INTERNATIONALECONOMICREVIEW Vol.47,No.3,August2006 ∗ PARTIALADJUSTMENTWITHOUTAPOLOGY BY ROBERTG.KINGANDJULIAK.THOMAS1 BostonUniversity,FederalReserveBankofRichmond,andNBER,U.S.A.; UniversityofMinnesota,FederalReserveBankofMinneapolis, andNBER,U.S.A. Econometricpartialadjustmentmodelsperformrelativelywellattheaggre- gatelevel;however,manykindsofmicroeconomicbehaviorinvolvediscreteand occasionalchoices.Analyzingtheclassicemploymentadjustmentproblem,we showhowageneralizedpartialadjustmentmodeltractablyaccommodatesboth observationsbyaggregatingtheactionsofheterogeneousproducersfacingfixed adjustmentcosts.Aggregatedisturbancescausechangesinestablishment-level targetemploymentandinthemeasureofestablishmentsactivelyadjustingto theirtarget,whereasaggregateresponsesexhibitpartialadjustment.Ourframe- workalsocanbeappliedingeneralequilibriumsettingswithpersistentidiosyn- craticshockswithoutforfeitingtheconvenientuseoflinearsolutionmethods. 1. INTRODUCTION Inmanycontexts,actualfactordemandsclearlyinvolvecomplicateddynamic elements absent in static demand theory. For example, empirical studies of the marketdemandforlabortypicallyfindthatlags,eitherofdemandorofthede- terminantsofdemand,contributesubstantiallytotheexplanationofemployment determination. The most frequent rationalization of such lags is that individual plantsfacemarginalcoststhatareincreasingintheextentofadjustment,leading themtochoosepartialadjustment towardthelevelssuggestedbystaticdemand theory.Manyempiricalstudiesalsoindicate,however,thatthepartialadjustment modelisinconsistentwiththebehaviorofindividualplantsorfirms.Forexample, Hamermesh (1989) shows that individual plants undertake discrete and occa- sionalworkforceadjustmentsratherthanthesmoothchangesimpliedbypartial adjustment.Nonetheless,themodelcontinuestobeavehicleforappliedwork,es- sentiallybecauseitisatractablewayofcapturingsomeimportantdynamicaspects ofmarketdemand.Itisfrequentlythusemployedinanapologeticmanner,with theresearchersuggestingthatitisadescriptionofmarket,ratherthanindividual, factordemand.2 We present a generalized partial adjustment model in which individual pro- duction units adjust in a discrete and occasional manner, yet there is smooth ∗ManuscriptreceivedJune2004;revisedFebruary2005. 1WethankRandallWrightandtwoanonymousrefereesfortheircomments.Anyremainingerrors areourown.Theviewsexpressedinthisarticlearethoseoftheauthorsanddonotreflectthoseofthe FederalReserveBankofRichmondorMinneapolis,ortheFederalReserveSystem.Pleaseaddress correspondenceto:JuliaK.Thomas,DepartmentofEconomics,UniversityofMinnesota,1035Heller Hall,27119thAvenueSouth,Minneapolis,MN55455.Phone:6126269675.E-mail:[email protected]. 2See,forexample,Kollintzas(1985). 779 780 KINGANDTHOMAS adjustmentattheaggregatelevel.Specifically,individualunitsfacedifferingfixed costs of adjustment, so the timing of their adjustments is infrequent and asyn- chronizedwhileaggregationacrossplantsleadstoasmoothpatternofaggregate factordemandwellapproximatedbythestandardpartialadjustmentmodel.Our exposition of this model’s relation to the traditional model commonly used in empiricalworkisuniquetothisarticle. Our basic framework is sufficiently tractable that it has already been applied toexamineseveraltopics,amongthempriceadjustmentandcapitalinvestment.3 Here, we apply it to employment, which, relative to the investment application, requires a different timing to trace the resulting distribution of production. We providethefirstcomprehensivepresentationoftheframeworksothatresearchers mayconvenientlyadaptittostudyotherproblems.Tofacilitateitsbroadapplica- tion,wethenextendthemethodtoallowforpersistentidiosyncraticshocks. Ourmodelprovidesamicroeconomicfoundationforthevarietyofplant-level adjustmentexaminedintheempiricalworkofCaballeroandEngel(1992,1993) andCaballeroetal.(1997).There,individualproductionunitsareassumedtoad- justemploymentprobabilistically,withadjustmentprobabilitiesbeingafunction ofthedifferencebetweenatargetlevelofemploymentandactualemployment. Aggregating from such adjustment hazard functions, which are their basic unit of analysis, they examine the implications of the resulting state-dependent ad- justment behavior for aggregate employmentdemand dynamics. In the absence ofamicroeconomicfoundationforsuchprobabilisticadjustment,Caballeroand Engel(1993,p.360,paragraph2)explainthatthey“tradesomedeepparameters forempiricalrichness.”Incontrast,weexplicitlymodeltheplant’sadjustmentde- cisionasageneralized(S,s)problemandderivetheadjustmenthazardfunctions thatarethestartingpointofpreviousresearch.4 Onekeystylizedfactuncoveredintheempiricalliteratureisthatanimportant routethroughwhichaggregateshocksaffectaggregateemploymentisbychang- ingthefractionofplantsthatchoosetoadjust.Accordingly,wedevelopamodel wheretheaggregateadjustmentrateisanendogenousfunctionofthestateofthe economy. Although our generalized model is not observationally equivalent to thetraditionalpartialadjustmentmodelwithtime-invariantaggregateadjustment rates,impulseresponsesestablishthatitretainsthebasicfeaturesofgradualpar- tialadjustment.Anotherdistinguishingfeatureofourtheoreticalapproachisthat itisconvenienttoundertakegeneralized(S,s)analysisinageneralequilibrium environment,sotheinfluenceofaggregateshocksonequilibriumadjustmentpat- ternsmaybesystematicallystudied.Finally,ourapproachissufficientlytractable soastoaccommodateadditionalsourcesofheterogeneity.Thus,beyondachieving consistencywiththestylizedfactshighlightedhere,itnaturallyextendstoallow forthericherheterogeneityofactionsthatisessentialinmatchingotheraspectsof themicroeconomicdataonfactoradjustment.Moreover,thisgeneralizationtoin- cludediscreteindividualadjustmentsalongsidepersistentidiosyncraticelements 3Dotseyetal.(1999)usetheframeworktoanalyzepriceadjustment;Thomas(2002)usesitto examineinvestment. 4Generalized(S,s)modelswerefirststudiedbyCaballeroandEngel(1999)toexplaintheobserved lumpinessofplant-levelinvestmentdemand. PARTIALADJUSTMENTWITHOUTAPOLOGY 781 makes our framework amenable to a broader set of applications beyond those consideredthusfar. Thearticleisorganizedasfollows.Section2brieflyreviewstheessentialproper- tiesofthestandardpartialadjustmentmodel,andSection3describestheevidence onmicroeconomicadjustmentpatternsthatthestandardmodelfailstoexplain. Next,Section4developsamodelthatisconsistentwiththeobservationthatin- dividualestablishmentshirevaryingamountsoflaborindiscreteandoccasional episodes,anditillustratesaresultinghedgingeffectonthedemandforlabor.Our modelmakesthetimingofdiscreteindividualemploymentchangesendogenous by assuming that plants face fixed costs of adjustment that are random across both time and plants. Establishments respond to this by adopting generalized (S,s)decisionruleswithrespecttolabor.Atthesametime,theframeworkisread- ilyembeddedwithinafullyspecifiedgeneralequilibriummacroeconomicmodel, whichallowsustoexaminetheinfluenceofdeepparametersontheadjustment