the student with the first ele- mentsofthetheoryofdistributionsandoftheHilbertianSobolevspaces.Thefocusthen switchestothevariationalformulationofthemostcommonboundaryvalueproblemsfor uniformlyellipticequations.Asubstantialnumberofproblemsisdevotedtotheuseofthe Riesz representation and the Lax-Milgram theorems together with Fredholm alternative toanalysewellposednessorsolvabilityofthoseproblems.Next,anumberofproblems addresses theanalysis ofweaksolutionstoinitial-boundary valueproblemsfortheheat orthewaveequation. Thetextiscompletedbytwoshortappendixes,thefirstdealingwithSturm-Liouville problemsandBesselfunctionsandthesecondlistingfrequentlyusedformulas. Eachchapterbeginswithabriefreviewofthemaintheoreticalconceptsandtoolsthat constitutenecessaryprerequisitesforaproperunderstanding.ThetextPartialDifferential EquationinAction[18],byS.Salsa,isthenaturaltheoreticalreference. Within each chapter, the problems are divided into two sections. In the first one we present detailed solutions and comments to provide the student with a reasonably com- pleteguide.Inthesecondsection,weproposeasetofproblemsthateachstudentshould trytosolvebyhim-orherself.Ineachcase,asolutioncanbefoundattheendofthechap- ter.Someproblemsareproposedastheoreticalcomplementsandmayproveparticularly challenging;thisisespeciallytrueofthosemarkedwithoneortwoasterisks. Milano,January2015 SandroSalsa GianmariaVerzini Contents 1 Diffusion ........................................................... 1 1.1 Backgrounds ................................................... 1 1.2 SolvedProblems ................................................ 3 1.2.1 Themethodofseparationofvariables........................ 3 1.2.2 Useofthemaximumprinciple .............................. 20 1.2.3 Applyingthenotionoffundamentalsolution .................. 25 1.2.4 UseofFourierandLaplacetransforms ....................... 37 1.2.5 Problemsindimensionhigherthanone....................... 43 1.3 FurtherExercises................................................ 50 1.3.1 Solutions ................................................ 56 2 TheLaplaceEquation ............................................... 81 2.1 Backgrounds ................................................... 81 2.2 SolvedProblems ................................................ 84 2.2.1 Generalpropertiesofharmonicfunctions ..................... 84 2.2.2 Boundary-valueproblems.Solutionmethods .................. 95 2.2.3 PotentialsandGreenfunctions ..............................117 2.3 FurtherExercises................................................124 2.3.1 Solutions ................................................130 3 FirstOrderEquations ...............................................149 3.1 Backgrounds ...................................................149 3.2 SolvedProblems ................................................152 3.2.1 Conservationlawsandapplications ..........................152 3.2.2 Characteristicsforlinearandquasilinearequations .............181 3.3 FurtherExercises................................................194 3.3.1 Solutions ................................................197 4 Waves .............................................................215 4.1 Backgrounds ...................................................215 4.2 SolvedProblems ................................................217 viii Contents 4.2.1 One-dimensionalwavesandvibrations .......................217 4.2.2 Canonicalforms.CauchyandGoursatproblems ...............238 4.2.3 Higher-dimensionalproblems...............................247 4.3 FurtherExercises................................................255 4.3.1 Solutions ................................................259 5 FunctionalAnalysis .................................................273 5.1 Backgrounds ...................................................273 5.2 SolvedProblems ................................................278 5.2.1 Hilbertspaces ............................................278 5.2.2 Distributions .............................................291 5.2.3 Sobolevspaces ...........................................298 5.3 FurtherExercises................................................310 5.3.1 Solutions ................................................314 6 VariationalFormulations ............................................333 6.1 Backgrounds ...................................................333 6.2 SolvedProblems ................................................336 6.2.1 One-dimensionalproblems .................................336 6.2.2 Ellipticproblems .........................................346 6.2.3 Evolutionproblems .......................................366 6.3 FurtherExercises................................................381 6.3.1 Solutions ................................................385 AppendixA.Sturm-Liouville,LegendreandBesselEquations................405 A.1 Sturm-LiouvilleEquations........................................405 A.1.1 Regularequations.........................................405 A.1.2 Legendre’sequation.......................................406 A.2 Bessel’sEquationandFunctions...................................407 A.2.1 Besselfunctions ..........................................407 A.2.2 Bessel’sequation .........................................410 AppendixB.Identities ...................................................413 B.1 Gradient,Divergence,Curl,Laplacian ..............................413 B.2 Formulas ......................................................415 B.3 FourierTransforms ..............................................416 B.4 LaplaceTransforms..............................................417 References..............................................................419 1 Diffusion 1.1 Backgrounds Weshallrecallafewnotionsandresultsthatcropupfrequentlyconcerningthediffusion equation u (cid:3)D(cid:2)uDf t definedonacylindricaldomainQ D(cid:3)(cid:4).0;T/,where(cid:3)isadomain(connected,open T subset)ofRn.Hereu D u.x;t/,andtheLaplacian(cid:2)istakenwithrespecttothespatial variablesxonly. •Parabolicboundary.TheunionofthebaseofQ (i.e.(cid:3)(cid:4)¹0º)andthelateralsur- T faceS D@(cid:3)(cid:4)Œ0;T(cid:4)istheparabolicboundaryof Q ,whichwedenoteby@ Q .In T T p T well-posedproblemsforthediffusionequationthisiswhereonemustassignthedata. (cid:2) (cid:3) •Maximumprinciples.Let(cid:3)beboundedandw 2C2;1.Q /\C Q asub-solution T T (orsuper-solution),thatis w (cid:3)D(cid:2)w Dq (cid:5)0 (resp. (cid:6)0) inQ : t T Then w reaches its maximum value (resp. minimum) on the parabolic boundary @ Q p T ofQ : T maxw D max w QT @pQT (weakmaximumprinciple).Inparticular,ifw isnegative(resp.positive)on@ Q ,then p T itisnegative(resp.positive)overallofQ .If,further,w.x ;t /Dmax withx 2(cid:3); thenwisconstanton(cid:3)(cid:4)Œ0;t (cid:4)(strongmTaximumprincipl0e).0 QT 0 0 •FundamentalsolutionandglobalCauchyproblem.Thefunction (cid:5) .x;t/D 1 e(cid:2)jxj2=.4Dt/; t >0; D .4(cid:6)Dt/n=2 is called fundamental solution to the diffusion equation; when t > 0 it solves ©SpringerInternationalPublishingSwitzerland2015 S.Salsa,G.Verzini,PartialDifferentialEquationsinAction.ComplementsandExercises, UNITEXT–LaMatematicaperil3+287,DOI10.1007/978-3-319-15416-9_1 2 1 Diffusion u (cid:3)D(cid:2)uD0andistheuniquefunctionsatisfying t Z lim(cid:5) .x;t/Dı .x/; (cid:5) .x;t/dxD1foranyt >0; D n D t#0 Rn whereı .x/denotesthen-dimensionalDirac’sdeltafunction. n ThefundamentalsolutionenablestoconstructthegeneralsolutiontotheglobalCauchy problem ´ u (cid:3)D(cid:2)uDf .x;t/ inRn(cid:4).0;1/ t u.x;0/Dg.x/ inRn; bymeansoftheformula Z Z Z t u.x;t/D (cid:5) .x(cid:3)y;t/g.y/ dyC (cid:5).x(cid:3)y;t (cid:3)s/f .y;s/ dyds: D Rn 0 Rn Thelatterholds,forexample,whenjg.x/j(cid:5)ceAjxj,f isboundedandf,f ,f ,f t xj xixj arecontinuousonRn(cid:4).0;C1/.Atapointx ofcontinuityofgwehave 0 u.x;t/!g.x / as .y;t/!.x ;0/,t >0: 0 0 •Random walkand fundamental solution (n D 1).Letusconsideraparticleofunit massmovingalongthex-axisasfollows. i) Inatimeinterval(cid:7) theparticleadvancesbyh,startingfromx D0. ii) Itmovesleftwardsorrightwardswithprobabilityp D 1=2,eachtimeindependently ofthepreviousaction. At time t D N(cid:7), i.e. after N iterations, the particle will have reached point x D mh, whereN isanaturalnumberandmaninteger.Theprobabilityp.x;t/thatitwillbeinx attimet isthesolutionofthediscreteproblem 1 1 p.x;t C(cid:7)/D p.x(cid:3)h;t/C p.xCh;t/; (1.1) 2 2 withinitialconditions p.0;0/D1andp.x;0/D0 ifx ¤0: Passing to the limit in (1.1) for h;(cid:7) ! 0, whilst keeping h2=(cid:7) D 2D D constant and interpreting p as a probability density, gives the equation p D Dp , and the initial t xx conditionsnowread limp.x;t/Dı .ı Dı/: 1 t#0 Wehavealreadynoticedthattheuniquesolutionwithunitmassisthefundamentalsolu- tiontothediffusionequation: p.x;t/D(cid:5) .x;t/: D

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.