Part1 ChemistryofNODonors 3 1 NOandNODonors TingweiBillCai,PengGeorgeWang,andAlvinA.Holder Nitricoxide(NO),amagicfreeradicalgasmolecule,hasbeenshowntobeinvolved in numerous physiological and pathophysiological processes. Among its diverse functions,NOhasbeenimplicatedintherelaxationofvascularsmoothmuscle,the inhibitionofplateletaggregation,neurotransmission(Viagrareversesimpotenceby enhancinganNO-stimulatedpathway),andimmuneregulation[1]. Itwasnamedthe moleculeoftheyearin1992byScienceandwasthesubjectoftheNobelPrizein1998. NOhaslimitedsolubilityinwater(2–3mM),anditisunstableinthepresenceof variousoxidants. Thismakesitdifficulttointroduceassuchintobiologicalsystems inacontrolledorspecificfashion. Consequently,thedevelopmentofchemicalagents thatreleaseNOisimportantifwearetotargetitsbioeffectorrolestospecificcelltypes forbiologicalandpharmacologicalapplications. Basedonourcomprehensivereview ofNOdonors[2],thischapterfocusesonrecentprogressandcurrenttrendsinNO donordevelopmentandnovelapplicationswhicharenotcoveredbythefollowing chapters. 1.1 IntroductiontoNOBiosynthesisandNOdonors 1.1.1 NitricOxideSynthases EndogenousNOisproducedalmostexclusivelybyl-argininecatabolismtol-citrul- lineinareactioncatalyzedbyafamilyofnitricoxidesynthases(NOSs)[3]. Inthefirst step, Arg is hydroxylated to an enzyme-bound intermediate Nù-hydroxy-l-arginine (NHA), and 1 mol of NADPH (nicotinamide adenine dinucleotide phosphate, re- ducedform)andO areconsumed. Inthesecondstep,NHAisoxidizedtocitrulline 2 and NO, with consumption of 0.5 mol of NADPH and 1 mol of O (Scheme 1.1). 2 Oxygen activation in both steps is carried out by the enzyme-bound heme, which derives electrons from NADPH. Mammalian NOS consists of an N-terminal oxy- NitricOxideDonors PengGeorgeWang,TingweiBillCai,NaoyukiTaniguchi(Eds.) Copyright(cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-31015-0 4 1NOandNODonors H2N NH2 H2N N OH O NH2 NH 1 NADPH NH 0.5 NADPH NH N O O2 H2O O2 H2O H3N COO H3N COO H2N COO Arginine Nw-Hydroxyarginine Citrulline Nitric Oxide Scheme1.1 Endogenoussynthesisofnitricoxide. genasedomainthatbindsironprotoporphyrinIX(heme),6-(R)-tetrahydrobiopterin (H B)andArg,andaC-terminalreductasedomainthatbindsFMN(flavinmononu- 4 cleotide),FAD(flavinadeninedinucleotide),andNADPH,withacalmodulinbinding motiflocatedbetweenthetwodomains. Tobeactive,twoNOSpolypeptidesmust formahomodimer. ThereductasedomainseachtransferNADPH-derivedelectrons, throughFADandFMN,tothehemelocatedintheadjacentsubunit. Threedistinct isoformsofNOShavebeenidentified–neuronal,macrophageandendothelialtypes, andeachisassociatedwithaparticularphysiologicalprocess(Table1.1). Constitutive endothelialNOS(eNOSorNOSIII)regulatessmoothmusclerelaxationandblood pressure;constitutiveneuronalNOS(nNOSorNOSI)isinvolvedinneurotransmis- sion and long-term potentiation; the NO produced from inducible NOS (iNOS or NOSII)inactivatedmacrophagecellsactsasacytotoxicagentinnormalimmune defenseagainstmicroorganismsandtumorcells. Theconstitutiveisoforms(nNOS andeNOS)requireaddedCa2+ andcalmidulinforactivityandproducearelatively smallamountofNO,whiletheinducibleisoform(iNOS)hastightlyboundCa2+and calmodulin,andproducesarelativelylargeamountofNO. Tab. 1.1: PropertiesofNOSisoforms. NOS Locations Characteristics MajorBiologicalFunctions nNOS(NOS-I) Brain,spinalcord,peripheral Constitutive,Ca2+dependent Neuromediator iNOS(NOS-II) Macrophages,othertissues Inducible,Ca2+independent Hostdefender,cytotoxic eNOS(NOS-III) Endothelium Constitutive,Ca2+dependent Vasodilatortonemodulator The first step of an NOS catalyzed reaction is a “classical” P450-dependent N- hydroxylationofaguanidine,exceptfortheinvolvementofH B.AsshowninScheme 4 1.2,Fe(III)heme1firstacceptsoneelectrontogiveFe(II)heme2,whichbindsO to 2 produceferrous-dioxyheme3. ThesecondelectronfromH Breduces3toperoxy- 4 iron 4. Arg donates a proton to 4 to facilitate O–O bond cleavage to generate an oxo-iron (IV) cation radical species 5, which then rapidly hydroxylates the neutral guanidiniumtoNHA[4]. ThesecondstepofNOSoxidationisagreaterchallengetoenzymologistssince thereisnodirectanalogyinothersystems. Avarietyofproposedreactionstepscanbe 1.1IntroductiontoNOBiosynthesisandNOdonors 5 FeIIFIMNH2 FMNHF.eII O2 OF2eII H4B H4B+. R NH N+OH_N2HH R NH NH_ON2HH R NH NHN2 OH O O S1 S2 S3 SFeII4 SFeIV+. 5 SFeII1I Scheme1.2 ThefirststepofNOSreaction. roughlysummarizedinthreemechanisms(Scheme1.3). ThepopularMechanism I was proposed by Marletta and modified by Ingold and others [5, 6], a superoxo- iron(III)hemeintermediate6abstractsthehydrogenatomoftheNHAtofurnishan iminoxyradical8,whichuponnucleophilicattackbythehydroperoxoiron(III)heme 7onitscarbongeneratesNOandcitrulline. Thismechanism,however,appearsnot tobesupportedbythecrystalstructureanalysisoftheNOS-NHAcomplex[7–9]orby arecentspectralstudy[10]. ThesecondmechanismwasproposedbyGroves(Mecha- nismII),wheretheNOS-catalyzedaerobicoxidationofNHAoccursviaaradical-type auto-oxidationprocess[11,12],i.e.,NHAisoxidizedbytheFe(III)hemetogenerate animinoxylradical8,whichtautomerizestotheá-nitrosoradical12. Insertionofa dioxygenmoleculebetween12andFe(II)hemeformsanenergeticá-nitrosoperoxy Fe(III)hemeintermediatethatdecomposestogenerateNO[13,14]. However,direct ligationofNHAtohemeironhasbeenprecludedbytheX-raycrystallographicdata [7–9]. Thethirdmechanism,proposedbySilvermanandothers[15–18],mainlyin- Mechanism I NH2 NH2 NH2 8 H2N NH2 R NH N OH O2 , e- R NH ON OH R NH ON OH R NH ON O H R NH O + NO O O O OH FeIII FeIII 6 FeIII 7 FeIII 9 FeIII 10 Mechanism II NH NH 2 R NH N2 OH -H+R NH ON RN NHN2 O RN NHN2 O O2 RH2NN N O R N NHO2+ NO H H H O H FeIII FeIII 11 8 FeII 12 O OFeIV 14 FeIII 13 Mechanism III R NH NHNH2 OHO2 , e- R NHONHHON2 OH R NH NOHOH2N 1O5H-H+R NH-ONHON2 1O7- RHNH2NOON O- R NHON-HO2 + NO FeIII FeIII 6 FeIII 16 FeIII 18 FeIII 19 FeIII 20 Scheme1.3 ThesecondstepofNOSreaction. 6 1NOandNODonors volvestheoxidationofthenitrogenontheprotonatedN-hydroxyguanidinomoiety (MechanismIII).ItwassuggestedthattheinitialN–Hbondcleavagebysuperoxo- iron(III)heme6generatesaradicalcationintermediate15,which,uponheterolysis oftheO–Hbond, givestheiminoxyradical17. Thenucleophilicattackofperoxo- iron(III)heme18on17givesanintermediatesimilarto13,whichdecomposestoNO andcitrulline. Morerecently,StuehrhasemphasizedtheinvolvementofH Binthe 4 secondstepoftheNOSreaction[19–21]. 1.1.2 ChemistryofReactiveNitrogenSpecies OneofNO’smajorbiologicalactionsistoactivateguanylatecyclasedirectlytogener- atecyclicguanosinemonophosphate(cGMP)asanintracellularsecondmessenger, followedbykinase-mediatedsignaltransduction. Inanotherpathway,NOundergoes oxidationorreductioninbiologicalsystemstoconverttomanydifferentreactivenitro- −• genspecies(RNS).Itcanreactwithmolecularoxygen(O ),superoxideanion(O ) 2 2 − − ortransitionmetals(M)toproduceRNSsuchasN O ,NO ,NO ,NO ,peroxyni- 2 3 2 2 3 − trite(OONO ),andmetal-nitrosyladducts(RouteA,Scheme1.4)[22,23]. Among theseRNS,peroxynitritestandsoutasanimportantspecies[24, 25]. Thereaction −• betweenNOandO producesperoxynitriteatadiffusioncontrolledrate[26–28]. 2 Peroxynitriteisastrongoxidizingandnitratingspeciesthatcausesmoleculardam- ageleadingtodisease-causingcellulardysfunction[29,30]. NOcanalsoberapidly oxidizedbyoxygen,superoxideortransitionmetalstonitrosonium(NO+)whichre- actswithnucleophiliccenterssuchasROH,RSHandRR′NHtoproduceRO–NO, RS–NOorRR′N–NO,respectively(RouteB,Scheme1.4)[31,32]. Theseproductssub- sequentlyundergootherreactionstoexhibittheirbiologicaleffects. Inaddition,NO − alsoundergoesaone-electronreductiontoproducenitroxyl(NO )(RouteC,Scheme 1.4). Thereducingpotentialofthisreductionisapproximately+0.25V[33]. Nitroxyl convertsrapidlytoN Ounderphysiologicalconditions. Othercompetingreactions 2 RONO RSNO RR'-NO L-Arg NH2OH ROH RSH RR'NH NOS RSH oxidation reduction NO+ NO NO- NO 2 B C H2O H2O2 M M A O2- O2 NO O2 M NO2- ONOO- M-NO M-NO ONOO- NO2 / N2O3 NO2- ONOO- M-NO M O2- O2 H2O NO2- NO - RS-NO NO2- / NO3- 3 ( NO -) 2 Scheme1.4 Oxidationandreductionofreactivenitrogenspecies. 1.2ClassificationofNODonors 7 − ofnitroxylincludeadditiontothiolgroups(singletNO )togenerateNH OH,and 2 − − reactionwithoxygen(tripletNO )toformperoxynitrite(OONO ). Nitroxylhasalso beenproventoexhibitmanybiologicalfunctions[34],suchasvasodilatation[35–37] andcytotoxicity[38–40]. 1.2 ClassificationofNODonors IntensiveresearchonthebiologicalfunctionsofNOandotherreactivenitrogenoxide speciesdemandsexogenoussourcesofNOdonorsasresearchtoolsandpharmaceu- ticals. Sincethemid-1980s,thedevelopmentofnewNOdonorshasofferedseveral advantagesoverthepreviousNOdonors,suchasspontaneousreleaseofNO,dona- tionofNOundercontrolledrates,andeventhetargetingofNOtocertaintissues. ThestructuraldissimilaritiesofthediverseNOdonorshaveledtoremarkablyvaried chemicalreactivitiesandNO-releasemechanisms. GenerallyNOdonorsreleaseNO through three kinds of mechanisms. The first route is that donating NO sponta- neously, whichreleasesNOthroughthermalorphotochemicalself-decomposition ofe.g. S-nitrosothiols,diazeniumdiolates,oximes. Thesecondrouteisthatreleasing NObychemicalreactionswithacid,alkali,metalandthiol. Organicnitrates,nitrites andsyndnoniminesgiveNOthoughthismechanism. Thethirdrouteisenzymatic oxidationwhereNOdonors,forexample,N-hydroxyguanidines,needmetabolicac- tivationbyNOsynthasesoroxidasesforNOrelease. SomeNOdonorsreleaseNO by more than one route, e.g. organic nitrates can also generate NO by enzymatic catalysis. Classification of all NO donors could be confusing, since all nitrogen– oxygen-bondedcompoundshavethepotentialtodecompose,beoxidized,orbere- duced to produce reactive nitrogen species. However, similar chemical structures usuallyhaveasimilarNO-releasingmechanism,soallcurrentNOdonorsandtheir pathwaysofNOgenerationaresummarizedinTable1.2accordingtotheirchemical classification. ManymedicinesmayworkbyanNO-dependentmechanism. Recentstudieshave shownthatangiotensin-convertingenzyme(ACE)inhibitors(i.e. Enalapril,Captro- pril,Cilazapril)improveendothelium-dependentvasodilatorresponsiveness[41–43]. ACEinhibitorsinhibitthedegradationofbradykinin,therebyaugmentingNOpro- duction. Anothercalciumchannelblocker,amlodipine,alsoreleasesNOfromblood vessels, and kinins mediate the generation of NO [44]. These new findings give a goodexplanationforthecardioprotectiveeffectsofthesedrugs. Furthermore,estro- gen,statins(HMG-CoAreductaseinhibitor)andessentialfattyacidshavetheability toaugmentNOsynthesis[45,46]. Alloftheabovemoleculesdonothavestructural moietieswhichcanreleaseNOdirectly, sotheycanbecalledNOstimulators, and theyarenotdiscussedinthisbook. CurrentlyusedNOdonorswillbeintroducedin thefollowingchapters. 8 1NOandNODonors Tab. 1.2: CurrentmajorclassesofNOdonors. Chemical RepresentativeCompounds PathwayofNOGeneration Class Non-enzymatic Enzymatic ONO2 Organic O2NO Thiols Cyt-P450,GST,etc nitrate ONO2 H3C O Organic H3C NO Hydrolysis,trans- Xanthineoxidase, nitrite H3C nitrosation,thiols, etc light,heat Metal-NO Na2[Fe(CN)5(NO)]•2H2O Light,thiols,re- A membrane- complex ductants,nucleo- boundEnzyme HO philes NO N-Nitro- N OH−,light Cyt-P450related samine Me enzyme OH - + N-Hydroxyl N O NH4 Light,heat Peroxidases nitrosamine N O Me +N Nitrosimine _ N Thiols,light ? N O N O AcHN N Nitrosothiol S O Spontaneous, Unknown en- CO2H enhancedbythiols, zymes light,metalions C-Nitroso O2N N O Light,heat ? compound R1 + O- R2 N Diazetine Spontaneous, ? dioxide R3R4 N+ _O thiols R R Furoxan + _ Thiols Unknownenzyme &benzo- N N O O furoxan Ar + N N Oxatriazole- _ Thiols ? 5-imine N NH.HCl O NH Syndonimine O N N Spontaneous, Prodrugsrequire + _N O enhancedbylight, enzymatichydro- oxidants,pH>5 lysis R2 R1 NOH Oxime Spontaneous, Cyt-P450 O2N CONH2 O2/FeIII-porphyrin 1.3NewClassesofNODonorsunderDevelopment 9 Tab. 1.2 (continued) Chemical RepresentativeCompounds PathwayofNOGeneration Class Non-enzymatic Enzymatic H Hydroxy- N OH Anto-oxidation Catalase/H2O2 amine H enhancedbymetal ions NH N-Hydroxy- HO CO2H Oxidants NOS,Cyt-P450 N N guanidine& H H guanidine NH2 O Hydroxy- H2N NH H2O2/CuZn-SOD Peroxidase urea orceruloplasimin, OH H2O2/Cu2+, heme-containing proteins O Hydroxamic OH ? Guanylatecyclase N acid H 1.3 NewClassesofNODonorsunderDevelopment DifferenttypesofNOdonorswillbediscussedintheotherchaptersexceptforthe followingtwoclasses. 1.3.1 Nitroarene 6-Nitrobenzo[á]pyrene(6-nitroBaP)wasfoundtoreleaseNOundervisible-lightirra- diation,whilenosuchphotodegradationwasobservedwithothernitratedBaPs,such as1-and3-nitroBaPs[47]. ItcaninduceDNAstrandbreaksuponphotoirradiation. NOisgeneratedfrom6-nitroBaPvia6-nitriteBaP,whichisproducedfrom6-nitroBaP byanintramolecularrearrangementmechanism(Scheme1.5). Thisfindingmaybe usefulforthedevelopmentofanewtypeofphotochemicallytriggeredNOdonors. NO hν NO2 NO2 O 6-nitroBaP 6-nitriteBaP 6-Oxy-BaP radical Scheme1.5 Photochemicalreactionof6-nitroBap. 10 1NOandNODonors 1.3.2 HydroxamicAcids Hydroxamicacids[generalformulaRC(O)N(R′)OH]havebeenusedasinhibitorsof peroxidases[48],ureases[49]andmatrixmetalloproteinases,andasanti-hypertensive, anti-cancer,anti-tuberculousandantifungalagents[50,51]. Althoughsomeofthese bioactivities are attributed to the chelating ability of the hydroxamate group, the hypotensive effects are due to their ability to release NO [52]. Experiments have shownthathydroxamicacidscantransferNOtoruthenium(III)andcausevascular relaxationinrataortabyactivationoftheiron-containingguanylatecyclaseenzyme. Ofthehydroxamicacidsinvestigated,benzohydroxamicacid(Fig.1.1)showedhigher NOreleasingabilitythanaceto-,salicyl-,andanthranilichydroxamicacids. O OH N H Fig.1.1 Benzohydroxamicacid. 1.4 DevelopmentofNO-DrugHybridMolecules An innovative approach to harnessing the beneficial properties of NO is to attach anNO-releasingmoietytoanexistingdrug(Fig.1.2). Differenthybridcompounds canoffervariousdrugactionswithsynergisticeffects,withreducedtoxicityandside effects. Severalpharmaceuticalcompaniesareactivelyengagedinthisresearcharea. AseriesofcompoundsarecurrentlyinthePhase-IorPhase-IIclinicalstudy. Forex- ample,NicoxinFrance(www.nicox.com)hasdevelopedtheNO-releasingderivative ofacetylsalicyclicacid,NCX-4016,whichisclaimedtobeabletoovercomethemajor drawbackassociatedwiththeuseofaspirinasapainreliever[53]. NCX-4016also showsabroadermechanismthanaspirinandcaninhibitadditionalinflammatory mediators[54]. NitroMedinBoston(www.nitromed.com)hasreportedthatnitrosy- latedá-adrenoreceptorantagonistsmoxisylate(S-NO-moxisylate)hadlowertoxicity andfeweradversesideeffectsinthetreatmentoferectiledysfunction[55]. General: Drug NO CH3 OAc ONO2 CH3 O CSHN3O O N O CH3 H3C O H3C CH3 NCX-4016 S-NO-Moxisylyte Fig.1.2 NO-drugconjugates.
Description: