ebook img

Partial Differential Equations: Classical Theory with a Modern Touch (Cambridge IISc Series) PDF

377 Pages·2020·2.177 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Partial Differential Equations: Classical Theory with a Modern Touch (Cambridge IISc Series)

Partial Differential Equations Thesubjectofpartialdifferentialequations(PDE)hasundergonegreatchangeduringthelast 70yearsorso,afterthedevelopmentofmodernfunctionalanalysis;inparticular,distribution theoryandSobolevspaces.Inthemodernconcept,thePDEisvisualizedinamoregeneralsetup of functional analysis, where we look for solutions in a sense weaker than the usual classical sensetoaddressthemorephysicallyrelevantsolutions.Thoughtheaimofthepresentbookis tointroducethefundamentaltopicsinaclassicalwayasinanyfirstbookonPDE,theauthors havedemonstratedthebasictopicsinawaythatopensthedoorstothemoderntheory.Readers can immediately and naturally sense the importance of studying these topics in a modern approach. As a lead, after introducing method of characteristics for first order equations, the authorshaveimmediatelydiscussedtheimportanceofintroducingthenotionofweaksolutions totwoimportantclassesoffirstorderequations,namelyconservationlawsandHamilton–Jacobi equations. The implication is that physically relevant solutions cannot be obtained within the realmofclassicalsolutions.Almostallthechapterscoversomethingaboutmoderntopics.Also includedaremanyexercisesinmostchapters,whichhelpstudentsgetbetterinsight.Hintsor answersareprovidedtosomeselectedexercises. A. K. Nandakumaran is Professor, Department of Mathematics, Indian Institute of Science, Bangalore. His areas of interest are analysis of partial differential equations, in particularhomogenizationofPDE,controlandcontrollabilityproblems,inverseproblemsand computations. He received the Sir C. V. Raman Young Scientist State Award in Mathematics in 2003. He and P. S. Datti are also co-authors of the book ‘Ordinary Differential Equations: PrinciplesandApplications’,publishedbytheCambridgeUniversityPressin2017. P. S. Datti is former faculty at Tata Institute of Fundamental Research (TIFR) Centre for ApplicableMathematics,Bangalore.Hismainareasofresearchincludenon-linearhyperbolic equations, hyperbolic conservation laws, ordinary differential equations, evolution equations andboundarylayerphenomena.HehaswrittenTIFRLectureNotesforthelecturesdelivered byG.B.Whitham(CalTech)andCathleenMorawetz(CourantInstitute). CAMBRIDGE–IISc SERIES Cambridge–IISc Series aims to publish the best research and scholarly work on different areas of scienceandtechnologywithemphasisoncutting-edgeresearch. The books will be aimed at a wide audience including students, researchers, academicians and professionalsandwillbepublishedunderthreecategories:researchmonographs,centenarylectures andlecturenotes. Theeditorialboardhasbeenconstitutedwithexpertsfromarangeofdisciplinesindiversefieldsof engineering,scienceandtechnologyfromtheIndianInstituteofScience,Bangalore. IIScPressEditorialBoard: AmareshChakrabarti,Professor,CentreforProductDesignandManufacturing DiptimanSen,Professor,CentreforHighEnergyPhysics PrabalKumarMaiti,Professor,DepartmentofPhysics S.P.Arun,AssociateProfessor,CentreforNeuroscience Titlesinprintinthisseries: • ContinuumMechanics:FoundationsandApplicationsofMechanicsbyC.S.Jog • FluidMechanics:FoundationsandApplicationsofMechanicsbyC.S.Jog • NoncommutativeMathematicsforQuantumSystemsbyUweFranzandAdamSkalski • Mechanics,WavesandThermodynamicsbySudhirRanjanJain • FiniteElements:TheoryandAlgorithmsbySashikumaarGanesanandLutzTobiska • OrdinaryDifferentialEquations:PrinciplesandApplicationsbyA.K.Nandakumaran,P.S.Datti andRajuK.George • LecturesonvonNeumannAlgebras,2ndEditionbySerbanValentinStrătilăandLászlóZsidó • BiomaterialsScienceandTissueEngineering:PrinciplesandMethodsbyBikramjitBasu • Knowledge Driven Development: Bridging Waterfall and Agile Methodologies by Manoj KumarLal Cambridge-IISc Series Partial Differential Equations Classical Theory with a Modern Touch A. K. Nandakumaran P. S. Datti UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,vic3207,Australia 314to321,3rdFloor,PlotNo.3,SplendorForum,JasolaDistrictCentre,NewDelhi110025,India 79AnsonRoad,#06-04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108839808 ©A.K.NandakumaranandP.S.Datti2020 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2020 PrintedinIndia AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-108-83980-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. ToOurTeachers Contents ListofIllustrations xi Preface xiii Acknowledgments xv Notations xvii 1 Introduction 1 1.1 GeneralNatureofPDE 1 1.2 TwoExamples 2 1.3 DescriptionoftheContents 4 2 Preliminaries 7 2.1 MultivariableCalculus 7 2.1.1 Introduction 7 2.1.2 Partial,DirectionalandFrechétDerivatives 9 2.1.3 InverseFunctionTheorem 13 2.1.4 ImplicitFunctionTheorem 15 2.2 MultipleIntegralsandDivergenceTheorem 17 2.2.1 MultipleIntegrals 17 2.2.2 Green’sTheorem 30 2.3 SystemsofFirst-OrderOrdinaryDifferentialEquations:Existenceand UniquenessResults 34 2.4 FourierTransform,ConvolutionandMollifiers 43 2.4.1 Convolution 46 2.4.2 Mollifiers 47 3 First-OrderPartialDifferentialEquations:MethodofCharacteristics 48 3.1 Introduction 48 3.2 LinearEquations 50 3.3 QuasilinearEquations 53 3.4 GeneralFirst-OrderEquationinTwoVariables 63 3.5 First-OrderEquationinSeveralVariables 70 3.5.1 LinearFirst-OrderEquationinSeveralVariables 71 3.5.2 QuasilinearEquationinSeveralVariables 72 3.5.3 GeneralNon-linearEquationinSeveralVariables 74 vii viii CONTENTS 3.6 Hamilton–JacobiEquation 77 3.7 Notes 84 3.8 Exercises 84 4 Hamilton–JacobiEquation 87 4.1 Hamilton–JacobiEquation 88 4.2 Hopf–LaxFormula 89 4.3 Euler–LagrangeEquations 93 4.4 LegendreTransformation 98 4.5 Notes 107 4.6 Exercises 108 5 ConservationLaws 111 5.1 Introduction 111 5.2 GeneralizedSolutionandRankine–Hugoniot(R–H)Condition 114 5.3 Lax–OleinikFormula 123 5.4 GeneralizedSolutionandUniqueness 128 5.5 RiemannProblem 137 5.6 Notes 139 5.7 Exercises 143 6 ClassificationofSecond-OrderEquations 145 6.1 Introduction 145 6.2 CauchyProblem 145 6.2.1 Non-characteristicCauchyProblem 150 6.3 ClassificationofLinearEquations 152 6.3.1 Second-OrderEquationsinTwoVariables 157 6.4 Higher-OrderLinearEquations 161 6.5 Notes 163 6.6 Exercises 164 7 LaplaceandPoissonEquations 166 7.1 Introduction 166 7.1.1 PhysicalInterpretation 167 7.2 FundamentalSolution,MeanValueFormulaandMaximumPrinciples 168 7.2.1 MeanValueFormula 172 7.2.2 MaximumandMinimumPrinciples 175 7.2.3 UniquenessandRegularityoftheDirichletProblem 178 7.2.4 Green’sFunctionandRepresentationFormula 183 7.2.5 MVPImpliesHarmonicity 188 7.3 ExistenceofSolutionofDirichletProblem(Perron’sMethod) 189 7.4 PoissonEquationandNewtonianPotential 193 7.4.1 HölderContinuousFunctions 197 CONTENTS ix 7.5 HilbertSpaceMethod:WeakSolutions 202 7.5.1 FourierMethod 206 7.6 Notes 209 7.7 Exercises 211 8 HeatEquation 216 8.1 Introduction 216 8.1.1 DerivationofOne-DimensionalHeatEquation 216 8.2 HeatTransferinanUnboundedRod 218 8.2.1 SolutioninHigherDimensions 223 8.2.2 Uniqueness 228 8.2.3 InhomogeneousEquation 230 8.3 MaximumandMinimumPrinciples 231 8.4 HeatEquationonaFiniteInterval:FourierMethod 241 8.4.1 PrescribedNon-zeroBoundaryConditions 243 8.4.2 FreeExchangeofHeatattheEnds 243 8.5 Notes 246 8.6 Exercises 250 9 One-DimensionalWaveEquation 252 9.1 Introduction 252 9.2 CauchyProblemontheLine 253 9.2.1 InhomogeneousEquation:Duhamel’sPrinciple 259 9.2.2 CharacteristicParallelogram 262 9.3 CauchyProbleminaQuadrant(Semi-infiniteString) 263 9.4 WaveEquationinaFiniteInterval 267 9.5 NotionofaWeakSolution 268 9.6 GeneralSecond-OrderEquations 269 9.6.1 AnExample 277 9.7 Notes 279 9.8 Exercises 279 10 WaveEquationinHigherDimensions 281 10.1 Introduction 281 10.2 Three-DimensionalWaveEquation:MethodofSphericalMeans 282 10.2.1 CharacteristicCone:SecondMethod 288 10.3 Two-DimensionalWaveEquation:MethodofDescent 294 10.3.1 TelegraphEquation 296 10.4 WaveEquationforGeneraln 297 10.4.1 SolutionFormulaviaEuler–Poisson–DarbouxEquation 298 10.4.2 AnInversionMethod 303 10.5 MixedorInitialBoundaryValueProblem 308 10.6 GeneralHyperbolicEquationsandSystems 311

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.