ebook img

Parallel Finite Volume Computation on General Meshes PDF

197 Pages·2020·12.631 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Parallel Finite Volume Computation on General Meshes

Yuri Vassilevski Kirill Terekhov Kirill Nikitin Ivan Kapyrin Parallel Finite Volume Computation on General Meshes Parallel Finite Volume Computation on General Meshes Yuri Vassilevski Kirill Terekhov (cid:129) (cid:129) Kirill Nikitin Ivan Kapyrin (cid:129) Parallel Finite Volume Computation on General Meshes 123 YuriVassilevski Kirill Terekhov MarchukInstituteofNumericalMathematics MarchukInstituteofNumericalMathematics of the Russian Academy of Sciencesand of the Russian Academy of Sciences MoscowInstituteofPhysicsandTechnology Moscow,Russia andSechenov University Moscow,Russia IvanKapyrin MarchukInstituteofNumericalMathematics Kirill Nikitin andNuclear SafetyInstitute ofthe Russian MarchukInstituteofNumericalMathematics Academy of Sciences of the Russian Academy of Sciencesand Moscow,Russia Moscow State University Moscow,Russia ISBN978-3-030-47231-3 ISBN978-3-030-47232-0 (eBook) https://doi.org/10.1007/978-3-030-47232-0 ©SpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgements This book would not appear without dedications of many colleagues and collab- orators.Thecoauthorsofourpaperscitedinthebibliographyareourcollaborators to whom we are greatly indebted. In particular, we wish to thank Konstantin Lipnikov,DaniilSvyatskiy,AlexanderDanilov,AlexeyChernyshenko,Konstantin Novikov, Vasiliy Kramarenko, Ruslan Yanbarisov, Mikhail Shashkov, Bradley Mallison,HamdiTchelepi,andMaximOlshanskiifortheircontributiontoourjoint papersandcooperativeresearchonthenonlinearFVmethods.Wearealsograteful to Mary Wheeler, Serguei Maliassov, Ilya Mishev, Roland Masson, and Denis VoskovforilluminatingdiscussionsonapplicationsoftheFVmethodsinreservoir simulation; Jerome Jaffre and Alexander Rastorguev for introduction to simulation of radionuclides subsurface migration; Igor Linge and Sergey Utkin for practical RW disposal safety assessment problem formulations and methodology; Vitaly Volpert and Anass Bouchnita for joint development of the multi-physics model of blood flow coagulation; Denis Anuprienko, Fedor Grigorev, Georgiy Neuvazhaev, ViktorSuskin,andalltheGeRacodedevelopersforthecooperationingroundwater flow and radionuclides transport models development and their verification. We owe to our colleagues Igor Kaporin, Igor Konshin, Vadim Chugunov, Sergey Goreinov, and Sergey Kharchenko for fruitful discussions on incomplete LU fac- torizationmethodsandcontributiontoINMOSTsoftware.Weareinagreatdebtto Yuri Kuznetsov who introduced us to the world of mathematical modeling years ago. A large part of the work presented here was supported by the ExxonMobil Corporation within a long-term research project at the Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). We acknowledge the financial support by the Russian Science Foundation projects 18-71-10111, 19-71-10094, and the Russian Foundation for Basic Research pro- jects 18-31-20048 and 19-31-90110, the RAS Research program 26 “Basics of algorithms and software for high performance computing” and the world-class research center “Moscow Center for Fundamental and Applied Mathematics”. Nuclear Safety Institute of the Russian Academy of Sciences (IBRAE) provided v vi Acknowledgements resources for the GeRa code development. We thank INM RAS and IBRAE, for administrative support of our research within the above projects. Finally, we would like to thank all Springer team for making this publication possible.And,mostimportantly,wearegratefultoourfamiliesforthepatienceand irretrievably lost time, otherwise spent by the authors writing the code and text of the book. Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Rationale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Structure and Overview of the Book . . . . . . . . . . . . . . . . . . . . . . 2 2 Monotone Finite Volume Method on General Meshes . . . . . . . . . . . 5 2.1 Cell-Centered Finite Volume Method on General Meshes. . . . . . . 5 2.2 Monotone Two-Point Flux Approximation Based on Finite Differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 Monotone Two-Point Flux Approximation Based on Gradient Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Monotone Multi-Point Flux Approximation . . . . . . . . . . . . . . . . . 15 2.5 Generalizations to Convection–Diffusion Equation . . . . . . . . . . . . 19 2.6 Generalization to Diffusion Problem in Mixed Formulation. . . . . . 21 2.7 Generalization to Navier–Stokes Equations . . . . . . . . . . . . . . . . . 24 2.8 Analysis of Monotone FV Methods. . . . . . . . . . . . . . . . . . . . . . . 30 2.8.1 Two-Point Flux Approximations. . . . . . . . . . . . . . . . . . . . 31 2.8.2 Multi-Point Flux Approximation. . . . . . . . . . . . . . . . . . . . 31 2.9 Numerical Features of Monotone FV Methods. . . . . . . . . . . . . . . 33 3 Application of MFV in Reservoir Simulation . . . . . . . . . . . . . . . . . . 39 3.1 Subsurface Flow Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.1 Single-Phase Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Two-Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.3 Three-Phase Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.1.4 Well Model and Boundary Conditions . . . . . . . . . . . . . . . 43 3.2 Time-Stepping and Nonlinear Systems. . . . . . . . . . . . . . . . . . . . . 43 3.2.1 IMPES Scheme for Two-Phase Flow . . . . . . . . . . . . . . . . 44 3.2.2 Fully Implicit Scheme for Three-Phase Flow. . . . . . . . . . . 45 vii viii Contents 3.3 Simulation of Waterflood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.1 Non-orthogonal Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3.2 Discontinuous Tensor with High Anisotropy. . . . . . . . . . . 52 3.3.3 Computational Complexity. . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.4 Discrete Maximum Principle . . . . . . . . . . . . . . . . . . . . . . 54 3.3.5 Parallel Simulation on the Norne Field . . . . . . . . . . . . . . . 57 3.4 Flow in Fractured Media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4.1 Embedded Discrete Fracture Method. . . . . . . . . . . . . . . . . 59 3.4.2 Analysis of the Monotone EDFM. . . . . . . . . . . . . . . . . . . 62 3.4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.5 Near-Well Correction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.1 Numerical Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 4 Application of FVM in Modeling of Subsurface Radionuclide Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.1 Domains, Physics, and Mathematical Models for Subsurface Radionuclide Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.2 Flow in Unconfined and Unsaturated Conditions, Transport in Vadose Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.1 Mathematical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.2.2 Numerical Solution Aspects . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.3 Reactive Transport Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.1 Mathematical Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.3.2 Numerical Solution Aspects . . . . . . . . . . . . . . . . . . . . . . . 93 4.3.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.4 Density-Driven Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4.2 Numerical Solution Aspects . . . . . . . . . . . . . . . . . . . . . . . 102 4.4.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5 Application of MFV in Modeling of Coagulation of Blood Flow. . . . 109 5.1 Model of Blood Flow and Coagulation . . . . . . . . . . . . . . . . . . . . 109 5.2 FV Discretization of Blood Coagulation Model . . . . . . . . . . . . . . 112 5.3 Numerical Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.1 Lid-Driven Cavity Flow. . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.2 Flow over Cylinder at Low Reynolds Number . . . . . . . . . 120 5.3.3 Coagulation of Blood Flow in Microfluidic Capillaries . . . 121 6 INMOST Platform Technologies for Numerical Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.1 Maintenance of General Meshes . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.2 Generation and Modification of General Meshes . . . . . . . . . . . . . 130 Contents ix 6.3 Parallel Mesh Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 6.3.1 Parallel Local Mesh Modifications . . . . . . . . . . . . . . . . . . 149 6.3.2 Mesh Balancing and Redistribution. . . . . . . . . . . . . . . . . . 152 6.3.3 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.4 Linear System Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.5 INMOST Linear Solvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 6.5.1 Parallel Iterative Method . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.5.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 6.5.4 Multi-Level Factorization. . . . . . . . . . . . . . . . . . . . . . . . . 165 6.5.5 INMOST Linear Solver Routines . . . . . . . . . . . . . . . . . . . 166 6.6 Automatic Differentiation for Jacobian and Hessian Calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.6.1 Basic Structures and Realization Details . . . . . . . . . . . . . . 168 6.6.2 Interfaces for Automatic Differentiation. . . . . . . . . . . . . . . 171 6.7 Nonlinear Solvers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.7.1 Newton Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 6.7.2 Line-Search Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 6.7.3 Anderson Acceleration Method. . . . . . . . . . . . . . . . . . . . . 174 6.7.4 Halley Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.8 Multi-Physics Model Assembly. . . . . . . . . . . . . . . . . . . . . . . . . . 176 References.... .... .... .... ..... .... .... .... .... .... ..... .... 179 Acronyms DDF Density-driven flow DFN Discrete fracture network DGR Deep geological repository DMP Discrete maximum principle DSA Direct substitution approach EBS Engineered barriers system EDFM Embedded discrete fracture method FV Finite volume FVM Finite volume method HLW High-level radioactive waste IMPES Implicit pressure–explicit saturation LILW Low- and intermediate-level radioactive waste mEDFM Monotone embedded discrete fracture method MFV Monotone finite volume method MPFA Multi-point flux approximation NMPFA Nonlinear multi-point flux approximation NTPFA Nonlinear two-point flux approximation NWC Near-well correction PDE Partial differential equation RHS Right-hand side RW Radioactive waste SIA Sequential iterative approach SNIA Sequential non-iterative approach TPFA Two-point flux approximation xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.