ebook img

Part 1 Chemistry of NO Donors PDF

31 Pages·2004·0.32 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Part 1 Chemistry of NO Donors

Part1 ChemistryofNODonors 3 1 NOandNODonors TingweiBillCai,PengGeorgeWang,andAlvinA.Holder Nitricoxide(NO),amagicfreeradicalgasmolecule,hasbeenshowntobeinvolved in numerous physiological and pathophysiological processes. Among its diverse functions,NOhasbeenimplicatedintherelaxationofvascularsmoothmuscle,the inhibitionofplateletaggregation,neurotransmission(Viagrareversesimpotenceby enhancinganNO-stimulatedpathway),andimmuneregulation[1]. Itwasnamedthe moleculeoftheyearin1992byScienceandwasthesubjectoftheNobelPrizein1998. NOhaslimitedsolubilityinwater(2–3mM),anditisunstableinthepresenceof variousoxidants. Thismakesitdifficulttointroduceassuchintobiologicalsystems inacontrolledorspecificfashion. Consequently,thedevelopmentofchemicalagents thatreleaseNOisimportantifwearetotargetitsbioeffectorrolestospecificcelltypes forbiologicalandpharmacologicalapplications. Basedonourcomprehensivereview ofNOdonors[2],thischapterfocusesonrecentprogressandcurrenttrendsinNO donordevelopmentandnovelapplicationswhicharenotcoveredbythefollowing chapters. 1.1 IntroductiontoNOBiosynthesisandNOdonors 1.1.1 NitricOxideSynthases EndogenousNOisproducedalmostexclusivelybyl-argininecatabolismtol-citrul- lineinareactioncatalyzedbyafamilyofnitricoxidesynthases(NOSs)[3]. Inthefirst step, Arg is hydroxylated to an enzyme-bound intermediate Nù-hydroxy-l-arginine (NHA), and 1 mol of NADPH (nicotinamide adenine dinucleotide phosphate, re- ducedform)andO areconsumed. Inthesecondstep,NHAisoxidizedtocitrulline 2 and NO, with consumption of 0.5 mol of NADPH and 1 mol of O (Scheme 1.1). 2 Oxygen activation in both steps is carried out by the enzyme-bound heme, which derives electrons from NADPH. Mammalian NOS consists of an N-terminal oxy- NitricOxideDonors PengGeorgeWang,TingweiBillCai,NaoyukiTaniguchi(Eds.) Copyright(cid:1)c 2005WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim ISBN:3-527-31015-0 4 1NOandNODonors H2N NH2 H2N N OH O NH2 NH 1 NADPH NH 0.5 NADPH NH N O O2 H2O O2 H2O H3N COO H3N COO H2N COO Arginine Nw-Hydroxyarginine Citrulline Nitric Oxide Scheme1.1 Endogenoussynthesisofnitricoxide. genasedomainthatbindsironprotoporphyrinIX(heme),6-(R)-tetrahydrobiopterin (H B)andArg,andaC-terminalreductasedomainthatbindsFMN(flavinmononu- 4 cleotide),FAD(flavinadeninedinucleotide),andNADPH,withacalmodulinbinding motiflocatedbetweenthetwodomains. Tobeactive,twoNOSpolypeptidesmust formahomodimer. ThereductasedomainseachtransferNADPH-derivedelectrons, throughFADandFMN,tothehemelocatedintheadjacentsubunit. Threedistinct isoformsofNOShavebeenidentified–neuronal,macrophageandendothelialtypes, andeachisassociatedwithaparticularphysiologicalprocess(Table1.1). Constitutive endothelialNOS(eNOSorNOSIII)regulatessmoothmusclerelaxationandblood pressure;constitutiveneuronalNOS(nNOSorNOSI)isinvolvedinneurotransmis- sion and long-term potentiation; the NO produced from inducible NOS (iNOS or NOSII)inactivatedmacrophagecellsactsasacytotoxicagentinnormalimmune defenseagainstmicroorganismsandtumorcells. Theconstitutiveisoforms(nNOS andeNOS)requireaddedCa2+ andcalmidulinforactivityandproducearelatively smallamountofNO,whiletheinducibleisoform(iNOS)hastightlyboundCa2+and calmodulin,andproducesarelativelylargeamountofNO. Tab. 1.1: PropertiesofNOSisoforms. NOS Locations Characteristics MajorBiologicalFunctions nNOS(NOS-I) Brain,spinalcord,peripheral Constitutive,Ca2+dependent Neuromediator iNOS(NOS-II) Macrophages,othertissues Inducible,Ca2+independent Hostdefender,cytotoxic eNOS(NOS-III) Endothelium Constitutive,Ca2+dependent Vasodilatortonemodulator The first step of an NOS catalyzed reaction is a “classical” P450-dependent N- hydroxylationofaguanidine,exceptfortheinvolvementofH B.AsshowninScheme 4 1.2,Fe(III)heme1firstacceptsoneelectrontogiveFe(II)heme2,whichbindsO to 2 produceferrous-dioxyheme3. ThesecondelectronfromH Breduces3toperoxy- 4 iron 4. Arg donates a proton to 4 to facilitate O–O bond cleavage to generate an oxo-iron (IV) cation radical species 5, which then rapidly hydroxylates the neutral guanidiniumtoNHA[4]. ThesecondstepofNOSoxidationisagreaterchallengetoenzymologistssince thereisnodirectanalogyinothersystems. Avarietyofproposedreactionstepscanbe 1.1IntroductiontoNOBiosynthesisandNOdonors 5 FeIIFIMNH2 FMNHF.eII O2 OF2eII H4B H4B+. R NH N+OH_N2HH R NH NH_ON2HH R NH NHN2 OH O O S1 S2 S3 SFeII4 SFeIV+. 5 SFeII1I Scheme1.2 ThefirststepofNOSreaction. roughlysummarizedinthreemechanisms(Scheme1.3). ThepopularMechanism I was proposed by Marletta and modified by Ingold and others [5, 6], a superoxo- iron(III)hemeintermediate6abstractsthehydrogenatomoftheNHAtofurnishan iminoxyradical8,whichuponnucleophilicattackbythehydroperoxoiron(III)heme 7onitscarbongeneratesNOandcitrulline. Thismechanism,however,appearsnot tobesupportedbythecrystalstructureanalysisoftheNOS-NHAcomplex[7–9]orby arecentspectralstudy[10]. ThesecondmechanismwasproposedbyGroves(Mecha- nismII),wheretheNOS-catalyzedaerobicoxidationofNHAoccursviaaradical-type auto-oxidationprocess[11,12],i.e.,NHAisoxidizedbytheFe(III)hemetogenerate animinoxylradical8,whichtautomerizestotheá-nitrosoradical12. Insertionofa dioxygenmoleculebetween12andFe(II)hemeformsanenergeticá-nitrosoperoxy Fe(III)hemeintermediatethatdecomposestogenerateNO[13,14]. However,direct ligationofNHAtohemeironhasbeenprecludedbytheX-raycrystallographicdata [7–9]. Thethirdmechanism,proposedbySilvermanandothers[15–18],mainlyin- Mechanism I NH2 NH2 NH2 8 H2N NH2 R NH N OH O2 , e- R NH ON OH R NH ON OH R NH ON O H R NH O + NO O O O OH FeIII FeIII 6 FeIII 7 FeIII 9 FeIII 10 Mechanism II NH NH 2 R NH N2 OH -H+R NH ON RN NHN2 O RN NHN2 O O2 RH2NN N O R N NHO2+ NO H H H O H FeIII FeIII 11 8 FeII 12 O OFeIV 14 FeIII 13 Mechanism III R NH NHNH2 OHO2 , e- R NHONHHON2 OH R NH NOHOH2N 1O5H-H+R NH-ONHON2 1O7- RHNH2NOON O- R NHON-HO2 + NO FeIII FeIII 6 FeIII 16 FeIII 18 FeIII 19 FeIII 20 Scheme1.3 ThesecondstepofNOSreaction. 6 1NOandNODonors volvestheoxidationofthenitrogenontheprotonatedN-hydroxyguanidinomoiety (MechanismIII).ItwassuggestedthattheinitialN–Hbondcleavagebysuperoxo- iron(III)heme6generatesaradicalcationintermediate15,which,uponheterolysis oftheO–Hbond, givestheiminoxyradical17. Thenucleophilicattackofperoxo- iron(III)heme18on17givesanintermediatesimilarto13,whichdecomposestoNO andcitrulline. Morerecently,StuehrhasemphasizedtheinvolvementofH Binthe 4 secondstepoftheNOSreaction[19–21]. 1.1.2 ChemistryofReactiveNitrogenSpecies OneofNO’smajorbiologicalactionsistoactivateguanylatecyclasedirectlytogener- atecyclicguanosinemonophosphate(cGMP)asanintracellularsecondmessenger, followedbykinase-mediatedsignaltransduction. Inanotherpathway,NOundergoes oxidationorreductioninbiologicalsystemstoconverttomanydifferentreactivenitro- −• genspecies(RNS).Itcanreactwithmolecularoxygen(O ),superoxideanion(O ) 2 2 − − ortransitionmetals(M)toproduceRNSsuchasN O ,NO ,NO ,NO ,peroxyni- 2 3 2 2 3 − trite(OONO ),andmetal-nitrosyladducts(RouteA,Scheme1.4)[22,23]. Among theseRNS,peroxynitritestandsoutasanimportantspecies[24, 25]. Thereaction −• betweenNOandO producesperoxynitriteatadiffusioncontrolledrate[26–28]. 2 Peroxynitriteisastrongoxidizingandnitratingspeciesthatcausesmoleculardam- ageleadingtodisease-causingcellulardysfunction[29,30]. NOcanalsoberapidly oxidizedbyoxygen,superoxideortransitionmetalstonitrosonium(NO+)whichre- actswithnucleophiliccenterssuchasROH,RSHandRR′NHtoproduceRO–NO, RS–NOorRR′N–NO,respectively(RouteB,Scheme1.4)[31,32]. Theseproductssub- sequentlyundergootherreactionstoexhibittheirbiologicaleffects. Inaddition,NO − alsoundergoesaone-electronreductiontoproducenitroxyl(NO )(RouteC,Scheme 1.4). Thereducingpotentialofthisreductionisapproximately+0.25V[33]. Nitroxyl convertsrapidlytoN Ounderphysiologicalconditions. Othercompetingreactions 2 RONO RSNO RR'-NO L-Arg NH2OH ROH RSH RR'NH NOS RSH oxidation reduction NO+ NO NO- NO 2 B C H2O H2O2 M M A O2- O2 NO O2 M NO2- ONOO- M-NO M-NO ONOO- NO2 / N2O3 NO2- ONOO- M-NO M O2- O2 H2O NO2- NO - RS-NO NO2- / NO3- 3 ( NO -) 2 Scheme1.4 Oxidationandreductionofreactivenitrogenspecies. 1.2ClassificationofNODonors 7 − ofnitroxylincludeadditiontothiolgroups(singletNO )togenerateNH OH,and 2 − − reactionwithoxygen(tripletNO )toformperoxynitrite(OONO ). Nitroxylhasalso beenproventoexhibitmanybiologicalfunctions[34],suchasvasodilatation[35–37] andcytotoxicity[38–40]. 1.2 ClassificationofNODonors IntensiveresearchonthebiologicalfunctionsofNOandotherreactivenitrogenoxide speciesdemandsexogenoussourcesofNOdonorsasresearchtoolsandpharmaceu- ticals. Sincethemid-1980s,thedevelopmentofnewNOdonorshasofferedseveral advantagesoverthepreviousNOdonors,suchasspontaneousreleaseofNO,dona- tionofNOundercontrolledrates,andeventhetargetingofNOtocertaintissues. ThestructuraldissimilaritiesofthediverseNOdonorshaveledtoremarkablyvaried chemicalreactivitiesandNO-releasemechanisms. GenerallyNOdonorsreleaseNO through three kinds of mechanisms. The first route is that donating NO sponta- neously, whichreleasesNOthroughthermalorphotochemicalself-decomposition ofe.g. S-nitrosothiols,diazeniumdiolates,oximes. Thesecondrouteisthatreleasing NObychemicalreactionswithacid,alkali,metalandthiol. Organicnitrates,nitrites andsyndnoniminesgiveNOthoughthismechanism. Thethirdrouteisenzymatic oxidationwhereNOdonors,forexample,N-hydroxyguanidines,needmetabolicac- tivationbyNOsynthasesoroxidasesforNOrelease. SomeNOdonorsreleaseNO by more than one route, e.g. organic nitrates can also generate NO by enzymatic catalysis. Classification of all NO donors could be confusing, since all nitrogen– oxygen-bondedcompoundshavethepotentialtodecompose,beoxidized,orbere- duced to produce reactive nitrogen species. However, similar chemical structures usuallyhaveasimilarNO-releasingmechanism,soallcurrentNOdonorsandtheir pathwaysofNOgenerationaresummarizedinTable1.2accordingtotheirchemical classification. ManymedicinesmayworkbyanNO-dependentmechanism. Recentstudieshave shownthatangiotensin-convertingenzyme(ACE)inhibitors(i.e. Enalapril,Captro- pril,Cilazapril)improveendothelium-dependentvasodilatorresponsiveness[41–43]. ACEinhibitorsinhibitthedegradationofbradykinin,therebyaugmentingNOpro- duction. Anothercalciumchannelblocker,amlodipine,alsoreleasesNOfromblood vessels, and kinins mediate the generation of NO [44]. These new findings give a goodexplanationforthecardioprotectiveeffectsofthesedrugs. Furthermore,estro- gen,statins(HMG-CoAreductaseinhibitor)andessentialfattyacidshavetheability toaugmentNOsynthesis[45,46]. Alloftheabovemoleculesdonothavestructural moietieswhichcanreleaseNOdirectly, sotheycanbecalledNOstimulators, and theyarenotdiscussedinthisbook. CurrentlyusedNOdonorswillbeintroducedin thefollowingchapters. 8 1NOandNODonors Tab. 1.2: CurrentmajorclassesofNOdonors. Chemical RepresentativeCompounds PathwayofNOGeneration Class Non-enzymatic Enzymatic ONO2 Organic O2NO Thiols Cyt-P450,GST,etc nitrate ONO2 H3C O Organic H3C NO Hydrolysis,trans- Xanthineoxidase, nitrite H3C nitrosation,thiols, etc light,heat Metal-NO Na2[Fe(CN)5(NO)]•2H2O Light,thiols,re- A membrane- complex ductants,nucleo- boundEnzyme HO philes NO N-Nitro- N OH−,light Cyt-P450related samine Me enzyme OH - + N-Hydroxyl N O NH4 Light,heat Peroxidases nitrosamine N O Me +N Nitrosimine _ N Thiols,light ? N O N O AcHN N Nitrosothiol S O Spontaneous, Unknown en- CO2H enhancedbythiols, zymes light,metalions C-Nitroso O2N N O Light,heat ? compound R1 + O- R2 N Diazetine Spontaneous, ? dioxide R3R4 N+ _O thiols R R Furoxan + _ Thiols Unknownenzyme &benzo- N N O O furoxan Ar + N N Oxatriazole- _ Thiols ? 5-imine N NH.HCl O NH Syndonimine O N N Spontaneous, Prodrugsrequire + _N O enhancedbylight, enzymatichydro- oxidants,pH>5 lysis R2 R1 NOH Oxime Spontaneous, Cyt-P450 O2N CONH2 O2/FeIII-porphyrin 1.3NewClassesofNODonorsunderDevelopment 9 Tab. 1.2 (continued) Chemical RepresentativeCompounds PathwayofNOGeneration Class Non-enzymatic Enzymatic H Hydroxy- N OH Anto-oxidation Catalase/H2O2 amine H enhancedbymetal ions NH N-Hydroxy- HO CO2H Oxidants NOS,Cyt-P450 N N guanidine& H H guanidine NH2 O Hydroxy- H2N NH H2O2/CuZn-SOD Peroxidase urea orceruloplasimin, OH H2O2/Cu2+, heme-containing proteins O Hydroxamic OH ? Guanylatecyclase N acid H 1.3 NewClassesofNODonorsunderDevelopment DifferenttypesofNOdonorswillbediscussedintheotherchaptersexceptforthe followingtwoclasses. 1.3.1 Nitroarene 6-Nitrobenzo[á]pyrene(6-nitroBaP)wasfoundtoreleaseNOundervisible-lightirra- diation,whilenosuchphotodegradationwasobservedwithothernitratedBaPs,such as1-and3-nitroBaPs[47]. ItcaninduceDNAstrandbreaksuponphotoirradiation. NOisgeneratedfrom6-nitroBaPvia6-nitriteBaP,whichisproducedfrom6-nitroBaP byanintramolecularrearrangementmechanism(Scheme1.5). Thisfindingmaybe usefulforthedevelopmentofanewtypeofphotochemicallytriggeredNOdonors. NO hν NO2 NO2 O 6-nitroBaP 6-nitriteBaP 6-Oxy-BaP radical Scheme1.5 Photochemicalreactionof6-nitroBap. 10 1NOandNODonors 1.3.2 HydroxamicAcids Hydroxamicacids[generalformulaRC(O)N(R′)OH]havebeenusedasinhibitorsof peroxidases[48],ureases[49]andmatrixmetalloproteinases,andasanti-hypertensive, anti-cancer,anti-tuberculousandantifungalagents[50,51]. Althoughsomeofthese bioactivities are attributed to the chelating ability of the hydroxamate group, the hypotensive effects are due to their ability to release NO [52]. Experiments have shownthathydroxamicacidscantransferNOtoruthenium(III)andcausevascular relaxationinrataortabyactivationoftheiron-containingguanylatecyclaseenzyme. Ofthehydroxamicacidsinvestigated,benzohydroxamicacid(Fig.1.1)showedhigher NOreleasingabilitythanaceto-,salicyl-,andanthranilichydroxamicacids. O OH N H Fig.1.1 Benzohydroxamicacid. 1.4 DevelopmentofNO-DrugHybridMolecules An innovative approach to harnessing the beneficial properties of NO is to attach anNO-releasingmoietytoanexistingdrug(Fig.1.2). Differenthybridcompounds canoffervariousdrugactionswithsynergisticeffects,withreducedtoxicityandside effects. Severalpharmaceuticalcompaniesareactivelyengagedinthisresearcharea. AseriesofcompoundsarecurrentlyinthePhase-IorPhase-IIclinicalstudy. Forex- ample,NicoxinFrance(www.nicox.com)hasdevelopedtheNO-releasingderivative ofacetylsalicyclicacid,NCX-4016,whichisclaimedtobeabletoovercomethemajor drawbackassociatedwiththeuseofaspirinasapainreliever[53]. NCX-4016also showsabroadermechanismthanaspirinandcaninhibitadditionalinflammatory mediators[54]. NitroMedinBoston(www.nitromed.com)hasreportedthatnitrosy- latedá-adrenoreceptorantagonistsmoxisylate(S-NO-moxisylate)hadlowertoxicity andfeweradversesideeffectsinthetreatmentoferectiledysfunction[55]. General: Drug NO CH3 OAc ONO2 CH3 O CSHN3O O N O CH3 H3C O H3C CH3 NCX-4016 S-NO-Moxisylyte Fig.1.2 NO-drugconjugates.

Description:
of e.g. S-nitrosothiols, diazeniumdiolates, oximes NO releasing ability than aceto-, salicyl-, and anthranilic hydroxamic acids. N. OH. H. O .. neurological disorders and pulmonary disease caused by intracellular opportunistic.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.