ETH Library Parallel multigrid methods using sparse apprpoximate inverses Doctoral Thesis Author(s): Bröker, Oliver Publication date: 2003 Permanent link: https://doi.org/10.3929/ethz-a-004617648 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 15129 Parallel Multigrid Methods using Sparse Approximate Inverses A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Dr. sc. ETH Zu¨rich presented by ¨ OLIVER BROKER Dipl. Inf., Universita¨t Bonn born May 8, 1971 in Hannover, Germany citizen of Germany accepted on the recommendation of Prof. Dr. Walter Gander, examiner Prof. Dr. Marcus J. Grote, co-examiner Dr. Klaus Stu¨ben, co-examiner 2003 Acknowledgments Iverymuchenjoyedworkingonthisthesis,notonlybecauseofmystronginterestinscientific computing, but also because I had the chance to meet and work with numerous wonderful people. Very fortunate circumstances made Prof. Marcus J. Grote(cid:0) my advisor. His careful plan- ning, constantsupportand friendlinesswerereallygreat. Thank youforallyourhelp! Iwould like to also thank Prof. Walter Gander(cid:0) for giving me the opportunity to do my Ph.D. thesisin his group. It is an honor for me to have Dr. Klaus Stu¨ben(cid:0) , one of the inventors of AMG, as a co-examiner. Many thanks go the members of my group. It was extremely enjoyful to work with you all. I would like to mention Erwin Achermann, Peter Arbenz, Oscar Chinellato, Roman Geus, Leonhard Jaschke, and Rolf Strebel(cid:0) . Roman not only proposed to me to come to Zurich, he alsoprovidedhisPySparselibrarywithexceptionalsupport. Oscarhasbeenespeciallyhelpful in the last months of this work. Additionally I’d like to thank Anne Preisig for organizational help and the ISG, especially Marc Schmitt, for computer support. Thanks also to Alexander Houben, Thomas Tscherrig, and Ljiljana Vukelja for writing their Masters thesis’ with me. Anja Gerdes kindly created both covers with a lot of patience. Parts of this work were carried out at Lawrence Livermore National Labs in Livermore, California. I would like to thank Edmond Chow for his kind invitation and support during my stay there. Michael Lambert and Markus Kowarschik are well remembered for a great time in Livermore. I would like to thank Tanja Clees, Arno Krechel, and Kees Oosterlee, members of SCAI at the Fraunhofer Institute, Birlinghoven for their cooperation. Special thanks go to Ulrich Trottenberg (and his family), Oliver McBryan (and his family), and Wolfgang Joppich for all the support very early in my studies. The group of Prof. Ulrich Ru¨de at the University of Erlangen-Nu¨rnberg and the group of Prof. Michael Griebel at the University of Bonn are thanked for their hospitality. Coming to Zurich made my life rich and happy. Alexx Below, Edo Gerdes and Jean- Phillipe Escher are remembered for great times. Wolfram Schlickenrieder(cid:0) , Gabriele Neyer, Karin Meier, and Frank Horn – you are unique Villa-housemates! Thanks go out to the Nose- cakes Bernhard Hoe¨cker, Bastian Pastewka and Keirut Wenzel for keeping in touch. Stephan Heuel(cid:0) and Christian Schmelter have also been really great friends from a larger distance. Yet, my best friend of all times is Christina Marchand(cid:0) . I am in love with you and our daughter Vivien. FinallyIwouldliketothankmyparentsRuthandWolfgangandmysisterJuliaforalltheir encouragment, guidance, support and trust. Oliver Bro¨ker Thank you, please come again! Zurich, May 2003 — Apu in “The Simpsons” (cid:0) You have proofread parts of this thesis — Not only the author, but surely also the reader sincerely thanks you for this! i Abstract We consider combining sparse approximate inverses with geometric and algebraic multi- grid, see Ruge and Stu¨ben (1987). The approximate inverses we use are based on the (cid:0) SPAI algorithm by Grote and Huckle (1997). For a given matrix , a sparse approximate (cid:0) inverse is computed by minimizing in the Frobenius norm. The minimiza- (cid:1) (cid:2)(cid:4)(cid:3)(cid:5)(cid:1) tion problem decouples into independent, local and small least squares procedures. The approach is promising, because it is naturally parallel and flexible. SPAI hierarchy Various choices for the sparsity pattern of yield a new hierarchy of (cid:1) SPAI inverses: SPAI-0, where is diagonal (cid:1) SPAI-1r, where has the sparsity pattern defined by the strong con- (cid:1) nections from algebraic multigrid, (cid:0) SPAI-1, where has the sparsity pattern of and (cid:1) SPAI( ), where the sparsity pattern of is determined automatically (cid:6) (cid:1) by the SPAI algorithm. Using SPAI inverses We propose three extensions to standard geometric and algebraic (cid:0)(cid:8)(cid:7)(cid:10)(cid:9)(cid:12)(cid:11) multigrid to solve and make use of approximate inverses in the (cid:11) (cid:0)(cid:14)(cid:7)(cid:16)(cid:15) Smoother The approximate inverses can be used as smoothers by using as (cid:1) (cid:13) (cid:3) an error correction. The performance of SPAI-1 smoothing is comparable to that of the Gauss-Seidel iteration, while SPAI( ) may be used when the simpler SPAI-0 (cid:6) and SPAI-1 smoothers fail. We show that the theoretical properties of the SPAI-0 smoothers extend the ones obtained for damped Jacobi smoothing. Coarsening&Interpolation The entries of the matrix can be used as an alternative (cid:3)(cid:8)(cid:1) definition forthestrong connections usedinalgebraicmultigrid. Forstandardprob- lemswheretheclassicaldefinitionworkswell, thestrongconnectionscoincidewith the new definition using SPAI inverses. We investigate two applications from the finite elementmethod, wherethe Ruge/Stu¨benstrong connection heuristic fails, but the SPAI inverses yield robust strong connections. GalerkinCoarseGridProjection Explicit computationofanapproximateinverse enables us to include the matrix in the Galerkin coarse grid projection. We propose to (cid:1) (cid:0)(cid:8)(cid:17) (cid:9) (cid:18)(cid:20)(cid:19) (cid:0) (cid:18) include using . The preconditioning effect of the altered (cid:1) (cid:1)(cid:22)(cid:21) (cid:21) coarse grid projection can improve the properties of the coarse grid operator. This ii improves the applicability of algebraic multigrid as a stand-alone solver and as a preconditioner. Sequential and parallel computational examples show the practical efficiency of these approaches. Parallel Coarsening Unfortunately the coarsening process in thesetup–phase ofthe al- gebraicmultigridalgorithm is asequential procedureand thus represents amissinglink to formulate alargescaleparallelalgebraicmultigrid algorithm. Wepresent aparallelcoars- ening algorithm that produces coarsegrids, whose quality is independent of the processor number. Object-oriented AMG in Python We have chosen to implement AMG using the Python programming language. The efficient implementation of the AMG setup is dis- cussed in much detail. The resulting open source software package Wolf , that imple- AMG ments theclassicalRuge/Stu¨benAMG inconjunction withtheSPAIinversesisdescribed. Summary Combining geometric and algebraic multigrid is considered at different lev- els of research: algorithmic design, theoretical investigation, practical implementation and numerical experiment. Essential advantages of combining multigrid with SPAI are: improved robustness, (cid:0) inherent parallelism, (cid:0) ordering independence, and (cid:0) possible local adaptivity. (cid:0) iii Zusammenfassung In dieser Arbeit werden du¨nn besetzte approximate Inverse mit algebraischen Mehrgit- terverfahren (siehe Ruge and Stu¨ben 1987) kombiniert. Die verwendeten approximativen Inversen basieren auf dem SPAI Algorithmus von Grote und Huckle (1997). Fu¨r eine (cid:0) (cid:0) gegebene Matrix wir eine approximative Inverse berechnet die in der (cid:1) (cid:2) (cid:3) (cid:1) Frobeniusnorm minimiert. Dieses Minimierungsproblem zerfa¨llt in unabha¨ngige, lokale und kleine Probleme der kleinsten Quadrate. Der Ansatz ist erfolgversprechend, weil er natu¨rlicherweise flexibel und parallel ist. SPAI Hierarchie Verschiedene Besetzheitstrukturen fu¨r die approximative Inverse (cid:1) bilden eine neue Hierarchie von SPAI Inversen: SPAI-0, mit diagonalem (cid:1) SPAI-1r, wo die Besetzheitsstruktur der starken Verbindungen in al- (cid:1) gebraischem Mehrgitterverfahren hat, (cid:0) SPAI-1, wo die Nichtnullenstruktur von hat (cid:1) SPAI( ), wo die Struktur von wird dynamisch vom SPAI Algorith- (cid:6) (cid:1) mus bestimmt wird. Verwendung der SPAI Inversen Wir schlagen drei Erweiterungen des geometrischen und des algebraischen Mehrgitterverfahrens vor. (cid:11) (cid:0)(cid:8)(cid:7) (cid:15) Gla¨tter Approximative Inverse ko¨nnen als Gla¨tter verwendet werden, indem (cid:1) (cid:13) (cid:3) als Fehlerkorrektur verwendet wird. Die Gla¨ttung der SPAI-1 Inversen entspricht ungefa¨hr der des Gauss-Seidel Verfahren. Die SPAI( ) Inverse kann verwendet (cid:6) werden, wenn die Gla¨ttungseigenschaft der einfacheren SPAI-0 und SPAI-1 Ver- fahren nicht ausreicht. Wir zeigen ferner, dass die theoretischen Eigenschaften des SPAI-0 Gla¨tters die des geda¨mpften Jacobi Verfahren erweitern. Vergro¨berung&Interpolation Die Eintra¨ge von ko¨nnen als alternative Definition der (cid:1) starken Verbindungen im algebraischen Mehrgitterverfahren verwendet werden. Fu¨r Standardprobleme gleicht diese neue Definition der klassischen. Wir unter- suchen 2 Anwendungen aus der finiten Elemente-Diskretisierung, wo die klassis- che Ruge/Stu¨ben Definition fehlschla¨gt, die Verbindungen basierend auf den SPAI Inversen sich allerdings als robustes Kriterium herausstellen. GalerkinGrobgitterprojektion DieexpliziteBehandlungderGalerkinGrobgittprojektion erlaubt die Hinzunahme der Matrix in das zu berechnende Matrixprodukt. Wir (cid:1) iv (cid:0) (cid:17) (cid:9) (cid:18)(cid:20)(cid:19) (cid:0) (cid:18) schlagen vor, den Grobgitteroperator zu verwenden. Die Vor- (cid:1) (cid:21) (cid:21) konditionierung des vera¨nderten Grobgitteroperators ko¨nnen dessen Eigenschaften verbessern. Diese Tatsache erweitert die Anwendbarkeit von algebraischem Mehr- gitter als eigensta¨ndiges Lo¨sungsverfahren. Sequentielle und parallele Rechenbeispiele demonstrieren die praktische Effizienz dieser Ansa¨tze. Parallele Vergro¨berung Bedauerlicherweise ist die Vergro¨berung in der Aufbauphase desalgebraischenMehrgitterverfahrensvonsequentiellerNaturundistdasletztefehlende Bindeglied fuer ein effizientes paralleles Verfahren auf vielen Prozessoren. Wir stellen einen parallelen Vergro¨berungsalgorithmus vor, der grobe Gitter mit einer Qualita¨t, die unabha¨ngig von der Zahl der Prozessoren ist, berechnet. Resultate Wir betrachten die Kombination von approximativen Inversen und Mehrgit- terverfahren unter verschiedenen Gesichtspunkten: Entwurf von Algorithmen, Theorie, praktische Implementierung und numerische Experimente. Die wesentlichen Vorteile der Kombination von SPAI Inversen mit dem Mehrgitterverfahren sind verbesserte Robustheit, (cid:0) inha¨renter Parallelismus, (cid:0) Ordnungsunabha¨ngigkeit und (cid:0) potentielle lokale Adaptivita¨t. (cid:0) v Contents 1 Introduction 1 1.1 Overview of the Ideas in this Thesis . . . . . . . . . . . . . . . . . . . . 1 1.2 The Development of Multigrid . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 Requirements of Linear Solvers . . . . . . . . . . . . . . . . . . . . . . 11 1.4 Why combine Multigrid with SPAI? . . . . . . . . . . . . . . . . . . . . 12 1.5 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Prerequisites: Problems, Solvers, Multigrid and SPAI 19 2.1 Discretization of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Iterative Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Multigrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 SPAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Multigrid Smoothing with SPAI 47 3.1 Smoothing Idea, SPAI Hierarchy and Theory . . . . . . . . . . . . . . . 49 3.2 Numerical Experiments for Standard Problems . . . . . . . . . . . . . . 61 3.3 Parallel MG with SPAI-1 . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.4 Conclusions: SPAI Smoothes and is Parallel . . . . . . . . . . . . . . . . 83 4 SPAI as Strong Connections in Multigrid 85 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5 Preconditioned Galerkin Projection with SPAI 99 5.1 Including in the Galerkin projection . . . . . . . . . . . . . . . . . . 99 (cid:1) 5.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6 Parallel Coarsening by Relaxation 113 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 6.2 Our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3 Compatible Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.4 Coarsening by Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.5 Approximate Inverse Relaxation . . . . . . . . . . . . . . . . . . . . . . 124 6.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 vi 7 Object-oriented Implementation of AMG in Python 131 7.1 Efficient Ruge/Stu¨ben coarsening . . . . . . . . . . . . . . . . . . . . . . 131 7.2 Sparse matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.3 Galerkin product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.4 Wolf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 AMG 8 Conclusions 155 8.1 Is SPAI useful with Multigrid? . . . . . . . . . . . . . . . . . . . . . . . 155 8.2 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Bibliography 161 vii
Description: