Parallel computation of real solving bivariate polynomial systems by I zero-matching method XiaolinQina,b,c,∗∗,YongFenga,∗,JingweiChenb,c,JingzhongZhanga,b aLaboratoryofComputerReasoningandTrustworthyComputation,UniversityofElectronicScienceandTechnologyofChina,Chengdu610054, China bLaboratoryforAutomatedReasoningandProgramming,ChengduInstituteofComputerApplications,CAS,Chengdu610041,China cGraduateUniversityofChineseAcademyofSciences,Beijing100049,China 0 1 Abstract 0 2 WepresentanewalgorithmforsolvingtherealrootsofabivariatepolynomialsystemΣ={f(x,y),g(x,y)}withafinite numberofsolutionsbyusingazero-matchingmethod.Themethodisbasedonalowerboundforbivariatepolynomial n a system whenthe system isnon-zero. Moreover,themultiplicitiesof therootsofΣ = 0 canbe obtainedby a given J neighborhood. Fromthis approach,the parallelizationof the methodarises naturally. By usinga multidimensional 8 matchingmethodthisprinciplecanbegeneralizedtothemultivariateequationsystems. 1 Keywords: Bivariatepolynomialsystem;Zero-matchingmethod;Realroots;Symbolic-numericalcomputation; ] Parallelcomputation C S . s c [ 1. Introduction 1 Consideringthefollowingsystem: v Σ={f(x,y),g(x,y)}, (1) 0 4 weassumethat f(x,y),g(x,y)∈ Q[x,y],whereQisthefieldofrationalnumbers. Wecallthezero-dimensionifthe 9 bivariatepolynomialsystem(1)hasafinitenumberofsolutions. 2 Real solvingbivariate polynomialsystem in a real field is an active area of research. It is equivalentto finding . 1 the intersections of f(x,y) and g(x,y) in the real plane. The problem is closely related to computing the topology 0 ofaplanerealalgebraiccurveandotherimportantoperationsinnon-linearcomputationalgeometryandComputer- 0 1 AidedGeometricDesign[1, 15, 13, 10, 18]. Anotherfield of applicationis the quantifierelimination[7, 17]. There : areseveralalgorithmsthattacklethisproblemsuchastheGro¨berbasismethod[19,23],theresultantmethod[26],the v characteristicsetmethod[5],andthesubdivisionmethod[3,21]. However,theprocedureofthesetechniquesisvery i X complicated.Inthispaper,weproposeanefficientapproachtoremedythesedrawbacks. r Inthispaper,weproposeazero-matchingmethodtosolvetherealrootsofanequationsystemlike(1). Thebasic a ideaofzero-matchingmethodisasfollows: FirstprojectingtherootsofΣtothe x-axis,givestheroots{x ,··· ,x }, 1 u and the y-axis, gives the roots {y ,··· ,y }, respectively. Subsequently, for every root x, and for every y is back- 1 v i j substitutedin f(x,y)andg(x,y). Tothatend,forsomeroot x thereisthecorrespondingoneormorerootsy tobe i j determinedsatisfyingΣ. Themaincontributionofourmethodisthathowtodeterminethe realrootsof Σ = 0and themultiplicitiesoftheroots. Moreover,ourapproachthathasgivensolutionstothissituationcanbethedesignof parallelizedalgorithms. IThis research was partly supported by China 973 Project NKBRPC-2004CB318003, the Knowledge Innovation Program of the Chinese AcademyofSciencesKJCX2-YW-S02,andtheNationalNaturalScienceFoundationofChina(GrantNO.10771205). ∗Correspondingauthor ∗∗Principalcorrespondingauthor Emailaddresses:[email protected](XiaolinQin),[email protected](YongFeng) PreprintsubmittedtoElsevier January18,2010 In[9],Diochnosetalpresentedthreealgorithmstorealsolvingbivariatesystemsandanalyzedtheirasymptotic bitcomplexities.Amongthethreealgorithms,thedifferenceisthewaytheymatchsolutions.Themethodofspecial- izedRationalUnivariateRepresentation(rur)basedonfastgcdcomputationsofpolynomialswithcoefficientsinan extensionfieldtoachieveefficiency(hencethenameg rur)hasthelowestcomplexityandperformsbestinnumerous experiments. The grur method projects the roots to the x−axis and y−axis, for each x-coordinate α computes the gcdh(α,y)ofthesquare-freepartsof f(α,y)andg(α,y),andisolatestherootsofh(α,y)= 0basedoncomputations of algebraic numbers and the rur techniques. Our algorithm only uses resultant computation and real solving for univariatepolynomialequationswithrationalcoefficients. ThehybridmethodproposedbyHongetal[16]thatprojectstherootsofΣtothex-axisandy-axisrespectivelyand usestheimprovedslope-basedHansen-Senguptatodeterminewhethertheboxesformedbytheprojectionintervals containarootofΣ. ThenumericalmethodonlyworksforsimplerootsofΣ. Whenthesystemhasmultipleroots,the rurtechniqueisusedtoisolatetheroots. Comparedwiththismethod,ourapproachalsocomputestworesultantsof thesametotaldegrees.However,ourmethodisacompleteone,theirnumericaliterationmethodneedstousetherur techniquetofindmultipleroots. In[2], Bekker et al presented a Combinatorial Optimization Root Selection method (hence the name cors) to match the roots of a system of polynomial equations. However, the method is only suitable for solving a small systemofpolynomialequations,anddoesnotworkforthemultipleroots. Recently,Chengetal[4]proposedalocal genericpositionmethodtosolvethebivariatepolynomialequationsystem. Themethodcanbeusedtorepresentthe roots of a bivariate equation system as the linear combination of the roots of two univariate equations. Moreover, the multiplicities of the roots of the bivariate polynomial system are also derived. However, the method is very complicatedtoextendtosolvethemultivariateequationsystems. Ourmethodcansolvethelargersystemsandeasily generalizetothemultivariateequationsystems. Therestofthispaperisorganizedasfollows. InSection2,wegivesomenotations,alowerboundforbivariate polynomial equation if it is non-zero, and how to determine the root multiplicity. In Section 3, we propose the algorithmtorealsolvingthebivariatepolynomialsystemandgiveadetailedexample. Insection4,wepresentsome comparisonsofouralgorithm.Thefinalsectionconcludesthispaper. 2. Notationsandmainresults 2.1. Notations InwhatfollowsDisaring,FisacommutativefieldofcharacteristiczeroandFitsalgebraicclosure. Typically D=Z,F=QandF=Q. Inthispaper,weconsiderthezero-dimensionalbivariatepolynomialsystemasfollows: f(x,y)= X X ai,jxiyj =0 g(x,y)=00X≤≤ii≤≤np00X≤≤jj≤≤mqbi,jxiyj =0 . (2) Throughoutthis paper, note that deg = max(n,p), deg = max(m,q), N = max(||f|| ,||g|| ), where the ||f|| and x y 1 1 1 ||g|| are the one normof the vector(a ,a ,··· ,a ,··· ,a ,··· ,a ) and (b ,b ,··· ,b ,··· ,b ,··· ,b ), so 1 00 01 0m n0 nm 00 01 0q p0 pq ||f|| =ΣΣ |a |,and||g|| =ΣΣ |b |,respectively. M =max(||t|| ,||T|| ),wherethet(x)andT(y)arethenoextraneous 1 i j ij 1 i j ij 1 1 factorsinresultantpolynomialofΣ. |Σ|denotesthatthe bivariatepolynomialsystemΣ hasbeenassignedvaluesto twovariables. LetπbetheprojectionmapfromtheΣtothex-axis: π:R2 →R, suchthatπ(x,y)= x. (3) Forazero-dimensionalsystemΣdefinedin(2),lett(x)∈Q[x]betheresultantof f(x,y)andg(x,y)withrespecttoy: t(x)=Res (f(x,y),g(x,y)). (4) y 2 SinceΣiszero-dimensional,wehavet(x) . 0. Thenπ(V(Σ)) ⊆ V(t(x)), whereV(f ,··· , f ) isthesetofcommon 1 m realzerosof f =0. Ift(x)isirreducible,thendenotethehighestdegreebydeg. Lettherealrootsoft(x)=0be i t α <α <···<α . (5) 1 2 u Byusingthesamemethod,letT(y)∈Q[y]betheresultantof f(x,y)andg(x,y)withrespecttox: T(y)=Res (f(x,y),g(x,y)). (6) x IfT(y)isirreducible,thendenotethehighestdegreebydeg . LettherealrootsofT(y)beasfollows: T β <β <···<β . (7) 1 2 v We observe thatthe aboveprojectionmap may generateextraneousroots. Fortunately,we can easily discard these extraneousfactorsbycomputingthedeterminantofthesub-matrixofthecoefficientmatrix.Moreover,iftheresultant is irreducible, then it is no extraneous factors. However, when the resultant is reducible, it may suffer from the extraneous factors. The method of removing extraneous factors mentioned can be adapted to the resultant for the bivariatepolynomialsystem[27]. Itisthefollowingtheoremtoremovetheextraneousroots. Theorem2.1. Σ is definedas in (2). If the resultants of Σ for one variable is reducible, denotedby tem, then the resultantofbivariatepolynomialsystemistheonlysomeirreduciblefactorsinwhichtheothervariableappear. Proof. TheproofcanbegivensimilarlytothatinProposition4.6ofChapter3of[8]. 2.2. Alowerboundfor|Σ|,if Σ,0 Thepurposeofthissubsectionistoprovethefollowingtheorem. Theorem 2.2. Σ is defined as in (2). Let α,β be two approximate real algebraic numbers. Denote by the integer s=deg ·deg ,andN asabove.If |Σ|,0,then t T |Σ|≥ N1−sM−c·s, (8) wherecistheconstantsatisfyingcertainconditions,|Σ|isthefollowingtwocases: (a)If f(α,β)=0org(α,β)=0,then|Σ|=max{|f(α,β)|,|g(α,β)|}; (b)If f(α,β),0andg(α,β),0,then|Σ|=min{|f(α,β)|,|g(α,β)|}. Beforegivingtheproofoftheorem2.2,werecalltwolemmas: Lemma2.1. ([20],lemma3)Letα ,...,α bealgebraicnumbersofexactdegreeofd ,...,d respectively. Define 1 q 1 q D=[Q(α ,...,α ):Q]. LetP∈Z[x ,...,x ]havedegreeatmostN inx (1≤h≤q). IfP(α ,...,α ),0,then 1 q 1 q h h 1 q q |P(α1,...,αq)|≥kPk11−D YM(αh)−DNh/dh, h=1 wheretheM(α )istheMahlermeasureofα . h h Proof. SeetheLemma4of[20]. Lemma 2.2. Letαbe analgebraicnumber. Denoteby the M(α) ofthe Mahlermeasureofα. If P isapolynomial overZ,then M(α)≤||P|| . 1 Proof. For anypolynomialP = d p ∈ Z[x] of degreed with theall rootsσ(1),··· ,σ(d), we definethe measure Pi=0 i M(P)by M(P)=|p |Πd max{1,|σ(i)|}. d i=1 TheMahlermeasureofanalgebraicnumberisdefinedtobetheMahlermeasureofitsminimalpolynomialoverQ. WeknowfromLandau([14],p. 154,Thm.6. 31)thatforeachalgebraicnumberα M(α)≤||P|| , 2 where||P|| =( d |p|2)1/2. Itisveryeasytogetthat||P|| ≤||P|| . Thiscompletestheproofofthelemma. 2 Pi=0 i 2 1 3 NowweturntogivetheproofofTheorem2.2. Proof. Fromtheassumptionofthetheorem,sinceΣisdefinedasin(2). Letthepair(α,β)becorrespondingvalueto thevariablexandyforΣrespectively.Wehavethefollowingequations: f(α,β)= X X ai,jαiβj (9a) 0≤i≤n0≤j≤m g(α,β)= X X bi,jαiβj. (9b) 0≤i≤p0≤j≤q Atfirst,weconsiderthelowerboundfortheequation(9a). Definek =[Q(α,β):Q]. Denoteby|f|=|f(α,β)|,andr,t bytheexactdegreeofalgebraicnumbersα,βrespectively.FromLemma(2.1),if|f|,0,then |f|≥||f||1−kM(α)−kn/rM(β)−km/t. 1 WeobservethatM(α)andM(β)derivefromt(x)andT(y)respectively.FromLemma(2.2),wecangetthefollowing inequality: M(α)≤||t|| ,M(β)≤||T|| . 1 1 Sowecanobtainthat |f|≥||f||1−k||t||−kn/r||T||−km/t. (10) 1 1 Byusingthesametechniqueasabove,wecanobtainthelowerboundfortheequation(9b). Denoteby|g|=|g(α,β)|. If|g|,0,then |g|≥||g||1−k||t||−kn/r||T||−km/t. (11) 1 1 Sincewehavethefollowingtwocases: (a)If f(α,β)=0org(α,β)=0,then|Σ|=max{|f(α,β)|,|g(α,β)|}; (b)If f(α,β),0andg(α,β),0,then|Σ|=min{|f(α,β)|,|g(α,β)|}. Henceweareabletoobtainthelowerboundforthebivariatepolynomialsystem. Fromtheaboveassumption,wecan getthefollowingparameters: k=[Q(α,β):Q]≤deg{t(x)}·deg{T(y)}=deg ·deg , (12a) t T N =max{||f|| ,||g|| },M =max{||t|| ,||T|| },r=deg,t=deg . (12b) 1 1 1 1 t T Combinedwiththeequation(12a)and(12b),itisobviousthats=kandtheconstantc= degt +degT +1.Finally,note r t thattheconstantcsatisfiesbothcases. Thisprovesthetheorem. AsthecorollaryofTheorem2.2,wehave Corollay2.1. UnderthesameconditionofTheorem2.2,if |Σ|< N1−sM−c·s,then|Σ|=0. Wesaythatαisassociated withβfortherealrootof Σ. Denotebytheε= N1−sM−c·s fortherestofthispaper. Proof. Theproofisveryeasybycontradiction. 2.3. Rootmultiplicity TheresultsofthissubsectioncanbeprovidedfortherootmultiplicityofΣ. Wefollowtheapproachandterminol- ogyof[8]and[11]. LetC ,C be f,gcorrespondingaffinealgebraicplanecurves,definedbytheequationsΣ. LetI =< f,g>bethe f g idealthattheygeneratein F[x,y],andsotheassociatedquotientringisA = F[x,y]/I. Letthedistinctintersection points,whicharethedistinctrootsof(Σ),beC ∩C ⊂{S =(α,β )} . f g ij i j 1≤i≤u,1≤j≤v ThemultiplicityofapointS is ij mult(S :C ∩C )=dim A <∞, ij f g F Sij 4 whereA isthelocalringobtainedbylocalizingAatthemaximalidealI =< x−α,y−β >. Sij i j IfA isafinitedimensionalvectorspace,thenS =(α,β )isanisolatedzeroofI anditsmultiplicityiscalled Sij ij i j theintersectionnumberofthetwocurves.ThefiniteAcanbedecomposedasadirectsumA=A A ··· S11L S12L A andthusdim A= uv mult(S :C ∩C ). L Suv F Pi=1 ij f g 2 Proposition2.1. ([11],Proposition1)Let f,g∈F[x,y]betwocoprimecurves,andlet p∈F beapoint.Then mult(p: fg)≥mult(p: f)mult(p:g), whereequalityholdsifandonlyifC andC havenocommontangentsat p. f g Proposition 2.2. Let us obtain the real roots of Σ = 0 in (5) and (7). If the two matching pairs (α,β ) and i j (α ,β )(for 1 ≤ i ≤ u,1 ≤ j ≤ v) are satisfying Σ = 0, |α −α | < ε and |β −β | < ε, then the (α,β ) i+1 j+1 i i+1 j j+1 i j ismultiplerootof Σ=0. Proof. FromTheorem2.2andCorollary2.1,itisobviousthatΣ=0ifandonlyif |Σ|<ε. Therefore,theerrorcontrollingislessthanεinnumericalcomputation.Undertheassumptionoftheproposition,we get|α −α |<εand|β −β |<ε. Soweareabletoobtainthat|α −α |=0and|β −β |=0intthetruncated i i+1 j j+1 i i+1 j j+1 error.Thisprovestheproposition. FromCorollary2.1,thetwo-tuple(α,β)istherealrootofΣ=0. Thismethodiscalledazero-matchingmethod. Thetechniqueisa posteriorimethodtomatchthesolutionsforthe bivariatesystem. Itcanbe generalizedeasilyto realsolvingthemultivariatepolynomialsystems. 3. DerivationoftheAlgorithm Theaimofthissectionistodescribeanalgorithmforrealsolvingbivariatepolynomialequationsbyusingzero- matchingmethod.WefirstfindtheparametersN,cands,thenobtainthenoextraneousfactorst(x)andT(y)withthe resultanteliminationmethods, and real solvingtwo univariatepolynomials, and finally match the realroots for the systems. 3.1. Descriptionofalgorithm Algorithm1istodiscardtheextraneousfactorsfromtheresultantmethod,algorithm2istoobtainthesolutions ofbivariatepolynomialsystems. Algorithm1NoExtrRes(Σ,var) Input: {f(x,y),g(x,y)},varisonevariable. Output: NoextraneousfactorsresultantofΣ. 1: tem←Resvar{f(x,y),g(x,y)}; 2: if temisirreduciblethen 3: return tem; 4: else 5: tem←Res·extraneousfacotrs; 6: return Res. 7: endif Nowwecangivethealgorithm2tocomputetherealrootsforΣ=0. Theparallelizationofthealgorithmthatwehavejustdescribedcanbeeasilydonebecauseitperformsthesame computationsondifferentstepsofdatawithoutthenecessityofcommunicationbetweentheprocessors.Observethat theStep1andStep2,Step6andStep7ofthealgorithmcanbeeasilyparalleled,respectively. Nowwegetatheoremaboutthecomputationalcomplexityofthewholealgorithm. 5 Algorithm2zmm(Σ) Input: Σ={f(x,y),g(x,y)}isazero-dimensionalbivariatepolynomialsystem. Output: AsetfortherealrootsofΣ=0. 1: Projectonthe x-axissuchthatt(x)=Resy(f(x,y),g(x,y)); 2: Projectonthey-axissuchthatT(y)=Resx(f(x,y),g(x,y)); 3: Discardtheextraneousfactorsfromt(x)andT(y)byusingAlgorithm1; 4: FindtheparametersN ands,andComputecaccordingtotheTheorem2.2; 5: ObtainthelowerboundεbyCorollary2.1; 6: Solvetherealrootsoftheresultantt(x)forthesetSx ={α1,α2,··· ,αu}; 7: SolvetherealrootsoftheresultantT(y)forthesetSy ={β1,β2,··· ,βv}; 8: MatchtherealrootpairtogetthesolvingsetS={(αi,βj),1≤i≤u,1≤ j≤v}byCorollary2.1; 9: ChecktherootmultiplicityofthesetSbyProposition2.2. Theorem3.1. Algorithm2workscorrectlyasspecifiedanditscomplexityincludesasfollows: (a) O(dτ + dlgd) for computation of real solving univariate polynomial, where d is the degree of corresponding polynomial,τ=1+max lg|a|anda isthecoefficients. i≤d i i (b)O(uv)formatchingthesolutionsofbivariatepolynomialsystem. Proof. Correctnessofthealgorithmfollowsfromtheorem2.2. (a)Thenumberofarithmeticoperationsrequiredto isolateallrealrootsisthe numberofrealrootisolationofuni- variatepolynomialbyusingsubdivision-basedDescartes’ruleofsign. Usingexactlythesameargumentswe know thattheyperformthesamenumberofsteps,thatisO(dτ+dlgd). (b) As indicated before, the problemof matching the realroots of polynomialsystem mainly relies on the scale of solutionsofeveryvariable,respectively. 3.2. Asmallexampleindetail Example3.1. Weproposeasimpleexample f(x,y)= x2−y2−3andg(x,y)=3x2−2y3−1toillustrateouralgorithms. Step1: t(x)=4∗x6−45∗x4+114∗x2−109; Step2: T(y)=(−2∗y3+8+3∗y2)2; Step3: DiscardtheextraneousfactorsT(y)=−3∗y2−8+2∗y3; Step4: ObtaintheparametersN =5,c=2,s=4; Step5: Obtainthelowerboundε=.1280×10−4; Step6: Solvetherealrootsoftheresultantt(x)forthesetS ={−2.858288520,2.858288520}; x Step7: SolvetherealrootsoftheresultantT(y)forthesetS ={2.273722337}; y Step8: CombinethethepairsfromS andS respectively,SubstitutethepairsintoΣforvariablesxandy, x y determinewhetherlessthanthelowerboundε,finallywefindthatthepairsS={{x=−2.858288520,y= 2.273722337},{x=2.858288520,y=2.273722337}}arethesolutionsforΣ; Step9: Themultiplicityoftherootofthesystemisone. 3.3. Generalizationandapplications Asforthegeneralizationofthealgorithmtorealsolvingthemultivariateequationsystemscase,wehavetosaythat thesituationiscompletelyanalogoustothebivariatecase. However,itskeytechniqueistotransformthemultivariate polynomialequations to the correspondingunivariate polynomialequations. We can consider the Dixon Resultant Method to break this problem [6]. However, we observe that how to improve the projection algorithm in resultant methodsisthesignificantchallenge. 6 Moreover,ouralgorithmisapplicableforrapidlycomputingtheminimumdistancebetweentwoobjectscollision detection[25]. Thisalso enablesusto improvethecomplexityofcomputingthe topologyof a realplanealgebraic curve[9]. 4. Somecomparisons WehaveimplementedtheabovealgorithmsasasoftwarepackagezmminMaple12. Forproblemsofsmallsize liketheexampleofSection3,anymethodcanobtainthesolutionsinlittletime. Butwhenthesizeoftheproblemsis notsmallthedifferencesappearclearly. Extensiveexperimentswiththispackageshowthatthisapproachisefficient andstable,especiallyforlargerandmorecomplexbivariatepolynomialsystems. We compareourmethodwithlgp[4],Isolate[23], discoverer[24], andgrur [9]. lgpisasoftwarepackagefor rootisolation of bivariatepolynomialsystemswith localgenericpositionmethod. Isolate is a toolto solve general equation systems based on the Realsolving c library by Rouillier. discoverer is a tool for solving semi-algebraic systems. grur is a tool to solve bivariate equation systems. The following examples run in the same platform of Maple12underWindowsandamdAthlon(tm)2.70ghz,2.00gbofmainmemory. Wedidthreesetsofexperiments. Theprecisionintheseexperimentsissettobehigh. Inthreetables,where’?’ representsthatthecomputationisnot finished. InTable1theresultsaregivenboth f andgarerandomlygenerateddensepolynomialswiththesamedegreeand withintegercoefficientsbetween−20and20.ThecommandofMapleisasfollows: randpoly([x,y],coeffs=rand(−20..20),dense,degree=10). Table1:timeforcomputingdensebivariatepolynomialswithnomultipleroots s n m o yste deg oluti AverageTime(sec) s s f g zmm lgp Isolate discoverer grur S1 4 7 2 0.031 0.031 0.047 0.313 2.734 S2 6 8 6 0.415 1.328 0.500 1.828 247.203 S3 7 8 6 1.204 2.734 1.500 7.047 382.640 S4 8 9 6 4.211 8.906 4.672 20.437 2714.438 S5 9 10 2 4.070 8.485 4.687 89.235 1645.312 S6 10 7 6 1.805 3.860 2.109 22.250 978.421 S7 10 11 4 21.078 43.734 22.828 ? ? S8 12 11 2 26.945 54.969 29.094 ? ? S9 12 13 4 118.266 241.734 123.469 ? ? S10 13 11 1 15.446 31.485 17.796 ? ? S11 14 10 8 63.914 200.828 68.594 ? ? InTable2theresultsaregivenboth f andgarerandomlygeneratedsparsepolynomialsinthesamedegree,with sparsitydefault,andwithintegercoefficientsbetween−20and20. ThecommandofMapleisasfollows: randpoly([x,y],coeffs=rand(−20..20),sparse,degree=10). 7 Table2:timeforcomputingsparsebivariatepolynomialswithnomultipleroots s n m o yste deg oluti AverageTime(sec) s s f g zmm lgp Isolate discoverer grur S1 5 6 1 0.015 0.032 0.015 0.141 1.032 S2 6 7 3 0.040 0.062 0.047 0.188 5.375 S3 7 5 3 0.024 0.047 0.047 0.265 2.688 S4 8 6 5 0.031 0.031 0.047 0.094 1.031 S5 9 8 2 0.047 0.172 0.078 1.828 51.000 S6 10 11 3 0.063 0.297 0.125 0.656 11.110 S7 11 9 2 0.164 0.609 0.375 3.938 877.875 S8 12 13 2 1.141 2.593 1.453 6.703 1607.719 S9 13 11 4 2.508 5.344 2.969 ? ? S10 15 17 1 0.532 1.234 1.266 ? ? S11 20 17 4 18.180 39.688 20.235 ? ? In Table 3 the results are given is done with polynomialsystems with multiple roots. We randomlygenerate a polynomialh(x,y,z)andtake f(x,y) = Res (h,h ),g(x,y) = f (x,y). Since f(x,y)istheprojectionofaspacecurve z z y tothe xy-plane,itmostprobablyhassingularpointsand f = g = 0isanequationsystemwith multipleroots. The commandofMapleisasfollows: h:=randpoly([x,y,z],coeffs=rand(−5..5),degree=5); f :=resultant(h,diff(h,z),z);g:=diff(f,y). Table3:timeforcomputingbivariatepolynomialswithmultipleroots s n m o yste deg oluti AverageTime(sec) s s f g zmm lgp Isolate discoverer grur S1 3 2 2 0.016 0.016 0.016 0.016 0.062 S2 4 3 2 0. 0.032 0.031 0.016 0.094 S3 4 6 7 0.024 0.016 0.047 0.109 1.109 S4 5 4 3 0. 0.016 0. 0.016 0.109 S5 6 5 2 0.015 0. 0. 0.016 0.063 S6 9 8 2 0.016 0.046 0.032 0.015 0.063 S7 12 11 3 0.109 0.234 0.187 0.063 0.094 S8 13 12 7 2.875 137.641 3.141 1.328 207.094 S9 14 13 4 0.860 2.891 0.953 0.141 0.3110 S10 19 18 1 0.672 1.547 0.797 22.156 1520.812 S11 16 15 5 7.945 27.047 9.000 ? ? FromtheTable1,2and3,wehavethefollowingobservations. Inthefirsttwocases, theequationsarerandomlygeneratedandhencemayhavenomultipleroots. Forsystems withoutmultipleroots,zmmisthefastestmethod,whichissignificantlyfasterthanlgpandIsolate. Bothzmmandlgp computetworesultantsandisolatetheirrealroots.lgpisslow,becausethepolynomialsobtainedbytheshearmapare usuallydenseandwithlargecoefficients[4]. discovererandgrurgenerallyworkforequationsystemswithdegrees nothigherthantenwithinreasonabletime. Forsystemswith multipleroots, in thesparse andlow degreecases, allmethodsarefast. Note thatourmethod 8 isquitestableforequationsystemswithandwithoutmultipleroots. lgpandIsolatearealsoquitestable,butslower thanzmmforbivariateequationsystems. We also observe that all methods spend more time with sparse and dense polynomials than polynomials with multiplerootsinthesamehighdegree.Thisphenomenonneedsfurtherexploration. Remark 4.1. Of course, we should mention that discoverer and Isolate can be used to solve general polynomial equationsandeveninequalities. Hereourcomparisonislimitedtothebivariatecase. Infurtherwork,wewouldlike toconsidersolvingmultivariatepolynomialequations. Remark4.2. Asiswellknown,theparallelalgorithmiswellsuitedfortheimplementationonparallelcomputersthat allowsthe increase ofthe calculationspeed. Ifouralgorithmhavebeenfully parallelizedby using a large enough numberof processors for each case, the real solutions of all the examples will have been computed in a couple of seconds. 5. Conclusion In this paper, we propose a zero-matching method to real solving bivariate polynomialequation systems. The basic idea of this method is to find the lower bound for bivariate polynomialsystem when the system is non-zero. Moreover, we provide an algorithm for discarding extraneous factors with resultant and show how to construct a parallelizedalgorithmforrealsolvingthebivariatepolynomialsystem. Anefficientmethodformultiplicitiesofthe rootsis alsoderived. Thecomplexityofourmethodhasincreasedsteadilywiththe growthofbivariatepolynomial system.Extensiveexperimentsshowthatourapproachisefficientandstable. Theresultofthispapercanbeextended to real solving of bivariate polynomial equations with more than two polynomials by using the resultant method. Furthermore,ourmethodcanbegeneralizedeasilytomultivariatepolynomialsystems. 6. Acknowledgement WewouldliketothankProf. XiaoshanGaoandDr. JinsanChengforprovidingtheMaplecodeoftheirmethod, availableat: http://www.mmrc.iss.ac.cn/∼xgao/software.html. ThefirstauthorisalsogratefultoDr. ShizhongZhaoforhisvaluablediscussionsaboutdiscardingtheextraneous factorsinresultant. [1] D.S.Arnon,G.Collins,S.McCallum,Cylindricalalgebraicdecomposition,II:anadjacencyalgorithmforplane,SIAMJ.onComput.,13(4), 878-889,1984. [2] H.Bekker, E.P.Braad, B.Goldengorin, UsingBipartite andMultidimensional MatchingtoSelect theRootsofaSystemofPolynomial Equations,ComputationalScienceandItsApplications,ICCSA2005,397-406,2005. [3] J.P.Boyd,ComputingrealrootsofapolynomialinChebyshevseriesformthroughsubdivisionwithlineartestingandcubicsolves,Applied MathematicsandComputation,174(2006)1642-1648. [4] J.S.Cheng,X.S.Gao,J.Li,RootIsolationforBivariatePolynomialSystemswithLocalGenericPositionMethod,MMResearchPreprints, 27(2008)122-136,Ins.ofSystemsScience,AcademiaSinica. [5] J.S.Cheng, X.S.Gao,C.K.Yap,Completenumericalisolationofrealzerosinzero-dimensional triangularsystems,in: Proc.Int.Symp. SymbolicAlgebraicComput.ISSAC2007,92-99,ACMPress,2007. [6] E.W.Chionh,M.Zhang,R.N.Goldman,FastComputationoftheBezoutandDixonResultantMatrices.J.Symb.Comput.,33(1): 13-29, 2002. [7] G.Collins,Quantifiereliminationforrealclosedfieldsbycylindricalalgebraicdecompostion,AutomataTheoryandFormalLanguages2nd GIConferenceKaiserslautern,134-183,1975. [8] D.A.Cox,J.Little,D.OShea,UsingAlgebraicGeometry,SecondEdition,Springer-VerlagBerlinHeidelberg,2005. [9] D.I.Diochnos,I.Z.Emiris,andE.P.Tsigaridas,Onthecomplexityofrealsolvingbivariatesystems,in:Proc.Int.Symp.SymbolicAlgebraic Comput.ISSAC2007,127-134,ACMPress,2007. [10] A.Eigenwillig, M.Kerber, N.Wolpert, Fastandexact geometric analysis ofreal algebraic plane curves, in: Proc. Int.Symp.Symbolic AlgebraicComput.ISSAC2007,151-158,ACMPress,2007. [11] I.Z.Emiris,andE.P.Tsigaridas,RealSolvingofBivariatePolynomialSystems,ComputerAlgebrainScientificComputing,150-161,2005. [12] I.Z.Emirisa,andE.P.Tsigaridasb,Realalgebraicnumbersandpolynomialsystemsofsmalldegree,TheoreticalComputerScience,409(2) 186-199,2008. [13] X.S.Gao,M.Li,Rationalquadraticapproximationtorealalgebraiccurves,ComputerAidedGeometricDesign,21(2004)805-828. [14] J.vonzurGathenandJ.Gerhard,ModernComputerAlgebra,CambridgeUniversityPress,Cambridge,1999. [15] L.Gonzalez-Vega,I.Necula,Efficienttopologydeterminationofimplicitlydenedalgebraicplanecurves,ComputerAidedGeometricDesign, 19(2002)719-743. 9 [16] H. Hong, M. Shan, Z. Zeng, Hybrid method for solving bivariate polynomial system, SRATC 2008, Shanghai, 2008. http://www.is.pku.edu.cn/∼xbc/SRATC2008/meijing.pdf. [17] M.Jirstrand,NonlinearControlSystemDesignbyQuantifierElimination,J.Symb.Comput.,24(2)137-152,1997. [18] K.H.Ko,T.Sakkalis,N.M.Patrikalakis,AreliablealgorithmforcomputingthetopologicaldegreeofamappinginR2.AppliedMathematics andComputation,196(2)666-678,2008. [19] D.Lazard,ThirtyyearsofPolynomialSystemSolving,andnow?J.Symb.Comput.,44(3)222-231,2009. [20] M.MignotteandM.Waldschmidt,Linearformsintwologarithmsandschneider’smethod.Math.Ann.,231(1978)241-267. [21] B.Mourrain, J-P.Pavone, Subdivision methods forsolvingpolynomial equations, Technical ReportRR-5658, INRIASophia-Antipolis, http://www.inria.fr/rrrt/rr-5658.html. [22] V.Y.Pan,ApproximatePolynomialGcds,Pade´Approximation,PolynomialZeros,andBipartiteGraphs.in: Proc.9thAnn.ACM-SIAM Symp.onDiscreteAlgorithms,68-77,ACMPress,NewYork,andSIAMPublications,Philadelphia,1998. [23] F.Rouillier,Solvingzero-dimensionalsystemsthroughtherationalunivariaterepresentation.JournalofApplicableAlgebrainEngineering, CommunicationandComputing,9(5)433-461,1999. [24] B.Xia,L.Yang,Analgorithmforisolatingtherealsolutionsofsemi-algebraicsystems,J.Symb.Comput.,34(2002)461-477. [25] L.Yang,Y.Feng,X.L.Qin,Anefficientapproachforcomputingdistancebetweentwoquadraticsurfaces,in:Proc.2009oftheInternational ConferenceonComputerScienceandInformationTechnology,ICCSIT2009,(2)244-248,2009. [26] L.Yang,J.Z.Zhang,X.R.Hou,NonlinearAlgbraicEquationSystemandAutomatedTheoremProving,ShanghaiScientificandTechnolog- icalEducationPublishingHouse,Shanghai,1996,95-100(inChinese). [27] S.Z.ZhaoandH.G.Fu,ThreekindsofextraneousfactorsinDixonresultants.ScienceinChinaSeriesA:Mathematics, 52(1)160-172, 2009. 10