process.Moreover,withalargenumberofplants,themodelissimilartothetra- ditionalpartialadjustmentmodelinthatityieldsasmoothmarketlabordemand. WeillustrateseveralpropertiesofourgeneralizedpartialadjustmentmodelinSec- tion 5 through a series of numerical examples.5 Beyond its consistency with the evidenceonemploymentadjustmentinSection3,themodelisalsodistinguished by its potential to reproduce the sharp changes in market employment demand foundinthedataduringepisodesinvolvinglargechangesinproductivity.6Moving fromourmarketdemandexamples,weprovidecounterpartresultsthatillustrate theroleofequilibriuminshapingtheaggregateresponsetoshocks.Finally,Sec- tion6demonstrateshowourframeworkisextendedtoaccommodatepersistent differencesinproductivityacrossestablishments,andSection7concludes. 2. STANDARDPARTIALADJUSTMENT Thestandardpartialadjustmentmodelrelatescurrentemployment,N ,totarget t ordesiredemployment,N∗t,throughNt−Nt−1=κ [N∗t −Nt−1],whereκ ∈(0,1) isthefractionofthegapclosedintheperiod.Thisspecificationimpliestheinflu- enceofpastactualordesiredemploymentoncurrentemployment. (cid:2)∞ (1) Nt =κN∗t +(1−κ)Nt−1 =κ (1−κ)jNt∗−j j=0 5Ourmodelisdistinguishedfromearliergeneralizedcostofadjustmentmodels,assummarized, extended,andcritiquedinMortensen(1973),inthatitsuggestsverydifferentdynamicsatthees- tablishmentlevel.Nonetheless,becauseourmodelisessentiallyonewithmanydynamicallyrelated factordemands,itiscapableofgeneratingsomeoftheaggregatedynamicsthatmotivatedresearchers inthisearlierarea.Forexample,underunrestrictedparameters,interrelatedfactordemandmodels werefoundtobeconsistentwithoscillatoryapproachestothelong-runposition.Ourmodelcanalso generatesuchrichdynamics,althoughitdoesnotdosoundertheparametersselectedhere. 6Thisisbecausetheeconomy-widerateofadjustmentimpliedbyourmodelvarieswithaggregate conditions.Thetraditionalmodelunderpredictsemploymentchangesduringsuchepisodesprecisely becausetheadjustmentratethereisconstant. 782 KINGANDTHOMAS As shown by Sargent (1978), this empirical partial adjustment model may be derived as the solution to a firm’s dynamic profit maximization problem under the assumption that there are quadratic costs of adjusting the workforce. In the absence of costly adjustment, assume that the firm’s workforce declines at the rated∈[0,1)duetoquitsormismatches.Ife employeesarehiredattimet,then t Nt = (1 − d)Nt−1 + et, and the cost of the workforce adjustment is (cid:3)(et)= Be2, where B > 0.7 Let z reflect current productivity, and w be the real wage, 2 t t t (bothseriallycorrelatedrandomvariablesknownatdatet),andletproductionbe mf(aNxitm,zitz)e.Ditissceoxupnetcitnegdfuptruerseenetardniisncgosubnyteβd∈va(0lu,e1,),Eth[(cid:3)efi∞rmβcth(ofo(Nses,z{N)−t,e(cid:3)t}(∞te=0)t−o t=0 t t t wtNt)|z0,w0], subject to Nt = (1 − d)Nt−1 + et and given initial employment N−1.Iftheproductionfunctionisquadraticinemployment,itisstraightforward toshowthat (cid:2)∞ (2) Nt∗ = Et (β/κ)j(χaat+j −χwwt+j) j=0 demonstratingthatthepresenceoflagsinemploymentimpliesleadsunderratio- nalexpectations,asstressedbySargent(1978).8 Thekeyimplicationsofthemodelare:(i)currentemployment,N ,isdirectly t relatedtolaggedemployment,Nt−1,becauseadjustmentsarecostly,and(ii)expec- tationsoffuturewagesandproductivityinfluencecurrentemploymentthroughthe ∗ target,N ,because,givenadjustmentcosts,itschoicewillinpartdeterminefuture t employment.Takentogether,thesefeaturesimplythatadjustmentcostsdampen theresponsetochangesincurrentwageandproductivityandyieldsmooth,grad- ualchangesinemploymentovertime. 3. DISCONCERTINGEVIDENCE Althoughthetraditionalpartialadjustmentmodeloffersatractableframework with which to study gradual aggregate labor adjustment, there is considerable empiricalevidencetosuggestthatthemodelisnot consistentwiththebehavior ofindividualproductionunits.Thisevidencesuggestsanumberofstylizedfacts aboutindividualandaggregateadjustmentthatwesummarizehere. Stylized fact 1: Adjustment at the plant level is discrete, occasional, and asyn- chronous.Hamermesh(1989)examinesmonthlydataonoutputandemployment between 1983 and 1987 across seven manufacturing plants. For each plant, out- putfluctuatessubstantiallyoverthesample.Employmentexhibitslongperiodsof constancybrokenbyinfrequentandlargejumpsattimesroughlycoincidingwith thelargestoutputfluctuations.Hence,theplantdataarenotconsistentwiththe smoothemploymentadjustmentthatwouldarisefromconvexadjustmentcosts. 7Thiscapturestheideathatthefirm’smarginaladjustmentcostisrisingintheextentofemployment adjustment;thesameideaisincorporatedinalternativeadjustmentcostfunctionsusedinappliedwork. 8In(1)and(2),theparametersκ,χa,andχw dependontheadjustmentcostparameterB,the discountfactorβ,andtheparametersoftheproductionfunction. PARTIALADJUSTMENTWITHOUTAPOLOGY 783 Stylizedfact2:Aggregatesexhibitsmoothandpartialadjustment.Hamermesh (1989) also examines the behavior of the aggregate of his seven manufacturing plants.Hefindsthatfluctuationsinaggregateemploymentresemblethedynamics of aggregate output and appear consistent with smooth adjustment behavior of aggregates.Morespecifically,hearguesthatthestandardpartialadjustmentmodel works quite well at the aggregate level, even though it does not describe the behaviorofindividualproductionunits.9 Stylized fact 3: Adjustment hazards depend on aggregate conditions. Follow- ingtheeconometricliteratureondiscretechoices,anadjustmenthazardtypically referstotheprobabilitythataproductionunitwillundertakeadiscretechange, withthisprobabilitydependingonthepositionoftheunit’sstatevariablerelative tosometargetvalue.CaballeroandEngel(1993)constructageneralframework for studying aggregate employment changes that can incorporate a variety of assumptionsabouthowadjustmenthazardsarerelatedtoaggregateconditions. UsingU.S.manufacturingdatafrom1961through1983,theyexaminethedynam- icsofaggregateemploymentchangesundertwoalternativespecificationsforthe hazard function: (1) a benchmark case with a time-invariant, flat hazard, which correspondstothetraditionalpartialadjustmentmodel(asshownbyRotemberg, 1987)and(2)analternativehazardmodelinvolvinghighermomentsofthecross- sectionaldistributionoffirms’“disequilibrium”levels,reflectingstate-dependent adjustmentbehavior.Theyfindlargeincreasesinexplanatorypowerforaggregate employmentchangesinmovingfromtheconstanthazardmodeltoageneralized hazardstructureandattributethistotheeffectsoflargeaggregateshocksupon theemploymenthazard. Stylizedfact4:Adjustmenthazardsdependonmeasuresof“microgaps.”More directevidenceontheimportanceofstate-dependentadjustmenthazardsispro- vided by Caballero et al. (1997). Studying the direct relationship between the adjustmenthazardattheleveloftheindividualproductionunitandtheextentof that unit’s gap between current employment and a measure of desired employ- ment,theseauthorsshowthattheadjustmenthazarddependsonthesizeofthis discrepancy. They suggest that individual units may face differential adjustment costs,sothatthedistributionofadjustmentcostsgovernstheadjustmenthazard. Stylized fact 5: Aggregate shocks are much more important in accounting for aggregateresponsesthanareshiftsincostdistributions.Theempiricalanalysisof 9Hamermeshcompareslog-likelihoodvaluesfromtheestimationofapartialadjustmentmodel based on quadratic costs to those from a lumpy adjustment fixed-cost alternative. For plant-level data,thelatterachievesmuchlargerlikelihoodvalues.Furthermore,hisswitchingmodelestimatesof thepercentage“disequilibrium”requiredtoinduceadjustmentarelarge,suggestingthatplantsvary employmentwithanonmarginaladjustmentonlyinthepresenceofsubstantialshockstoexpected output.However,differencesattheaggregatelevelaretoosmalltodiscriminatebetweenmodels, asisthecasewhentheyarecomparedusing4-digitSICdata.Thus,lumpyadjustmentbehaviorat themicroeconomiclevelisobscuredbyaggregation.Fromthisandsimilarevidence,Hamermeshand Pfann(1996,p.1274)concludethat“observingsmoothadjustmentbasedondatadescribingindustries orhigheraggregatesovertimeisuninformativeaboutfirms’structuresofadjustmentcostsandinno waydisprovestheexistenceoflumpycosts.” 784 KINGANDTHOMAS Caballeroetal.(1997)alsosuggeststhatchangesinthedistributionofadjustment costs are not central in explaining stylized fact 3. Instead, aggregate shocks in- ducechangesinhazardsthatareimportantforaggregatesbecausetheyproduce movementsalongthemicro-distributionofemploymentimbalances. 4. GENERALIZEDPARTIALADJUSTMENT A number of recent theoretical and empirical studies—notably those of CaballeroandEngel(1993)andCaballeroetal.(1997)—havearguedforaricher vision of the adjustment process that can generate the stylized facts discussed above.Theframeworkwedevelopexemplifiessuchamodel.Inparticular,itdeliv- erstheimplicationthat,althoughindividualestablishments’employmentadjust- mentsarediscrete(fact1),theirasynchronoustimingimpliesasmoothaggregate employment series similar to that implied by the traditional partial adjustment model (fact 2). Moreover, an individual production unit’s probability of adjust- ment depends on a measure of the “gap” between its current employment and anotionofdesiredemployment(fact4),andthemodelcanproducesubstantial responsesofemploymenttoaggregateshockswithoutrelyingonanyshiftsinthe distributionofadjustmentcosts(fact5).Atthesametime,ourapproachisreadily incorporatedintoageneralequilibriummodel,sothattherelationshipbetween adjustment hazards and macroeconomic conditions can be formally established (fact3). Weassumealargeandfixednumberofproductionunits,eachmakingdiscrete choicesabouttheiremploymentadjustmentovertime.Productionattheplantis constantreturnsinlaborandafixedinput,whichwenormalizeto1, f(n,1,z).10 t t Anyunitthatdoesnotadjustitsworkforceseesitdecayatrated: (3) nt =(1−d)nt−1+et wheree representsanactiveadjustment.Weendogenizethetimingofsuchad- t justmentsbyintroducingfixedcoststhatarestochasticacrossunits,anapproach adopted by Caballero and Engel (1999) in their study of manufacturing invest- ment.11 Withineachdate,anyindividualplantfacesarandomcostξ thatitmust pay in order to adjust its employment prior to current production. This cost is drawn from a time-invariant distribution over [0, B] that is summarized by the CDFG(ξ)andassociateddensityg(ξ). Inthediscussionthatfollows,weintegrateourgeneralizedpartialadjustment approach into a general equilibrium setting by imposing two restrictions on the pricesfacedbyestablishmentswithineachdate.First,assetmarketclearingwill 10Thepresenceofthefixedinputallowsdeterminationoftheemploymentchoiceattheproduction unit. 11Thegeneralizedadjustmentmodeldevelopedherehasbeenusedinseveralgeneralequilibrium applications.Dotseyetal.(1999)studythedynamicsofpriceadjustment,whereasThomas(2002)and KhanandThomas(2003)investigateinvestmentdynamicsandKhanandThomas(2004)useasimilar approachtostudy(S,s)inventoryaccumulation.Inthisstudy,weuselinearapproximationmethodsin thetraditionofSargent(1978)toexplorethegeneralequilibriumdynamics,asdoDotseyetal.(1999) andThomas(2002). PARTIALADJUSTMENTWITHOUTAPOLOGY 785 require that all establishments discount their future profit flows by households’ marginalrateofsubstitutionbetweencurrentandfutureconsumption,denoted herebyβpt+1.Equivalently,establishmentsvaluetheircurrentoutputbyp,the pt t current marginal utility of consumption, and discount their future values by the householdsubjectivediscountfactorβ.Next,theequilibriumwage,w,willequal t households’marginalrateofsubstitutionbetweencurrentleisureandconsump- tion, D2u(c,1−N). Provided that these restrictions are satisfied, the role of house- D1u(c,1−N) holds in the economy is effectively subsumed, and equilibrium allocations are retrievedastheaggregateofestablishments’decisions.12 4.1. AdjustmentProbabilities. Atthestartofanydatet,eachproductionunit may be identified as a member of a particular time-since-adjustment group, j, where j is the number of periods that have elapsed since the unit’s last active employmentadjustment.Letn representthestart-of-periodlaborstockassoci- jt atedwithamemberoftime-since-adjustmentgroupj,andletα beashorthand jt representinganysuchestablishment’sprobabilityofacurrentadjustment,asper- ceived after the observation of the aggregate state but prior to the realization of adjustment costs.13 We limit the number of time-since-adjustment groups by restricting the parameters of our model to ensure that there is some maximum nonadjustmenthorizon,J,thenumberofperiodswithinwhichallproductionunits willadjusttheiremploymentwithprobability1:α =1.Thisfinitememoryfeature J is useful in limiting the size of the aggregate state vector, and will be discussed furtherbelow. Let S denote the aggregate state of the economy determining prices and ex- t pectations.WeusethenotationV(n ,S)torepresenttheproduction-timevalue j jt t ofaplantthatlastadjustedemploymentjperiodsagoandisenteringcurrentpro- duction with no change to its start-of-period workforce n . Next, we use V (S) jt 0 t todenotetheproduction-timevalueofaplantthathaspaiditscurrentfixedcost inordertoadjustitsemploymentpriortoproduction.Basedonacomparisonof thesevalues,itisstraightforwardtocharacterizethediscreteadjustmentdecisions made by individual production units. Given its start of period employment, n , jt and the aggregate state, S, an establishment will actively adjust its workforce if t itscurrentfixedcost,ξ,doesnotexceedthevalueofundertakingtheadjustment, thatis,ifV (S)−V(n ,S)≥ξ.14 0 t j jt t Becausethereisalargenumberofproductionunitswithineachdifferenttime- since-adjustmentgroup,eachgroupischaracterizedbyamarginalplantthatfinds itjustworthwhiletoadjust.Thismarginalplantisassociatedwithathresholdcost ξ¯ satisfyingthefollowingcondition. jt 12SeeKhanandThomas(2003)forfurtherexplanation. 13Exceptwherenecessaryforclarity,wesuppresscommasinsubscriptsthroughoutthistext. 14Aswillbemadeexplicitbelow,St includestwoendogenousvectorsthattogetheridentifythe start-of-perioddistributionofplantsoveremployments,alongsideexogenousaggregateproductivity, zt.WeassumeztfollowsaMarkovprocessthatistakenasgivenbyallagents,asistheevolutionofthe endogenousaggregatestate,At,accordingtoamappingAt+1=(cid:8)(At,zt)that,inequilibrium,results fromtheaggregationofindividualactions. 786 KINGANDTHOMAS (4) ξ¯ = V(S)−V(n ,S) jt 0 t j jt t Allproductionunitsinthejthtime-since-adjustmentgroupwithadjustmentcosts atorbelowthethresholdin(4)willchoosetoadjust.Asaresult,thefractionof plantsadjustingoutofanyparticulargroupj,j=1,...,J−1,isgivenby(5). (5) α =G(ξ¯ ) jt jt From(4),notethattheseadjustmentfractionsarefunctionsoftheplant-levelstate vector,(n ,S).Weassumethatthestochasticprocessforproductivity,alongside jt t theparametersassociatedwithproduction,fixedcostdraws,andhouseholdutility, aresuchthatB<V (S)−V (n ,S)forallrelevantvaluesofthevector(n ,S). 0 t J Jt t Jt t ThisassumptionfollowsnaturallyfromB<∞andensuresthatα =1. J 4.2. Production-TimeValues. Havingdescribedthedeterminationofendoge- nousadjustmentprobabilitiesasfunctionsoftheproduction-timevaluesassoci- atedwithadjustingandnonadjustingplants,wenowstatethefunctionalequations that determine these values. We have been explicit above in noting the depen- dence of prices and adjustment probabilities on the economy’s aggregate state. Here,however,wesuppressthesedependenciestoreduceequationlength. Thevalueofaplantthatiscurrentlyadjustingitslaboris (cid:4) (cid:5) (6) V0(St)=max f(n0t,zt)−wtn0t +βE pt+1[α1,t+1V0(St+1)−ξ1,t+1 p t (cid:6)(cid:7) +(1−α1,t+1)V1((1−d)n0t,St+1)]|St wheren0tisfreelychosen,andα1,t+1isgivenbyEquations(4)and(5)above.15The right-handsideofthisBellmanequationinvolvesthreeexpressions.First,thereis theflowofcurrentprofit.Second,thereistheexpecteddiscountedvalueofbeinga unitthatadjustsnextperiod,whichoccurswithstate-dependentprobabilityα1,t+1 and imp(cid:8)lies an expected fixed cost payment, ξ1,t+1, conditional on adjustment: ξ1,t+1 = 0G−1(α1,t+1)xg(dx).Finally,thereisthevalueofbeingaunitthatdoesnot adjustnextperiod,anoutcomethatoccurswithprobability(1−α1,t+1). For units choosing not to adjust their workforce, there are no further current decisions in this simple model, although there would be in more elaborate set- tings allowing adjustments on other margins, such as in hours-per-worker. The production-time value of a plant that last adjusted j = 1,...,J − 2 periods ago, andisnotcurrentlyadjusting,is 15Asn0tisourmodel’scounterparttotargetemploymentinthetraditionalmodel,weoccasionally refertoitasn∗whenmakingcomparisonsbelow. t PARTIALADJUSTMENTWITHOUTAPOLOGY 787 (7) V(n ,S)= f(n ,z)−w n j jt t jt t t jt (cid:5) +βE pt+1[αj+1,t+1V0(St+1)−ξj+1,t+1 p t (cid:6) +(1−αj+1,t+1)Vj+1((1−d)njt,St+1)]|St (cid:8) whereαj+1,t+1isgivenbyEquations(4)through(5),andξj+1,t+1 = 0G−1(αj+1,t+1)× xg(dx).Anysuchplantproduceswithitsstart-of-periodlaborn ,thenmovesto jt startnextperiodasamemberoftime-since-adjustmentgroupj+1withworkforce (1−d)n .Inotherrespects,itsBellmanequationisanalogoustothatofcurrent jt adjustors described above. Finally, the production-time value of a nonadjusting plantthatlastadjustedJ−1periodsagoisjustasin(7),butreflectsthecertainty ofemploymentadjustmentinthenextperiod. (cid:5) (cid:6) (8) VJ−1(nJ−1,t,St)= f(nJ−1,t,zt)−wtnJ−1,t +βE pt+1[V0(St+1)−ξJ,t+1]|St p t Beforeproceedingfurther,weshouldoffersomecommentonthetime-since- adjustmentsubscriptsattachedtotheplantvaluefunctionsabove.Solongasad- justmentprobabilitiesareoptimallychosen,itisclearthattheplant-levelstateis fullycapturedby(n ,S),andthesesubscriptsareunnecessary.Wehavechosento jt t includethemheretoallowouranalysistoaccommodateaspecialcasethatliesbe- tweenourgeneralizedmodelwithstate-dependentadjustmentprobabilitiesand thetraditionalpartialadjustmentmodelcharacterizedbyatime-invariant,flatad- justmenthazard.Thisintermediatetime-dependentadjustmentmodelreplacesthe endogenousdeterminationofadjustmentprobabilitiesaccordingto(4)–(5)with afixedvectorofadjustmentprobabilitiesobtainedfromthedeterministicsteady stateofourstate-dependentadjustmentmodel.Thus,itresemblesthetraditional modelinthatitsadjustmenthazardremainsfixedovertime,butdiffersinthatthe hazardisnotflat,butinsteaddependsuponaunit’stime-since-last-adjustment.16 When our model is specialized to this case of time-dependent adjustment, j be- comesaseparateindividualstatevariabledeterminingtheprobabilitythataplant willbeallowedtoadjustitsemployment,andthesubscriptsonourvaluefunctions areusefulinaccountingforthis. 4.3. Target Employment. Adjusting production units exit the jth group for theadjustmentgroupandchooseemploymentsoastomaximizetheright-hand sideof(6),whichresultsinanefficiencyconditionofthefollowingform. (cid:5) (cid:6) D1f(n0t,zt)−wt +βE pt+1(1−α1,t+1)(1−d)D1V1((1−d)n0t,St+1)|St =0 p t 16Onemayinterpreteachtime-dependentadjustmentprobabilityαjasreflectingtheprobability thataplantwillbeabletochangeitsemploymentatzerofixedcostversustheprobabilitythatitwill faceaninfiniteadjustmentcost. 788 KINGANDTHOMAS A notable feature of this condition is that the optimal employment decision on thepartoftheadjustingproductionunitisindependentofthelengthoftimesince itlastadjustedandthesizeofitsworkforceatthestartoftheperiod,sinceneither j nor n enters into the efficiency condition. This justifies our writing V above jt 0 in the restricted form that omits these factors. In addition, it implies a common employment adopted by all units adjusting within the same date, and hence the common start-of-period workforce across all members of any particular time- since-adjustmentgroup. Workingwiththevaluefunctionin(7),wecandeterminethemarginalvalueof additionalworkersasfollows. D V(n ,S)= D f(n ,z)−w 1 j jt t 1 jt t t (cid:5) (cid:6) +βE pt+1(1−αj+1,t+1)(1−d)D1Vj+1((1−d)njt,St+1)|St p t Thesederivativesmaybeusediterativelytosimplifytheefficiencyconditionand deriveanalternativeimplicitexpressionfortheoptimalworkforcechosenbyan adjustingproductionunit.Inparticular,n solves 0t (9) D f(n ,z)−w 1 0t t t (cid:5) (cid:6) +E(cid:2)J−1 pt+j(cid:9)β(1−d)]jϕj,t+j[D1f(cid:10)(1−d)jn0t,zt+j(cid:11)−wt+j(cid:12)(cid:13)(cid:13)St =0 p j=1 t whereeachϕj,t+j representstheprobabilitythattheadjustingunitwillmakeno furtheradjustmentinthenextjperiods. (cid:14)j (cid:14)j (10) ϕj,t+j ≡ (1−αk,t+k)= (1−G(ξ¯k,t+k)), for j =1,...,J −1 k=1 k=1 Inpractice,itisconvenienttobreakthelargeforward-lookingconditiondetermin- ingtargetemploymentintoJfirst-orderstochasticdifferenceequations.Defining (cid:10)Jt ≡0,anddefining(cid:10)1t,...,(cid:10)J−1,t recursivelyin(12),theconditionin(9)may bealternativelywrittenasthatinEquation(11). (cid:5) (cid:6) (11) D1f(n0t,zt)−wt +β(1−d)E pt+1(cid:10)1,t+1 |St =0 p t (cid:4) (cid:5) (cid:6)(cid:7) (12) (cid:10)jt ≡(1−αjt) D1f(njt,zt)−wt +β(1−d)E pt+1(cid:10)j+1,t+1|St p t Note that the condition above may be explicitly solved for adjusting units’ optimallabordemandinthespecialcaseofaCobb–Douglasproductionfunction, y=znγ.Inthatcase,
Description: