Parent Child Unmanned Aerial Vehicles and the Structural Dynamics of an Outboard Horizontal Stabilizer Aircraft by Jason Kepler Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 2002 © Massachusetts Institute of Technology. All Rights Reserved. Au tho r ........................................F.-.- .-.-.-.-.-.-.-. .-.--..--... Departni n autics an A ronautics May 12, 2002 A Certified by .................................... f &hn J. Deyst Professor of Aeronautics and Astronautics Thesis Supervisor A ccepted by ............................. Wallace E. Vander Velde Professor of Aeronautics and Astronautics Chairman, Committee of Graduate Studies MASSACHOSETTS WNSTITUTE OF TECHNOLOGY AERO AUG 13 2002 LIBRARIES 2 Parent Child Unmanned Aerial Vehicles and the Structural Dynamics of an Outboard Horizontal Stabilizer Aircraft by Jason Kepler Submitted to the Department of Aeronautics and Astronautics on May 12, 2002, in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics Abstract In the fall of 1998, MIT and Draper Laboratory formed a partnership program called Par- ent Child Unmanned Aerial Vehicle (PCUAV) to provide a means of providing upclose surveillance at a distance. The premise of the project was to create a tiered system of coop- erative autonomous aircraft. A large Parent aircraft was designed to carry a smaller Mini aircraft to a target site and release it to descend for upclose surveillance. Meanwhile, the Parent provides a communications link between the Mini and a ground station at the point of departure. At the completion of a surveillance mission the Parent retrieves the Mini and carries it home. This thesis discusses the system components for the PCUAV project, specifically concen- trating on the flight vehicles. The design, building, and flight testing phases for each vehi- cle are detailed. Special attention is given to the Parent vehicle, which utilizes an Outboard Horizontal Stabilizer (OHS) configuration. The structural dynamics and both aeroelastic and servo aeroelastic properties of the plane were studied using Aswing and are reported on here. Thesis Supervisor: John J. Deyst Title: Professor of Aeronautics and Astronautics Thesis Supervisor: Marthinus C. van Schoor Title: Lecturer, Department of Aeronautics and Astronautics 3 4 Table of Contents Table of Contents ................................................................................................... 5 List of Figures ....................................................................................................... 7 List of Tables ............................................................................................................ 11 Acknow ledgm ents .................................................................................................. 13 List of Acronym s and Sym bols .............................................................................. 15 1. Introduction ....................................................................................................... 17 1.1 Background and M otivations of PCUAV .............................................. 17 1.2 Background of the Outboard Horizontal Stabilizer Configuration ..... 19 1.3 Thesis Overview ................................................................................... 20 2. PCU AV System ................................................................................................... 21 2.1 Chapter Overview ................................................................................. 21 2.2 The PCUAV System Concepts ................................................................ 21 2.2.1 Typical Flight .............................................................................. 21 2.2.2 Key Enablers .............................................................................. 23 2.2.3 Reintegration .............................................................................. 24 2.3 Com ponents of PCUAV ........................................................................ 27 2.3.1 Parent Vehicle ............................................................................ 28 2.3.2 M ini Vehicle ............................................................................... 29 2.3.3 Avionics Testbed Aircraft ............................................................ 31 2.3.4 Payload Delivery Vehicle ............................................................ 32 2.3.5 Mini-Parent Integration Mechanism (MPIM) ............... 33 2.3.6 M id-Air Recovery System .......................................................... 36 2.3.7 Com mu nications and Surveillance .............................................. 37 2.3.8 Flight Avionics ............................................................................ 38 2.4 Chapter Sum ma ry ................................................................................ 43 3. UAV Building and Testing .................................................................................. 45 3.1 Chapter Overview ................................................................................ 45 3.2 OH S Parent Vehicle .............................................................................. 45 3.2.1 Advantages and Disadvantages of the OHS ................................ 45 3.2.2 OH S Parent Design Process ....................................................... 47 3.2.3 OHS Construction ........................................ 48 3.2.4 OH S Testing and Updating ......................................................... 52 3.3 M ini Vehicle .......................................................................................... 56 3.3.1 M ini Design Process ................................................................... 56 3.3.2 M ini Construction ........................................................................ 57 3.3.3 M ini Testing ................................................................................. 60 3.4 Avionics Testbed Aircraft ...................................................................... 61 3.4.1 Advantages and Disadvantages of the ATA ................................ 61 3.4.2 W ork done on ATAs ................................................................... 62 3.5 ATA Testing ......................................................................................... 63 3.6 Chapter Sum ma ry ................................................................................ 63 4. Structural M odeling of the Parent ..................................................................... 65 4.1 Chapter Overview ................................................................................. 65 5 4.2 Structural and Inertial Properties of the Parent ..................................... 65 4.2.1 Area M oments of Inertia ............................................................. 65 4.2.2 W eight and M ass M oment of Inertia ............................................ 70 4.3 Analysis Process .................................................................................. 71 4.4 Natural Frequencies and M ode Shapes of the Parent ........................... 75 4.5 Chapter Overview ................................................................................ 77 5. Aeroelasticity .................................................................................................... 79 5.1 Chapter Overview ................................................................................ 79 5.2 Aeroelasticity of the Parent UAV ......................................................... 79 5.3 Flight Dynamics of Parent ..................................................................... 82 5.4 Servo Aeroelasticity of Parent .............................................................. 84 5.5 Chapter Summary ................................................................................ 88 6. Summary and Conclusions ................................................................................. 89 6.1 Thesis Summary ................................................................................... 89 6.1.1 PCUAV System Summary ............................................................. 89 6.1.2 Suggestions for UAV Improvements ......................................... 90 6.1.3 Flight Tests .................................................................................. 92 6.1.4 Structural Modeling of OHS Aircraft Summary and Conclusions .92 Appendix A Vehicle Drawings ......................................................................... 97 A. 1 Three View Drawings of PCUAV Parent Aircraft ............................... 98 A.2 Three View Drawings of PCUAV NGM I ............................................... 99 A.3 Three View Drawings of PCUAV NGM II ............................................. 100 A.4 Three View Drawings of PCUAV ATA I&II .................... 101 A.5 Building Plans for NGM II ...................................................................... 102 A.6 W ing M oment of Inertia Spreadsheet ...................................................... 104 Appendix B Aswing and Related Code for the Parent .......................................... 105 B.1 Description of Aswing ............................................................................. 105 B.2 Aswing Code for the Parent ..................................................................... 107 Appendix C Aswing Results ................................................................................. 113 C.1 M ode Shapes ............................................................................................ 114 C.2 Bode Plots ................................................................................................ 125 6 List of Figures Figure 1.1 Multi-Tiered System Concept ......................................................... 18 Figure 1.2 Outboard Horizontal Stabilizer Parent Vehicle ................................ 19 Figure 2.1 Communications Hierarchy for PCUAV .......................................... 23 Figure 2.2 Phase One of Reintegration .............................................................. 25 Figure 2.3 Phase Two Detection and Navigation System ................................. 26 Figure 2.4 Parent Aircraft Inside a Dodge Caravan .......................................... 29 Figure 2.5 (Left) NGMI, (Right) NGMII .......................................................... 30 Figure 2.6 The First Avionics Testbed Aircraft ................................................. 32 Figure 2.7 Payload Delivery Vehicle ................................................................. 33 Figure 2.8 Original M PIM Design ........................................................................ 34 Figure 2.9 Parent Aircraft with MPIM Attached .................................................. 34 Figure 2.10 D etail of M PIM ................................................................................ 35 Figure 2.11 MARS Directional Finder ................................................................ 37 Figure 2.12 Rover with Surveillance Equipment on Top .................................... 38 Figure 2.13 NGMII Flight Control Avionics ....................................................... 39 Figure 2.14 Parent's Avionics Structure .............................................................. 43 Figure 3.1 Vortex Induced Angle of Attack at Tail Position ............................ 46 Figure 3.2 Parent's Spar D etail .......................................................................... 49 Figure 3.3 Parent Wing Composite Layup ....................................................... 50 Figure 3.4 (Left) Author with Parent's Tail, (Right) Parent's Fuselage Frame .... 51 Figure 3.5 Bending Moment in Parent's Wing ................................................ 53 Figure 3.6 Second Landing of OHS Parent ....................................................... 54 Figure 3.7 Avionics Inside NGMII Fuselage ..................................................... 58 Figure 3.8 Cross Section of NGMII Wing ....................................................... 59 Figure 4.1 Cross Section of the Parent's Tail Booms ....................................... 66 Figure 4.2 Cross Section of the Parent's Wing ................................................. 68 Figure 4.3 Aswing Geometry for Parent ............................................................ 72 Figure 4.4 Velocity Sweep of Parent ................................................................ 74 Figure 4.5 Root Locus Plot for Parent .............................................................. 75 Figure 5.1 First flutter mode of OHS Parent ..................................................... 80 Figure 5.2 Root Locus Plot of OHS Parent with Three Pound Weights on Each Tail and Counterweight Attached to Fuselage ................... 81 Figure 5.3 Root Locus Plot of OHS Parent with Three Pound Weights on Each Tail and Counterweight Attached to Wingtips' Leading Edges 82 Figure 5.4 Blow Up of Root Locus Near Origin .............................................. 83 Figure 5.5 Bode Plots of Parent Roll Rate Response to Unit Aileron Input, A irspeed = 70 ft/sec., @ S.L. .............................................................. 85 Figure 5.6 Bode Plots of Parent Pitch Rate Response to Unit Elevator Input, A irspeed = 70 ft/sec., @ S.L. .............................................................. 86 Figure 5.7 Bode Plots of Parent Yaw Rate Response to Unit Rudder Input, A irspeed = 70 ft/sec., @ S.L. .............................................................. 87 Figure A. 1 Orthogonal Views of OHS Parent ................................................... 98 Figure A.2 Orthogonal Views of New Generation Mini .................................... 99 7 Figure A.3 Orthogonal Views of Second New Generation Mini .......................... 100 Figure A.4 Orthogonal Views of Two Avionics Testbed Aircraft ........................ 101 Figure A.5 Building Plans for NGM II Fuselage .............................................. 102 Figure A.6 Building Plans for NGM II W ing and Tail .......................................... 103 Figure C.1 First Mode Shape of OHS Parent, Asymmetric Vertical Tail Boom Bending, Airspeed = 70 ft/sec, @ Sea Level .................... 114 Figure C.2 Second Mode Shape of OHS Parent, Asymmetric Horizontal Tail Boom Bending, Airspeed = 70 ft/sec, @ Sea Level .................... 115 Figure C.3 Third Mode Shape of OHS Parent, Symmetric Wing Bending, Airspeed = 70 ft/sec, @ Sea Level ...................................................... 116 Figure C.4 Fourth Mode Shape of OHS Parent, Asymmetric Wing Twist, Airspeed = 70 ft/sec, @ Sea Level ...................................................... 117 Figure C.5 Fifth Mode Shape of OHS Parent, Symmetric Wing Twist, Airspeed = 70 ft/sec, @ Sea Level ...................................................... 118 Figure C.6 Sixth Mode Shape of OHS Parent, Asymmetric Horizontal Stabilizer Bending, Airspeed = 70 ft/sec, @ Sea Level ...................... 119 Figure C.7 Seventh Mode Shape of OHS Parent, Symmetric Horizontal Stabilizer Bending, Airspeed = 70 ft/sec, @ Sea Level ...................... 120 Figure C.8 Eighth Mode Shape of OHS Parent, Second Wing Bending, Airspeed = 70 ft/sec, @ Sea Level ...................................................... 121 Figure C.9 Ninth Mode Shape of OHS Parent, Fore-Aft Wing Bending, Airspeed = 70 ft/sec, @ Sea Level ...................................................... 122 Figure C.10 Tenth Mode Shape of OHS Parent, Asymmetric Vertical Tail Bending, Airspeed = 70 ft/sec, @ Sea Level ............................... 123 Figure C.11 Eleventh Mode Shape of OHS Parent, Symmetric Vertical Tail Bending, Airspeed = 70 ft/sec, @ Sea Level ............................... 124 Figure C.12 Gain Plot of Roll Rate vs. Aileron Input Frequency for Flexible OHS Parent, Airspeed = 70 ft/sec, @ Sea Level 125 Figure C.13 Phase Plot of Roll Rate vs. Aileron Input Frequency For Flexible OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ................... 126 Figure C.14 Gain Plot of Pitch Rate vs. Elevator Input Frequency, Flexible OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ................... 127 Figure C.15 Phase Plot of Pitch Rate vs. Elevator Input Frequency, Flexible OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ................... 128 Figure C.16 Gain Plot of Yaw rate vs Rudder Input Frequency For Flexible OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ................... 129 Figure C.17 Phase Plot of Yaw Rate vs. Rudder Input Frequency For Flexible OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ................... 130 Figure C.18 Gain Plot of Roll Rate vs. Aileron Input Frequency for Rigid OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ....................... 131 Figure C.19 Phase Plot of Roll Rate vs. Aileron Input Frequency For Rigid OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ....................... 132 Figure C.20 Gain Plot of Pitch Rate vs. Elevator Input Frequency, Rigid OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ....................... 133 Figure C.21 Phase Plot of Pitch Rate vs. Elevator Input Frequency, Rigid OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ....................... 134 8 Figure C.22 Gain Plot of Yaw rate vs. Rudder Input Frequency For Rigid OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ....................... 135 Figure C.23 Phase Plot of Yaw Rate vs. Rudder Input Frequency For Rigid OHS Parent, Airspeed = 70 ft/sec, @ Sea Level ....................... 136 9 10
Description: