Parameter Dependencies in an Accumulation-to-Threshold Model of Simple Perceptual Decisions A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Arts in the Graduate School of The Ohio State University By Vyacheslav Y. Nikitin, B.S. Graduate Program in Psychology The Ohio State University 2015 Master’s Examination Committee: Patricia Van Zandt, Advisor Michael Edwards Jay Myung Paul De Boeck (cid:13)c Copyright by Vyacheslav Y. Nikitin 2015 Abstract It is a common assumption in sequential sampling models of simple perceptual decisions that parameters are statistically independent across trials. This thesis ad- dresses theoretical and empirical implications of assuming statistically dependent parameters. Three questions are answered: how to formulate flexible multivariate distributions of parameters of sequential sampling models, what are the predictive consequences of parameter dependencies for mean sample paths and joint distribu- tion of responses and response times, and what correlation matrix is consistent with a benchmark dataset collected from a brightness discrimination task without explicit correlation manipulations. The key to studying dependent parameters is a flexible framework of copulas that allow arbitrary combinations of dependence structures with marginal distribu- tions. Adding correlations to a widely-used diffusion model shows that initial points and absorption times of mean sample paths can be strongly affected by correlations. Whereas the impact of correlation on the joint distribution of behavior is potentially strong adjustment of asymmetry in reaction time distributions of the two responses. Finally, in an experiment without explicit manipulation of correlations, the posterior distribution is consistent with small to moderate correlations between parameters. ii Thus, under typical experimental conditions, the usual assumption of statistical in- dependenceisanadequatesimplificationofhowparametersofsimpledecisionmaking vary across trials. iii This is dedicated to the crucible of science iv Acknowledgments I want to thank my adviser Patricia Van Zandt for advice, proofreading and invaluable computing resources that made this thesis possible. I am also grateful to my committee members - Jay Myung, Michael Edwards and Paul De Boeck - for provoking questions and insightful comments during the development of this thesis. v Vita 2010 ........................................B.S. Psychology 2011-2012 .................................. University Fellow, The Ohio State University 2012-present ................................Graduate Teaching Associate, The Ohio State University Fields of Study Major Field: Psychology vi Table of Contents Page Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Formal Modeling Approach . . . . . . . . . . . . . . . . . . . . . . 11 1.2 Data-Generating Experimental Tasks . . . . . . . . . . . . . . . . . 18 1.3 Benchmark Behavioral Data . . . . . . . . . . . . . . . . . . . . . . 20 1.4 Cognitive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 1.5 Bayesian Statistical Framework . . . . . . . . . . . . . . . . . . . . 27 1.5.1 Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5.2 MCMC Background . . . . . . . . . . . . . . . . . . . . . . 30 1.5.3 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . . 34 2. Motivating Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.1 Modeling Parameter Dependencies . . . . . . . . . . . . . . . . . . 38 2.2 Predictions of Dependent Parameters . . . . . . . . . . . . . . . . . 41 2.3 Correlation Structure in a Benchmark Dataset . . . . . . . . . . . . 43 vii 3. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Ratcliff Diffusion Model . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Copula-based Multivariate Distributions . . . . . . . . . . . . . . . 59 3.3 Generalized Decision Models . . . . . . . . . . . . . . . . . . . . . 68 4. Theoretical and Empirical Studies . . . . . . . . . . . . . . . . . . . . . . 74 4.1 Design and Parameter Settings . . . . . . . . . . . . . . . . . . . . 75 4.2 Study A1 - Mean Sample Paths . . . . . . . . . . . . . . . . . . . . 79 4.2.1 Mean Sample Paths Calculation . . . . . . . . . . . . . . . . 82 4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.3 Study A2 - Response times and Responses . . . . . . . . . . . . . . 112 4.3.1 Joint Distribution Calculation . . . . . . . . . . . . . . . . . 113 4.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.4 Study B - Benchmark Dataset Analysis . . . . . . . . . . . . . . . 132 4.4.1 Outlier filtering . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.4.2 Bayesian Models . . . . . . . . . . . . . . . . . . . . . . . . 135 4.4.3 MCMC Sampler . . . . . . . . . . . . . . . . . . . . . . . . 139 4.4.4 Convergence Diagnostics . . . . . . . . . . . . . . . . . . . . 143 4.4.5 Characterizing Parameter Dependencies . . . . . . . . . . . 145 4.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 Appendix A. Study A1 - Mean Sample Paths . . . . . . . . . . . . . . . . . 174 Appendix B. Study A2 - Response Times and Responses . . . . . . . . . . . 191 Appendix C. Study B - Benchmark Dataset Analysis . . . . . . . . . . . . . 200 viii List of Tables Table Page 4.1 WeibullfunctionparametersusedtoobtainpredictionsinstudyA.The values were reported by Vandekerckhove, Tuerlinckx, and Lee (2011). 76 4.2 Non-correlation parameters used to obtain predictions in study A. The values were reported by Vandekerckhove et al. (2011). Starting point values were transformed to decision bias values. . . . . . . . . . . . . 77 4.3 Correlation parameters used to obtain predictions in study A. The val- ues were picked to range from low to high and represent three possible correlation patterns. For sample paths only column one matters, espe- cially rows 4 - 6. Predicting response and response times depends on all the values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.4 Summary of the posterior distribution of the non-correlation parame- ters of the normal copula model for subject “kr”. Each parameter is summarized by a mean and lower/upper boundaries of its HDI. Note: ACC is accuracy condition and SPD is speed condition. . . . . . . . . 154 4.5 Summary of the posterior distribution of the correlation parameters of the normal copula model for all three subjects. Each parameter is summarized by a mean and lower/upper boundaries of its HDI. Note: ACC is accuracy condition and SPD is speed condition. . . . . . . . . 155 ix
Description: