ebook img

Palev Statistics and the Chronon PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Palev Statistics and the Chronon

PALEV STATISTICS AND THE CHRONON DavidRitzFinkelstein 2 1 0 2 n a J 8 Abstract A finite relativistic quantum space-time is constructed. Its unit cell has Palevstatistics definedbya spin representationof anorthogonalgroup.Whenthe ] StandardModelandgeneralrelativityarephysicallyregularizedbysuchspace-time h p quantization,theirgaugesarefixedbynature;thecellgroupsremain. - t n a u 1 Novus ordoseclorum q [ Thegoalisstillafinitephysicaltheorythatfitsourfinitephysicalexperiments.The 1 classical space-time continuumled to singular (divergent)quantum field theories: v Infinityin,infinityout.Inancienttimes,acontinuumwastheonlywaytounderstand 7 9 the translational and rotational invariance of Euclid’s geometry. Today there are 5 quantumspaceswithafinitenumberofquantumpointsthatstillhavethecontinuous 1 symmetriesofgravityandtheStandardModel,atleastwithinexperimentalerror.If . 1 electronspinwereanysimpleritwouldnotexist.Thestrategyisbuildthecosmos 0 fromsuchatoms. 2 Quantum spaces are represented by probability spaces that define the lowest- 1 order logic of their points. Modular architecture requires the higher-order logic, : v classically dealt with by set theory. Classical space-time and field theory are for- i mulated within classical set theory; perhaps quantum space-time and field theory X needaquantumsettheory.ClassicalsettheorywasinventedbyCantortorepresent r a themindoftheEternal.Quantumsettheoryisintendedtorepresentthesystemun- derstudyasquantumcomputer.Likeanyquantumtheoryitstatisticallyrepresents input/outtake(IO)beamsofsystemsbywhatHeisenbergcalledprobabilityvectors. Quantumlogicisasquarerootofclassicallogic:Transitionprobabilitiesinthe classicalsensearesquaresofcomponentsoftheprobabilityvector,transitionproba- bilityamplitudes.Callthequadraticspaceofprobabilityvectorsaprobabilityspace GeorgiaInstituteofTechnology,Atlanta,Georgia.e-mail:fi[email protected] 1 2 DavidRitzFinkelstein P. IngeneralP, like thequantumspace of Saller [11], includesbothinput(ket) andouttake(bra)vectors.Distinguishthesebythesignsoftheirnorms.P isnota Hilbertspace. Aquantumtheoryshoulddescribepopulationsaswellasindividuals.Enrichthe quadraticprobabilityspaceP toaprobabilityalgebraP whoseproductabrepre- sentssuccessiveapplicationofinput/outtake(IO)operators.Theone-systemproba- bilityvectorsformageneratingsubspaceP ⊂P.Pconsistsofpolynomialsover 1 P ,subjecttoconstraintsandidentificationssaidtodefinethestatistics. 1 A regular quantum theory is one with a finite-dimensional probability algebra [1]. TheprobabilityalgebraP− forfermionsisaCliffordalgebra,definedbyanti- commutationrelationsamongtheone-fermionvectors: ∀x∈P−: x2=kxk=x·x. (1) 1 ItsdimensionisDimP−=2DimP1,soFermistatisticsisregulariftheone-fermion probabilityspaceis. TheprobabilityalgebraP+forevenquantaiscommonlyassumedtobeaBose (Heisenberg,canonical)algebrawhosegeneratorsobey ∀x∈P : xy−yx=e (x,y) (2) 1 withagivenskew-symmetricbilinearforme onP ⊗P .Thisisnotexactlyright: 1 1 Bosestatisticsisalwayssingular.Pairsoffermions,however,obeyaregularstatis- tics whoseprobabilityalgebraenvelopsa Lie algebra,with Bose statistics andthe Heisenbergalgebraasasingularlimit.ThisisaspecialcaseofPalevstatistics[8,9], whichisreviewednext. 2 Palevstatistics ForanysemisimpleLiealgebrap,aPalevstatisticsofthepclassisonewhoseprob- abilityalgebraP isafinite-dimensionalenvelopingalgebraofp(haspascommu- tatorLiealgebra). FermiandBosestatisticshavegradedLiealgebrasf,bthatspecifytheircommu- tation relations. f and b as vectorspaces are also one-quantumprobabilityspaces. They have essentially unique irreducible unitary representations; these serve as many-quantum probability spaces. There are, however, an infinity of irreducible representationsofaPalevalgebrapthatmightserveasmany-quantumprobability space.EmpiricalchoicesmustbemadeforPalevstatisticsthatarealreadydecided forFermiandBosestatistics. Palevgivesarepresentationofsl(n+1)onaFockspaceW ofsymmetrictensors p ofdegreep.W isaHilbertspace,appropriateforhisapplicationsandnotforthese. p The probability space of a hypothetical quantum event must have enough di- mensionsto allow for the observedquantumsystems. Itis notclear that eventsin PALEVSTATISTICSANDTHECHRONON 3 space-timecan be experimentallylocated to within much less than a fermi, corre- spondingtoalocalizationintimeofabout10−25s.ThePlancklimitat10−43swas initially a conjecture based on pure quantumgravity. Our instruments, to be sure, donotseemtobemadeofgravitonsalone,buttakepartinalltheinteractions.The Plancktimeseemsatbestapoorlowerboundtothequantumoftime. Howevertheenergyatwhichalltherunningcouplingconstantsseemtoconverge is not very much greater than the Planck energy, so it may indeed have universal significance.Yetcrystalshavemanyscalesbesidescellsize,suchasDebyeshielding length,skindepth,coherencelength,andmeanfreepaths.ThePlancktimeandthe unification energy might correspond more closely to one of these than to the cell sizeX.Toavoidaprematurecommitment,callthenaturaltimeXthechrone. Howmanydimensionsmusttheeventprobabilityspacehave?Supposethelife- timeofthefour-dimensionaluniverseis1021s;anerrorbyafactorof100willnot mattermuch.IfX∼T ≈10−43 sthenthedimensionalityofthehistoryprobabil- P ity space of the cosmos—which we cannot observe maximally—is about 101024. The largest system that can be maximally observed by a co-system within such a cosmos—herewe renouncethe perspectiveof the Eternal—is much simpler. Its probabilityspacemighthavenomorethanlog 10256∼3000dimensions. 2 HerearetwoexamplesofPalevstatistics: 2.1 Rotatons Theso(3)LiealgebrawithcommutationrelationsrelationL×L=Ldefinesanag- gregateofpalevonsoftheso(3)kind,whosequantamustbecalledrotatons,since Landaupreemptedtheterm“roton”.RelativetoanarbitrarycomponentL asgen- 3 eratorofaCartansubalgebra,therootvectorsL =L ±iL representtheinputand ± 1 2 outtakeofspin-1rotatons.Anirreduciblerepresentationwithextremeeigenvalues ±il forL representsaPalevstatisticswithnomorethan2l+1rotatonspresentin 3 asingleaggregation. 2.2 Di-fermions Di-fermions are palevons. If the fermion probability space is 2NR then the di- fermionisapalevonoftypeso(N,N). This refers to the elementary fact that the Fermi commutation relations for a fermionwithNindependentprobabilityvectorsdefineaCliffordalgebraCliff(N,N), andthesecondgradeofCliff(N,N)isboththeprobabilityspaceforafermionpair, andtheLiealgebraspin(N,N)definingaPalevstatisticsofclassD . N 4 DavidRitzFinkelstein 2.3 Regular space-times Callaspacetimeregularifitscoordinatealgebraisregular.Allitscoordinatesthen havefinitespectra.Therearenotmanyregularspacetimesintheliterature. Singular(non-semisimple)Liealgebrascanberegularizedbyslightlychanging some vanishingcommutators,undoingthe flattening contractionthat led, presum- ably,fromtheregulartothesingular. Theprototypeofsuchregularizationbydecontractionis(special)relativization [13,6].ThisregularizestheGalileanLiealgebrag=g(L,K)ofEuclideanrotations LandGalileanboostsK,totheLorentzLiealgebraso(3,1).Writesuchrelationsas so(3,1)◦→ g or g←◦ so(3,1), (3) directedfromtheregularalgebratothesingular. The sole remaining culprit today is Bose statistics, the canonical Lie algebra. Its de-contraction requires adding new variables. This is the general case; special relativityandquantumtheorywereexceptionalinthisrespect. Somephysicalself-organizationmustthenfreezethese extravariablesoutnear thesingularlimit.Thiscanbetestedexperimentallyinprinciplebydisruptingthis organization.Hopefully,asuitableregularizationoftheremainingsingulartheories willonceagainimprovethefitwithexperiment. TheKillingformofclassicalobservablesisassingularascanbe:identically0. Itisnearlyregularizedbycanonicalquantization: a (x,p,i) ←◦ h(N), (4) comm wherethecanonical(Heisenberg)Liealgebrais h(N):[xn ,pn ′]=ih¯d nn ′, n ,n ′=1,...,N, (5) othercommutatorsvanishing.ThesolvableradicalCgeneratedbyisurvivescanon- icalquantization.Recallthathpdoesnotfitintoanysl(NR).(Theleft-handsidesof thecanonicalcommutationrelationswouldhavewell-definedtrace0,andtheright- hand side i would have non-zero trace.) Canonical quantization is a quantization interruptedbyprematurecanonization. 2.4 Feynman space-time Feynman[3]seemstohaveconstructedthefirstregularrelativisticquantumspace- timeF.Itspositionalcoordinatesarefinitespinsums: xm ←◦ xm =X[g m (1)+...+g m (N)], m =1,2,3,4. (6) b PALEVSTATISTICSANDTHECHRONON 5 Theg m haveunitmagnitudes,andXisthenaturalquantumunitoftime,orchrone.If thecommutators[g m ′(n′),g m (n)]vanishforn6=n′ thentheprobabilityvectorspace for F is a 16N-dimensionalCliffordalgebra.Quantificationtheory abbreviates(6 to xm =Xyg m y . (7) Each term in the sum represents a hypotheticalquantum elementof the space- b timeevent;callitachronon.TheFeynmanchrononhasspin0or1,becauseg m has bothascalarpartg 0 andavectorpart(g 1,g 2,g 3). Natureseemsto havea unitof space-timesize like X ateveryevent,fixingthe gaugeintheoriginalsenseofWeyl.Ifeacheventhasaspace-timemeasureX4,then the dimensionofthe one-eventprobabilityspace is proportionalto the space-time volume;asiftheeventstatisticsisextensiveinthesenseofHaldane[5,9]. 2.5 Yang space-time Yang [15] proposedthe first regularrelativistic space-time-momentum-energyLie algebra,leavingthesignaturesomewhatopen: y=(so(5,1)or so(3,3)) ◦→ hp(4). (8) y can represent the orbital variables of a spinless relativistic quantum. Yang re- stricted considerationto representationsin Hilbertspace, however,blockingregu- larity. Regularversionof the Yangtheory usesa finite-dimensionalrepresentation oftheYangLiealgebraso(3,3).Itsprobabilityalgebramustthenhaveanindefinite norm(§2.6). TheYangLiealgebrayisnottobeconfusedwiththeconformalso(3,3)Lieal- gebra.Theyareisomorphicbutactondifferentphysicalvariablesandhavedifferent physicaleffects.Wedealwithgroupsofphysicaloperations,notabstractgroups. 2.6 Interpretationoftheindefinitenorm InspecialrelativitythesignoftheMinkowskimetricformgdistinguishesallowed (timelike)directionsfromforbidden(space-like)ones. InarelativisticquantumtheoryoftheDirackind,theprobability-amplitudeform b isneutral(ofsignature0). bYY =Y b ◦Y (9) givesthemeanfluxofsystemsfromtheexperiment(nottheabsoluteflux).Thesign distinguishesinputprobabilityvectorsfromouttakeprobabilityvectors[2]. 6 DavidRitzFinkelstein Let source kets bras have positive norm and sink bras negative. This changes nophysicsin theusualquantumtheory,whichdoesnotaddbrasandkets. Hereit enlargesthegroupandmustbetestedbyexperiment. Aregulartheorymightassociateanelementaryparticlewithanirreduciblefinite- dimensionalisometricrepresentationofasimpleLiealgebraythatapproximatesthe Poincare´Liealgebra: y ◦→ hp. (10) Thenallone-particleobservableshavefinitespectra. Theconstantih¯ of the usualquantumphysicsis thenanothernon-zerovacuum expectationvalue,afrozenvariableliketheMinkowskimetricgm ′m andtheHiggs field. Centralizing a hypercomplex number by a condensation gives mass to any gauge boson that transports that number; this was shown for the quaternion case, for example. Such a frozen i must be assumed in the Yang and Segal space-time quantizations[15,13]basedontheLiealgebra y=so(3,3)∼=spin(3,3)∼=sl(4R). (11) Infinitesimalgeneratorsofso(3,3)∼=spin(3,3)∼=sl(4R)makeupatensor[Ly′y] (y,y′=1,...,6)with15independentcomponents,representingorbitalvariablesof theYangscalarquantum.ThisyisalsoacandidateforthescalarparticleLiealgebra y of (10).The Feynmanquantumspace-timeand the Penrose quantumspace [10] canberegardedasspinrepresentationsoftheYangLiealgebra. ı, the quantized i, is a normalized2×2 sector [Lz′z] (z,z′ =5,6) of [Ly′y] in an adaptedframe.Thetensor[Ly′y]thenbreaksupaccordingto b Lm ′m ixm ′ ipm ′ 4×44×2 [Ly′y]=ixm 0 L56 ∼(cid:20)2×42×2(cid:21), y,y′=1,...,6, (12) ipm L65 0   m whichincludestheLorentzgeneratorLm ′m asa4×4block,positionx andmomen- tum pm (m ,m ′=1,2,3,4)as4×1blocks,andLz′z (z,z′=1,2)asa2×2block. Posit a self-organization,akin to ferromagnetism,that causes the extra compo- nentL toassumeitsmaximummagnitudeinthevacuum.Smallfirst-orderdepar- 65 turesfromperfectorganizationofimakesecond-ordererrorsin|i|. 2.7 Locality OnemorelimitstandsbetweentheregularYangLiealgebrayandsingularcanon- icalfield theories.Thespecial-relativistic kinematicsandy have a canonicalsym- m m metrybetweenthex andp .Yettherearegreatphysicaldifferencesbetweenthese m variables. Under the composition of systems, pm is extensive and x is intensive. ThefundamentalgaugeinteractionsoftheStandardModelandgravityarelocalin PALEVSTATISTICSANDTHECHRONON 7 m x and not in pm ; unless asymptotic freedom can be regarded as a weak form of localityin pm . Thissuggeststhatthereisaricherclassofregularquantumstructuresthathave classicaldifferentialgeometryandgaugefieldtheoriesasorganizedsingularlimits, withatleastthreequantificationlevels:thechronon,theevent,andthefield. Wignerproposedthatan elementaryparticle correspondsto an irreducibleuni- tary representation of the Poincare´ group. Up-dates in this concept are called for byhislaterwork.TheWignerconceptofelementaryparticlegivesnoinformation aboutinteractionsbetweenparticles.Gaugetheoryrequiresanelementaryparticle to have a location in space-time where it interacts with a gaugeon. It would then seem useful to associate an elementary particle with an irreducible representation oftheHeisenberg-Poincare´Liealgebrahp(xm ,pm ,Lm ′m ,i)instead,whichfusesthe Poincare´ and the Heisenberg(canonical)Lie algebras.Thisis the Lie algebrathat Yangregularized. 2.8 Quantizationand quantification Quantificationand quantizationare related like archeologyand architecture.They concernsimilarstructures,butquantificationsynthesizesthemfromthebottomup, whichlikelytheorderofformation,whilequantizationanalyzesthemfromthetop down,theorderofdiscovery. Quantizationre-introducesaquantumconstantthattheclassicallimiteliminates. Quantificationdoesnotintroduceonebecausethequantumindividualalreadypro- videsit. In particular, space-time quantization introduces a new quantum entity, the chronon, carrying a time unit, the chrone X, and an energy unit, the erge E. The chrononisnoparticleintheusualsensebutaleastpartofthehistoryofaparticle. Canonicalquantizationcanalso beinterpretedasa quantificationwitha singu- larstatistics. Whatissometimescalled“secondquantization”ismoreaccuratelya secondquantification. 2.9 Gauge A gauge is an arbitrarily fixed movable standard used in measurements. It is part of the co-system, the complementof the system in the cosmos. As partof the co- system, a gauge is normally studied under low resolution and treated classically. A field theory may postulate a replica of the gauge at every event in space-time, formingan infinite field of infinitesimal gauges.Weyl’s originalgaugewas an in- finitesimalanalogueofacarpenter’sgaugeoramachinist’sgaugeblock,amovable standardoflength;hencethename. 8 DavidRitzFinkelstein Agaugetransformationchangesthegaugesbutfixthesystem.TheyformaLie group,thegaugegroup,whichindicatesthearbitrarinessofthegauges.tiscustom- ary to assume that the relevant dimensions of the gauge field are fixed during an experimental run, so that the experimental results can be compared meaningfully witheachother.Thismeansthatthegaugemustbestiff.Forexample,machinist’s gaugeblocksare oftenmadeof tungstencarbide.Suchrigidconstraintsbecomea sourceofinfinities. In a simple quantum theory, however, all variables have discrete spectra. All eigenvaluescanbedefinedbycountinginsteadofbymeasuring.Thereisnoneedfor arbitraryunits,externalgauges,orgaugegroup;Natureprovidesthegaugewithin thesystem.Thusagaugegroupisanothersignofinterruptedquantization. Onewell-knownwaytobreakagaugegroupisbyself-organization.Itisoften supposedthattheHiggsfield,whichbreaksanisospingroup,issuchacondensate. A gauge group is also broken, however, when further quantization discovers a natural quantum unit, fixing a gauge. The quantized i that breaks su(2) and im- partsmassinquaternionquantumgaugetheoryisofthatkind.Soisthequantized imaginaryıthat breaksYang so(3,3). The Higgsh thatbreaksisospin so(3), and thegravitonicgm ′m thatbreakssl(4R)∼=so(3,3)mayalsobesuchnaturalquantum gauges,tobberecoveredbyregularizingthekinemabticalLiealgebraoftheStandard Modelthroughbfurtherquantization. Notation:Theone-quantumtotalmomentum-energyvectoris, uptoaconstant, thedifferentiator[¶ m ],canonicallyconjugatetothespace-timepositionvector[xm ]. [¶ m ] reducesto agauge-invariantdifferentiator[Dm ], also canonicallyconjugateto xm ,relatedtokineticenergy,andavectorG m (x)thatcommuteswithposition,related topotentialenergy: ¶ m = Dm + G m . Total= Kinetic+Potential (13) Thegaugecommutatoralgebraa(xm ,Dm (x),Fm ′m ,...)isgeneratedbythespace- m timecoordinatesx andthekineticdifferentiatorDm (x),andincludesthefieldvari- ablesFm ′m =[Dm ′,Dm ]andtheirhighercovariantderivatives.Itsradicalincludesall m functionsofthex .Thismakesitsingulartoo. Gaugingsemi-quantizes.Itconvertsthecommutativeoperators¶ m intothenon- commutativeonesDm ,andforindividualquantatheseareobservables.Itscontrac- tionparameteristhecouplingconstant.Landauquantizationinamagneticfieldis ofthatkind. Gaugingalsoquantifies:Itconvertsonefinite-dimensionalglobalgaugegroupG intomanyisomorphsofG,oneateachspace-timepoint. Gauging introduces infinities because the number of gauges is assumed to be infinite.Thusquantumgaugephysicscanbe regularizedbyregularizingitsquasi- Liealgebras.Thiseliminatesgaugegroupsaswellastheorysingularities.Thiswill betakenupelsewhere. PALEVSTATISTICSANDTHECHRONON 9 3 Higher-order quantum settheory Classical set theory iterates the power-set functor to form the space of all “regu- lar”(ancestrallyfinite,hereditariliyfinite)sets.Aregularsettheorymighttherefore iteratetheFermiquantificationfunctor[4],asfollows. ThePeanoi,with {a,b,c,...}:={a}{b}{c}...=iaibic ..., (14) definesmembershipa∈b: a∈b :≡ ia⊂b (15) Let S designate the classical algebra of finite sets finitely generated from the emptyset1bybracingix={x}andthedisjointunionx∨y(agroupproductwith identity1,theemptyset).SetsofSareherecalledperfinite(elsewhere,ancestrally orhereditarilyfinite).Theyarefinite,andsoaretheirelements,andtheirelements, andsoforth,allthewaydowntotheemptyset.Let sbethesetoffinitesubsets ofs.Then W :S→S= S. (16) _ _ An elementof S is a set or simplex whose verticesmay be sets or simplices. S is supposedlycomplexenoughtorepresentanyfiniteclassicalstructure. AquantumanalogueSisakindoflinearizationofS: ForanyquadraticspaceS,let SdesignatetheCliffordalgebraoffinite-degree b polynomialsoverS,modulotheeFxclusionprinciple ∀s∈S:s⊔s=0. (17) S and ⊔ correspond to the classical power set and the symmetric union (XOR). FIf P1 is a one-fermionprobabilityspace then P =CliffP1 is the many-fermion probabilityalgebra. EachquantumsubclassofasystemisassociatedwithasubspaceC ⊂P inthe probabilityspaceofthesystem,andsowithaCliffordprobabilityvectoreC,atop vectoroftheCliffordalgebraCliffC ⊂CliffP. Thendefinei :P→CliffP asaCantorbrace,modulolinearity: ∀p∈P :i p:={p}, mod i(ax+by)≡aix+biy. (18) Take S (as a first trial) to be the least Clifford algebra that is its own Clifford algebra: b :S→ S=S. (19) G G CallthequantumstructureswithprobbabilityvbectobrsinSquantumsets.Thequantum setissupposedlycomplexenoughtorepresentanyfinitequantumstructure. b Table1arrangesbasicprobabilityvectors1 ofSbyrankrandserialnumbern. n b 10 DavidRitzFinkelstein Table1 Quantumandclassicalsets1 byrankrandserialnumbern n 6 1 11 11 111 11 111 111 1111 111 1111 1111 11111 ... ... ... ... hexp6 5 1 11 11 111 11 111 111 1111 111 1111 1111 11111 ... ... ... ... hexp5 4 1 11 11 111 11 111 111 1111 111 1111 1111 11111 ... 16 17 18 19 20 21 22 23 24 25 26 27 ... 3 1 11 11 111 11 111 111 1111 111 1111 1111 11111 4 5 6 7 8 9 10 11 12 13 14 15 2 1 11 2 3 1 1 1 0 1 0 r 1 n n 3.1 SpinstructureofS b Foreachrankr,S[r]isnaturallyaspinorspace: • D[r]=hexprbisitsdimension. • S[r−1]isitsCartansemivectorspace. • W[r−1]:=S[r−1]⊕DualS[r−1]isitsunderlyingquadraticspace. b • SO(D[r−1],D[r−1])isitsorthogonalgroup. b b • ThereisaneutralsymmetricPauliformb [r]:S[r]→DualS[r]forwhichthefirst gradeg w∈Cliff[r]arehermitiansymmetric. b b

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.