ebook img

Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise PDF

0.25 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise

PARAMETER ESTIMATION OF COMPLEX FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES WITH FRACTIONAL NOISE YONGCHEN,YAOZHONGHU,ANDZHIWANG Abstract. We obtain strong consistency and asymptotic normality of a least squares esti- mator of the drift coefficient for complex-valued Ornstein-Uhlenbeck processes disturbed by 7 fractional noise, extending the result of Y. Hu and D. Nualart, [Statist. Probab. Lett., 80 1 (2010),1030-1038]toaspecial2-dimensions. Thestrategy istoexploittheGarsia-Rodemich- 0 Rumseyinequalityandcomplexfourthmomenttheorems. Themainingredientsofthispaper 2 arethesamplepathregularityofamultipleWiener-Itôintegralandtwoequivalentconditions n ofcomplexfourthmomenttheoremsintermsofthecontractions ofintegralkernelsandcom- a plexMalliavinderivatives. J Keywords : Complex Wiener-Itô multiple integral; fractional Brownian motion; fractional 6 Ornstein-Uhlenbeck process; fourth moment theorems; strong consistency; asymptotic nor- 2 mality. ] MSC 2000:60H07;60F05;62M09. R P . h t a 1. Introduction m To model the Chandler wobble, or variation of latitude conerning with the rotation of the [ earth, M. Arató, A.N. Kolmogorov and Ya.G. Sinai [2] (see also [1]) proposed the following 1 v stochastic linear equation 8 dZ = γZ dt+√adζ , t 0, (1.1) 6 t t t − ≥ 5 7 where Zt = X1(t)+iX2(t) is a complex-valued process, γ = λ iω, λ > 0, a > 0 and ζt is a − 0 complex Brownian motion. It is also suggested in [1] that the Brownian motion in (1.1) may . 1 be replaced by other processes. In this paper we consider the statistical estimator of γ when 0 the complex Brownian motion ζ in (1.1) is replaced by a complex fractional Brownian motion 7 1 ζ = Bt1+iBt2, where (B1,B2) is a two dimensional fractional Brownian motion with H [1,3). : t √2 t t ∈ 2 4 v [We shall fix the Hurst parameter and then omit the explicit dependence of the process on the i X Hurst parameter.] From now on we assume that ζ is a complex fractional Brownian motion of r Hurst parameter H (1/2,3/4). a ∈ To compare with the work in [9], we write (1.1) as dX (t) λ ω X (t) a dB1 1 = − − 1 dt+ t . (1.2) "dX2(t)# " ω −λ#"X2(t)# r2 "dBt2# Thus (1.1) can be considered as a particular two dimensional Langevin equation driven by frac- tional Brownian motions. However, we find it is more convenient to use the complex valued equation (1.1). 1 2 Y.CHEN,Y.HU,ANDZ.WANG Motivatedby the workof Hu andNualart[9] we alsoconsider a leastsquaresestimatorfor γ. To this end, we intuitively rewrite (1.1) as Z˙ +γZ =√aζ˙ , 0 t T . t t t ≤ ≤ 2 We minimize T Z˙ +γZ dt to obtain a least squares estimator of γ as follows. 0 t t (cid:12) (cid:12) R (cid:12) (cid:12) T Z¯ dZ T Z¯ dζ (cid:12) (cid:12)γˆ = 0 t t =γ √a 0 t t . (1.3) T − R0T |Zt|2dt − R0T |Zt|2dt ThemainresultsofthepresentpaRperarethestrongconRsistencyandtheasymptoticnormality of the estimator γˆ which we state as follows. T Theorem 1.1. Let H [1,3). ∈ 2 4 (i) The least squares estimator γˆ is strongly consistent. Namely, γˆ converges to γ almost T T surely as T . →∞ (ii) √T (γˆ γ) is asymptotically normal. Namely, T − 1 √T[γˆ γ]law (0, C) as T , (1.4) T − → N 2d2a →∞ σ2+c b where C= with " b σ2 c# − 2 (xy)1 2H σ2 = dxdy − Γ(2 2H)2 (x+y)(x+γ¯)(y+γ) − Z[0,∞)2 Γ2(2H 1) 2 1 1 + − + + (1.5) 2λ γ 4H−2 γ4H−2 γ¯4H−2 | | (cid:0) (cid:1) 2 (xy)1 2H 1 1 − c+ib = + dxdy. (1.6) Γ(2 2H)2 (y+γ)2 x+y x+γ − Z[0,∞)2 h i Γ(2H 1) 1 1 d = − + . (1.7) 2λ γ2H 1 γ¯2H 1 − − (cid:16) (cid:17) In the special case when H = 1, we have 2 λ √T[γˆ γ]law (0, Id ), (1.8) T 2 − → N 4a where Id is a 2 2 identity matrix. 2 × Remark 1.2. An important new feature for the case of fractional Ornstein-Uhlenbeck process (H (1/2,3/4)) is that the limiting distribution is no longer independent Gaussian as in the ∈ case of Brownian motion case (H = 1/2). We will discuss exclusively the case H = 1/2 since 6 the case H =1/2 is easy. A minor difference between the case of one dimensional fractional Orstein-Uhlenbeck process considered in [9] and our complex case is that in our least squares estimator γˆ defined by (1.3), we have T Z¯ dZ in the numerator, while in [9] it is T X dX . However, this minor difference 0 t t 0 t t causes a big unpleasant trouble. By using Itô formula the later is expressed as X2 plus another R R T manageable term. This is critical in the proof of the strong consistency of the estimator since it COMPLEX FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES 3 allows us to use a famous theorem of Pickands in [9]. However, we cannot no longer apply Itô formulato T Z¯ dZ toobtainsimilaridentity. Togetaroundthis difficultyweshalluseanother 0 t t famous result, the Garsia-Rodemich-Rumsey inequality [8, Theorem 2.1]. R To show the asymptotic normality, we may use a multi-dimensional fourth moment theorem. However, we develop a complex version of the fourth moment theorem which is easier to use in our case. To state the theorem we denote αH = H(2H 1) and φ(s,t) = αH s t2H−2 and − | − | define the Hilbert space H:=L2 = f f :R R, f 2 := ∞ ∞f(s)f(t)φ(s,t)dsdt< . (1.9) φ { | + → | |φ ∞} Z0 Z0 Now the theorem is stated as follows. Theorem 1.3 (Fourth Moment Theorems). Let Fk =Im,n(fk) with fk H⊙Cm H⊙Cn be a { } ∈ ⊗ sequenceof(m,n)-thcomplexWiener-Itômultipleintegrals(seethenextsectionforadiscussion), with m and n fixed and m+n 2. Suppose that as k , E[F 2] σ2 and E[F2] c+ib, ≥ →∞ | k| → k → where is the absolutevalue (or modulus)of a complex numberand c,b R. Then thefollowing |·| ∈ statements are equivalent: (i) The sequence (ReF , ImF ) converges in law to a bivariate normal distribution with k k σ2+c b covariance matrix C= 1 , 2" b σ2 c# − (ii) E[F 4] c2+b2+2σ4. k | | → (iii) f f 0 and f h 0 for any 0 < i+j l 1 k k⊗i,j kkH⊗(2(l−i−j)) → k k⊗i,j kkH⊗(2(l−i−j)) → ≤ − where l =m+n and h is the kernel of F¯ , i.e., F¯ =I (h ). k k k n,m k (iv) kDFkk2H, DF¯k 2H and hDFk, DF¯kiH converge to a constant in L2(Ω) as k tends to infinity,whereD isthecomplexMalliavin derivatives. Thatistosay,Var( DF 2) 0, Var( DF¯k(cid:13)(cid:13)2H)→(cid:13)(cid:13)0 and Var(hDFk, DF¯kiH)→0 as k tends to infinity. k kkH → Remark 1.4(cid:13)(cid:13). (cid:13)(cid:13)1) If m = n and E[Fk2] = 0 or if m 6= n, then C = σ22Id2. That is to say, the limit is a complex Gaussian variable (0,σ2) in this case. Theorem 7 of [11] is CN concerning multi-dimensional fourth moment theorems, but it requires C = σ2Id. Thus, 2 our findings are partly more general. 2) We give a different and simpler proof of the theorem. The equivalence (i) (ii) is shown ⇔ by an indirect method in [6] and by stein’s method in [4]. In this paper, we show that (i) (ii) (iii) (iv) (i) directly. We make use of (iii) to show the asymptotic ⇒ ⇒ ⇒ ⇒ normality which is simpler than to use (iv) as in previous work [9]. 2. Preliminaries: complex multiple Wiener-Itô integrals Denote by (B , t 0) a fBm of Hurst parameter H (1/2,3/4). Then Gaussian isonormal t ≥ ∈ processassociatedwith H is givenby Wiener integralswith respecttofBm forany deterministic kernel H (where H is defined by (1.9)): ∈ B(f)= ∞f(s)dB , f H. (2.1) s ∀ ∈ Z0 4 Y.CHEN,Y.HU,ANDZ.WANG Let B˜() be an independent copy ofthe fractionalBrownianmotion B(). Followingthe same · · idea of [6], we define complex Gaussian isonormal process and complex multiple Wiener-Itô integrals with respect to fBm as follows. For any f =f +if with f , f H, define that 1 2 1 2 ∈ HC :={f1+if2 : f1,f2 ∈H}, hf1+if2,f1+if2iHC =hf1,f1iH+hf2,f2iH, (2.2) 1 B(f)=B(f )+iB(f ), ζ(f)= [B(f)+iB˜(f)]. (2.3) 1 2 √2 Then ζ is called a complex isonormal Gaussian process over HC, which is a centered complex Gaussian family satisfying E[ζ(h)2]=0, E[ζ(g)ζ(h)]=hg,hiHC, ∀g,h∈HC. From now on, without ambiguity, we still denote HC by H. Definition 2.1 (Complex multiple Wiener-Itô integrals). For a fixed (p,q), suppose that g ∈ H p H q, we call I (g) the complex multiple Wiener-Itô integral of g with respect to ζ (see ⊙ ⊙ p,q ⊗ [6]). And if f H (p+q) then we define ⊗ ∈ I (f)=I (f˜), (2.4) p,q p,q where f˜is the symmetrization of f in the sense of Itô [10]: 1 f˜(t ,...,t )= f(t ,...,t ,t ,...,t ), (2.5) 1 p+q p!q! π(1) π(p) σ(1) σ(q) π σ XX where π and σ run over all permutations of (1,...,p) and (p+1,...,p+q) respectively. It is easy to see that I (f)=I (f¯) and p,q q,p E[Ip,q(f)Ip′,q′(g)]=δp,p′δq,q′p!q! f˜,g˜ , (Itô’s isometry) (2.6) h i where the Kronecker delta δp,p′ is 1 when p′ is equal to p, and is 0 otherwise, and , is the h· ·i inner product on H (p+q). As a consequence, ⊗ 2 E[I (f)2]=p!q! f˜ p!q! f 2, (Itô’s isometry). (2.7) p,q | | ≤ k k (cid:13) (cid:13) The proof of Theorem 1.3 proceeds thro(cid:13)ug(cid:13)h several propositions and lemmas. Firstly, we define (cid:13) (cid:13) the contraction of (i,j) indices of two symmetric functions. Definition 2.2. For two symmetric functions f H⊙p1 H⊙q1, g H⊙p2 H⊙q2 and i ∈ ⊗ ∈ ⊗ ≤ p q , j q p , the contraction of (i,j) indix is defined as (see [5]) 1 2 1 2 ∧ ≤ ∧ f g(t ,...,t ;s ,...,s ) ⊗i,j 1 p1+p2−i−j 1 q1+q2−i−j = d~udu~φ(u ,u )...φ(u ,u )f(t ,...,t ,u ,...,u ;s ...,s ,v ...,v ) ZR2+l ′ 1 ′1 i ′i 1 p1−i 1 i 1 q1−j 1 j ×g(tp1−i+1,...,tp−l,v1′,...,vj′;sq1−j+1...,sq−l,u′1,...,u′i)φ(v1,v1′)...φ(vj,vj′)d~vdv~′, where l = i + j, p = p + p , q = q + q , ~u = (u , ,u ), u~ = (u , ,u ) and ~v = 1 2 1 2 1 ··· i ′ ′1 ··· ′i (v , ,v ), v~ =(v , ,v ). 1 ··· j ′ 1′ ··· j′ COMPLEX FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES 5 By convention, f g = f g denotes the tensor product of f and g. We write f˜ g for 0,0 p,q ⊗ ⊗ ⊗ the symmetrizationof f g. In what follows,we use the conventionf g =0 if i>p q p,q i,j 1 2 ⊗ ⊗ ∧ or j >q p . 1 2 ∧ Our next result is a technical lemma. Lemma 2.3. Suppose that F =I (f) with f H m H n and that F¯ =I (h). Then m,n ⊙ ⊙ n,m ∈ ⊗ E[F 4] 2 E[F 2] 2 E[F2] 2 | | − | | − = (cid:0)m 2 (cid:1)n 2((cid:12)(cid:12)m!n!)2(cid:12)(cid:12) f f 2 + l−1((l r)!)2 ψ 2 (2.8) i j k ⊗i,j kH⊗(2(l−i−j)) − k rkH⊗(2(l−r)) 0<i+j<l(cid:18) (cid:19) (cid:18) (cid:19) r=1 X X m n n m = (m!n!)2 f h 2 (2.9) i i j j k ⊗i,j kH⊗(2(l−i+j)) 0<i+j<l(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) X l 1 + − (2m r)!(2n r)! ϕ 2 , − − k rkH⊗2(l−r) r=1 X where l=m+n and 2 2 m n ψ = i!j! f˜ h, (2.10) r i,j i j ⊗ i+j=r (cid:18) (cid:19) (cid:18) (cid:19) X m n n m ϕ = i!j! f˜ f. (2.11) r i,j i i j j ⊗ i+j=r (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) X Proof. It follows from Lemma 4.1 of [5] that E[F 4] E[F 2] 2 (2.12) | | − | | = m(cid:0)2 n 2(cid:1)(m!n!)2 f f 2 + l (l r)! 2 ψ 2 . i j k ⊗i,j kH⊗(2(l−i−j)) − k rkH⊗(2(l−r)) i+j>0(cid:18) (cid:19) (cid:18) (cid:19) r=1 X X(cid:0) (cid:1) We calculate the term ψ =f h: l m,n ⊗ f h = d~udu~d~vdv~φ(u ,u )...φ(u ,u )φ(v ,v )...φ(v ,v ) ⊗m,n Rm+n ′ ′ 1 ′1 m ′m 1 1′ n n′ Z + ×f(u1,...,um;v1,...,vn)h(v1′,...,vn′;u′1,...,u′m) 1 = f 2 = E[F 2], (2.13) k kH⊗(m+n) m!n! | | where the last equality is from Ito’s isometry (2.7). Next, we calculate the term f f in m,n ⊗ Eq.(2.12) according to whether m = n or not. We consider the case m = n first. Without loss 6 generalitywecantakem>n. ByDefinition2.2wehavethatifi>norj >nthenf f =0. i,j ⊗ Therefore, if m=n then 6 f f =0=E[F2], (2.14) ⊗m,n k where the lastequalityis Itô’s isometry (2.6). Ifm=n, similarlyto show (2.13), we obtainthat 1 f f = f, h = E[F2]. (2.15) ⊗m,m h iH⊗(m+n) (m!)2 6 Y.CHEN,Y.HU,ANDZ.WANG Substituting (2.15) or (2.14) according to whether m = n or not, and (2.13), into (2.12), we obtain (2.8). Similarly, we can show (2.9). (cid:3) Notation 1. Suppose that f(~tm,~sn) H m H n. Denote ⊙ ⊙ ∈ ⊗ f (~tm 1,~sn)=f(~tm 1,u,~sn), fv(~tm,~sn 1)=f(~tm,~sn 1,v). (2.16) u − − − − Clearly, f (~tm 1,~sn) H m 1 H n and fv(~tm,~sn 1) H m H n 1. u − ⊙ − ⊙ − ⊙ ⊙ − ∈ ⊗ ∈ ⊗ Definition 2.4 (Complex Malliavin Derivatives). Let denote the set of all random variables S of the form f ζH(ϕ ), ,ζH(ϕ ) , (2.17) 1 m ··· where f C∞(Cm) and ϕi H,i =(cid:0)1,2, ,m. Let F (cid:1) be given by (2.17). The complex ∈ ↑ ∈ ··· ∈ S Malliavin derivative of F is the element of L2(Ω,H) defined by: m DF = ∂ f(ζH(ϕ ),...,ζH(ϕ ))ϕ , (2.18) i 1 m i i=1 X m D¯F = ∂¯f(ζH(ϕ ),...,ζH(ϕ ))ϕ¯ , (2.19) i 1 m i i=1 X where ∂ f = ∂ f(z ,...,z ), ∂¯ f = ∂ f(z ,...,z ) are the Wirtinger derivatives [4]. j ∂zj 1 m j ∂z¯j 1 m Proposition 2.5. Suppose that l =m+n and m 2 n 2 η = i i!j!f˜ h, (2.20) r i,j i j ⊗ i+j=r (cid:18) (cid:19) (cid:18) (cid:19) X m 2 n 2 ξ = j i!j!h˜ f, (2.21) r j,i i j ⊗ i+j=r (cid:18) (cid:19) (cid:18) (cid:19) X m n n m ν = i i!j!f˜ f, (2.22) r i,j i i j j ⊗ i+j=r (cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19)(cid:18) (cid:19) X then we have that l 1 Var( DI (f) 2)= − [(l r)!]2 η 2 , (2.23) k m,n kH − k rkH⊗(2(l−r)) r=1 X l 1 Var( D¯I (f) 2)= − [(l r)!]2 ξ 2 , (2.24) m,n H − k rkH⊗(2(l−r)) r=1 (cid:13) (cid:13) X (cid:13) (cid:13) l 1 Var(hDIm,n(f), DIm,n(f)iH)= − (2m−r)!(2n−r)!kνrk2H⊗(2(l−r)). (2.25) r=1 X Proof. We need only to show (2.23) since the other two are similar. Denote l =m+n 1. ′ − Step 1: Using product formula. By Theorem 12(D) of [10] and the product formula of complex Wiener-Itô multiple integrals (Theorem 3.2 of [5]), we have that 1 D(I (f)) 2 m2 k · m,n kH = I f (~tm 1,~sn) 2 m 1,n u − H − (cid:13) (cid:0) (cid:1)(cid:13) (cid:13) (cid:13) COMPLEX FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES 7 = dudvφ(u,v)I f (~tm 1,~sn) I f (~tm 1,~sn) m 1,n u − m 1,n v − Z[0,∞)2 − (cid:0) (cid:1) − (cid:0) (cid:1) m 1 n 2 2 − m 1 n = − i!j! dudvφ(u,v)Il′ i j,l′ i j fu(~tm−1,~sn) i,j hv(~tn,~sm−1) Xi=0 Xj=0 (cid:18) i (cid:19) (cid:18)j(cid:19) Z[0,∞)2 −− −− (cid:0) ⊗ (cid:1) where hv(~tn,~sm 1)=f¯(~sm 1,~tn)=f¯(~sm 1,v,~tn) and − v − − f (~tm 1,~sn) hv(~tn,~sm 1) (t¯l′ i j,u,s¯l′ i j,v) (2.26) u − i,j − −− −− ⊗ (cid:16) (cid:17) = d~xidx~′iφ(x1,x′1)...φ(xi,x′i)fu(~tm−1−i,~xi,~sn−j,~yj) Z[0,∞)i+j ×f¯v(sn−j+1,...,sl′−j−i,x~′i,tm−i,...,tl′−i−j,y~′j)φ(y1,y1′)...φ(yj,yj′)d~yjdy~′j. Then we obtain that l′ 1 m2 kD·(Im,n(f))k2H =Xr=0Z[0,∞)2dudvφ(u,v)Il′−r,l′−r(gr(u,v)). (2.27) where 2 2 m 1 n gk(u,v)= − i!j!fu(~tm−1,~sn)˜i,jhv(~tn,~sm−1). (2.28) i j ⊗ i+j=k(cid:18) (cid:19) (cid:18) (cid:19) X Taking expectation to Eq.(2.27), we have that 1 m2E[kD·(Im,n(f))k2H]=Z[0,∞)2dudvφ(u,v)gl′(u,v) =(m 1)!n! dudvφ(u,v)f hv u m 1,n − Z[0,∞)2 ⊗ − =(m 1)!n! f 2 . (2.29) − k kH⊗(m+n) Step 2: Calculating variance. It follows from Fubini’s theorem and Itô’s isometry that we have: 1 E[ D I (f) 4] (2.30) m4 · m,n H l′ (cid:13) (cid:0) (cid:1)(cid:13) (cid:13) (cid:13) = dudvdu′dv′φ(u,v)φ(u′,v′)[(l′−r)!]2hgr(u,v),gr(u′,v′)iH⊗2(l′−r). Xr=0Z[0,∞)4 It is easy to check that dudvdu′dv′φ(u,v)φ(u′,v′)hfu⊗˜i,jhv,fu′⊗˜i,jhv′iH⊗2(l′−k) Z[0,∞)4 =hf⊗˜i+1,jh,f⊗˜i+1,jhiH⊗2(l′−k) = f⊗˜i+1,jh 2H⊗2(l′−k), which implies that (cid:13) (cid:13) (cid:13) (cid:13) l′ 1 m4E[ D· Im,n(f) 4H]= [(l′−r)!]2hGr, GriH⊗2(l′−r), r=0 (cid:13) (cid:0) (cid:1)(cid:13) X where (cid:13) (cid:13) m 1 2 n 2 G = − i!j!f(~tm,~sn)˜ h(~tn,~sm). (2.31) k i+1,j i j ⊗ i+j=k(cid:18) (cid:19) (cid:18) (cid:19) X 8 Y.CHEN,Y.HU,ANDZ.WANG Especially, for the term with k=l , we have that ′ Gl′ 2 =[(m 1)!n!]2 f m,nh2 | | − | ⊗ | 1 2 =[(m 1)!n!]2 f 4 = E[ D(I (f)) 2] . − k kH⊗(m+n) m2 k · m,n kH (cid:16) (cid:17) Substituting the above equality displayed into (2.30), we have that l′ 1 Var(kDIm,n(f)k2H)=m4 − [(l′−r′)!]2hGr′, Gr′iH⊗2(l′−r′) r′=0 X l 1 = − [(l r)!]2 η 2 ( let l=l +1, r =r +1), − k rkH⊗(2(l−r)) ′ ′ r=1 X where ηr =m2Gr′, which implies the desired expressions (2.20)-(2.23). (cid:3) Proof of Theorem 1.3. Since (i) (ii) is wellknown, we needonly to showthe followingimplica- ⇒ tions: (ii) (iii) (iv) (i). ⇒ ⇒ ⇒ [(ii) (iii) ] Condition (ii) implies that as k , ⇒ →∞ E[F 4] 2 E[F 2] 2 E[F 2] 2 0, (2.32) k k k | | − | | − → which implies that Condition (iii) holds(cid:0)by (2.8)-(cid:1)(2.9)(cid:12), (see L(cid:12)emma 2.3). (cid:12) (cid:12) [(iii) (iv)] Suppose that Condition (iii) holds. The inequality (5.2) of [10] implies that as ⇒ k , →∞ f ˜ f 0, f ˜ h = h ˜ f 0. k⊗i,j k H⊗(2(l−i−j)) → k⊗i,j k H⊗(2(l−i−j)) k⊗i,j k H⊗(2(l−i−j)) → Theref(cid:13)ore, it foll(cid:13)ows from Minkowski’s(cid:13)inequalit(cid:13)y and Proposit(cid:13)ion 2.5 tha(cid:13)t as k , (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) →∞ ηk 0, ξk 0, νk 0, r =1,...,l 1, r → r → r → − whereηk, ξk, νk aregivenasEquations(2.20)-(2.22). By(2.23)-(2.25),weobtainthatCondition r r r (iv) holds. [(iv) (i)]Wefollowtheideaof[11,Theorem4],i.e. wecombineMalliavincalculusandpartial ⇒ differential equations. Let ϕ (z)=E ei(z¯Fk+zF¯k)/2 . k Then we have that (cid:2) (cid:3) ∂∂ϕzk = 2iE F¯k×ei(z¯Fk+zF¯k)/2 , (2.33) ( ∂∂ϕz¯k = 2iE(cid:2)Fk×ei(z¯Fk+zF¯k)/2(cid:3). By the assumption E[F 2] σ2, F a(cid:2)re tight. Now sup(cid:3)pose that the subsequence F | k| → { k} { nk} converges to G in law. Without ambiguity, we still denote F by F . By the hypercon- { nk} { k} tractivity inequality ofcomplex multiple Wiener-Itô integrals[5], F r is uniformly integrable k {| | } and thus E[Gr]=lim E[F r] for all r 1 [3, Theorem 5.4]. Therefore, the characteristic k k function ϕ(z|)=| E[e2i(z¯G→+z∞G¯)] |has|continuous≥partial derivatives of any order. COMPLEX FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES 9 It is not difficult to see that 1 E F¯ ei(z¯Fk+zF¯k)/2 = E (δD)F ei(z¯Fk+zF¯k)/2 k k × m × (cid:2) (cid:3)= 1 E(cid:2) D(ei(z¯Fk+zF¯k)/2), DFk(cid:3)H m h i = 1 E(cid:2) ei(z¯Fk+zF¯k)/2(z¯DFk+zD(cid:3)F¯k), DFk H m h i Clearly, for any z C, ei(z¯Fk+zF¯k)/2 ei(z¯(cid:2)G+zG¯)/2 in L2(Ω). Thus, Condition (iv(cid:3)) implies that ∈ → as k , →∞ E ei(z¯Fk+zF¯k)/2(z¯DFk+zDF¯k), DFk H h i →(cid:2) (z¯klim E[kDFkk2H]+zklim E[hDF¯kD(cid:3)FkiH])ϕ(z), ∀z ∈C, →∞ →∞ sincethescalarproductintheHilbertspaceL2(Ω)dependscontinuouslyonitsfactors. Itfollows from (2.29) and 1 E DIm,n(f), DIm,n(f) H =δm,nm!(m 1)!f m,mf, mn h i − ⊗ that (cid:2) (cid:3) lim E[ DF 2]=m lim E[ F 2]=mσ2, k k kkH k k kkH →∞ →∞ klim E[hDF¯kDFkiH]=mδm,nklim E[Fk2] →∞ →∞ =m(c ib)δ . m,n − Therefore, it follows from (2.33) that for any z C, ∈ ∂ϕ =[z¯σ2+z (c ib)δ ]ϕ(z). (2.34) m,n ∂z · − In the same way, ∂ϕ =[z¯ (c+ib)δ +zσ2]ϕ(z). (2.35) m,n ∂z¯ · Clearly, ϕ(0) = 1. Therefore, G is a bivariate normal distribution with covariance matrix σ2+c b C= 1 . Prokhorov’stheoremimpliesthat F convergestoabivariatenormal 2" b σ2 c# { k} distribution with th−e desired covariance matrix C. ✷ 3. Asymptotic consistency and normality We need several propositions and lemmas before the proof of Theorem 1.1. The following lemma’s proof is easy. Lemma 3.1. For any H (1,1), we have that ∈ 2 e−γu1−γ¯u2 u1 u2 2H−2du1du2 =d, (3.1) | − | Z[0,∞)2 where d is defined by (1.7). 10 Y.CHEN,Y.HU,ANDZ.WANG Proposition 3.2. Let Z be the solution to (1.1). As T , we have that →∞ 1 T Z 2dt aα d, a.s. (3.2) t H T | | → Z0 Proof. Denote Y = √a t e γ(t s)dζ . It is easy to see that Y is centered complex Gaussian t − − s process. Itô’s isometry im−p∞lies that for any t R,s 0, R ∈ ≥ E[Yt+sY¯t]=αHa ∞dv1 ∞dv2e−γ(v1+s)e−γ¯v2 v1 v2 2H−2 =E[YsY¯0]. (3.3) | − | Z−s Z0 Thus Y is stationary. It is easy to check that as s , E[Y Y¯ ] 0 with the same order as t s 0 → ∞ → s2H−2, which implies that Yt is ergodic [7, p78]. | | { } Then we have that t Z =e γtZ +√a e γ(t s)dζ t − 0 − − s Z0 t 0 =e γtZ +√a e γ(t s)dζ e γt√a eγsdζ − 0 − − s − s − Z−∞ Z−∞ =Y +e γt(Z Y ). t − 0 0 − The ergodicity and Cauchy-Schwarzinequality imply that as T , →∞ 1 T 1 T Z 2dt= Y 2 2 (e γt(Z Y )Y¯)+e 2λt Z Y 2 dt t t − 0 0 t − 0 0 T | | T | | − ℜ − | − | Z0 Z0 h i lim E[Y 2]=aα d, a.s. T H →T | | →∞ where the last equality is from Eq.(3.3) and Lemma 3.1. (cid:3) Denote ψt(r,s)=e−γ¯(r−s)1 0 s r t and Xt =I1,1(ψt(r,s)). (3.4) { ≤ ≤ ≤ } Lemma 3.3. As n , the sequence ξ := 1X converges to zero almost sure. →∞ n n n Proof. Denote F = 1 X . Lemma 3.(cid:8)5 implies th(cid:9)at sup E[F 2] < . From the hypercon- T √T T n | n| ∞ tractivity of multiple Wiener-Itô integrals [5, Proposition 2.4], we see that sup E[F 4] < . n | n| ∞ For any fixed ε>0, it follows from Chebyshev’s inequality that 1 34 P ξ >ε =P F >√nε E[F 4] E[F 2]2. | n| | n| ≤ n2ε4 | n| ≤ n2ε4 | n| The Borel-Cantell(cid:0)i lemma(cid:1)implie(cid:0)s that ξ c(cid:1)onverges to zero almost surely. (cid:3) n { } Proposition 3.4. For any real number p 2 and integer n 1, ≥ ≥ n+1 n+1 X X p t s B := | − | dsdt (3.5) n Zn Zn |t−s|2pH is finite. Moreover, for any real numbers p>2, q >1 and integer n 1, ≥ X X R nq/p, t ,t [n,n+1], (3.6) | t2 − t1|≤ p,q ∀ 1 2 ∈ where R is a random constant independent of n. p,q

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.