ebook img

Pairwise Multiple Comparisons: Theory and Computation PDF

107 Pages·2019·1.915 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Pairwise Multiple Comparisons: Theory and Computation

SPRINGER BRIEFS IN STATISTICS JSS RESEARCH SERIES IN STATISTICS Taka-aki Shiraishi Hiroshi Sugiura Shin-ichi Matsuda Pairwise Multiple Comparisons Theory and Computation SpringerBriefs in Statistics JSS Research Series in Statistics Editors-in-Chief Naoto Kunitomo, Graduate School of Economics, Meiji University, Bunkyo-ku, Tokyo, Japan Akimichi Takemura, The Center for Data Science Education and Research, Shiga University, Bunkyo-ku, Tokyo, Japan Series Editors Genshiro Kitagawa, Meiji Institute for Advanced Study of Mathematical Sciences, Nakano-ku, Tokyo, Japan Tomoyuki Higuchi, The Institute of Statistical Mathematics, Tachikawa, Tokyo, Japan Toshimitsu Hamasaki, Office of Biostatistics and Data Management, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan Shigeyuki Matsui, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan Manabu Iwasaki, School of Data Science, Yokohama City University, Yokohama, Tokyo, Japan Yasuhiro Omori, Graduate School of Economics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan Masafumi Akahira, Institute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki, Japan Takahiro Hoshino, Department of Economics, Keio University, Tokyo, Japan Masanobu Taniguchi, Department of Mathematical Sciences/School, Waseda University/Science & Engineering, Shinjuku-ku, Japan ThecurrentresearchofstatisticsinJapanhasexpandedinseveraldirectionsinline with recent trends in academic activities in the area of statistics and statistical sciences over the globe. The core of these research activities in statistics in Japan has been the Japan Statistical Society (JSS). This society, the oldest and largest academicorganization for statistics inJapan, was founded in1931by ahandful of pioneerstatisticiansandeconomistsandnowhasahistoryofabout80years.Many distinguished scholars have been members, including the influential statistician Hirotugu Akaike, who was a past president of JSS, and the notable mathematician Kiyosi Itô, who was an earlier member of the Institute of Statistical Mathematics (ISM), which has been a closely related organization since the establishment of ISM. The society has two academic journals: the Journal of the Japan Statistical Society (English Series) and the Journal of the Japan Statistical Society (Japanese Series). The membership of JSS consists of researchers, teachers, and professional statisticians in many different fields including mathematics, statistics, engineering, medical sciences, government statistics, economics, business, psychology, educa- tion, and many other natural, biological, and social sciences. The JSS Series of Statisticsaimstopublishrecent results ofcurrentresearchactivities intheareas of statistics and statistical sciences in Japan that otherwise would not be available in English; they are complementary to the two JSS academic journals, both English andJapanese.Becausethescopeofaresearchpaperinacademicjournalsinevitably hasbecomenarrowlyfocusedandcondensedinrecentyears,thisseriesisintended to fill the gap between academic research activities and the form of a single academic paper. The series will be of great interest to a wide audience of researchers, teachers, professional statisticians, and graduate students in many countrieswhoareinterestedinstatisticsandstatisticalsciences,instatisticaltheory, and in various areas of statistical applications. More information about this subseries at http://www.springer.com/series/13497 Taka-aki Shiraishi Hiroshi Sugiura (cid:129) (cid:129) Shin-ichi Matsuda Pairwise Multiple Comparisons Theory and Computation 123 Taka-aki Shiraishi Hiroshi Sugiura Faculty of Science andEngineering Faculty of Science andEngineering Nanzan University Nanzan University Nagoya,Aichi, Japan Nagoya,Aichi, Japan Shin-ichi Matsuda Faculty of Science andEngineering Nanzan University Nagoya,Aichi, Japan ISSN 2191-544X ISSN 2191-5458 (electronic) SpringerBriefs inStatistics ISSN 2364-0057 ISSN 2364-0065 (electronic) JSSResearch Series in Statistics ISBN978-981-15-0065-7 ISBN978-981-15-0066-4 (eBook) https://doi.org/10.1007/978-981-15-0066-4 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Analysis of variance methods are commonly used statistical procedures in multi-sample models. However,in the analysis of variance, since the homogeneity of means is tested and the confidence regions of the mean vector are given by an interiorofellipses,specificcomparisonsofmeansarenotdrawn.Multipletestsand simultaneous confidence intervals specify differences in means. Therefore, fields including medicine, pharmacy, biology, and psychology use multiple comparison proceduresfordataanalyses.Tukey(1953),Miller(1981),HochbergandTamhane (1987), Hsu (1996), and Bretz et al. (2010) are some technical books on multiple comparisons. The present book discusses progressive multiple comparisons. The detailed discussion of this monograph focuses on all-pairwise multiple comparisonsofmeansinmulti-samplemodels.Closedtestingproceduresbasedon maximum absolute values of some two-sample t-test statistics and based on F-test statisticsareintroducedinhomoscedasticmulti-samplemodels.Theresultssuggest that(i)multistepprocedures aremoreeffectivethan single-step procedures andthe Ryan–Einot–Gabriel–Welsch(REGW)testsand(ii)confidenceregionsinducedby multistepproceduresareequivalenttosimultaneous confidenceintervals.Next,we introduce the multistep test procedure superior to the single-step Games–Howell procedure in heteroscedastic multi-sample models. Under simple ordered restric- tions of means, we also discuss closed testing procedures based on maximum values of two-sample one-sided t-test statistics and based on Bartholomew’s statistics. Furthermore, we introduce distribution-free procedures. Simulation studies are performed under the null hypothesis and some alternative hypotheses. Although single-step multiple comparison procedures are utilized in general, the closed testing procedures stated in the present book are fairly more powerful than thesingle-stepprocedures.Inordertoexecutethemultiplecomparisonprocedures, the upper 100a percentiles of the complicated distributions are required. Classical integralformulassuchastheSimpson’sruleandtheGaussianrulehavebeenused for the calculation of the integral transform that appears in statistical calculations. However, these formulas are not effective for the complicated distribution. As a numericalcalculation,theauthorsintroducetheSincmethodwhichistheoptimum in terms of accuracy and computational cost. v vi Preface Shiraishi writes Chaps. 1–4 about multiple comparison procedures. These chapters are translated into English from Japanese of Shiraishi and Sugiura (2018, Kyoritsu Shuppan Co., Ltd.). We obtain the permission of Kyoritsu Shuppan Co., Ltd. and publish these chapters. Matsuda writes computer simulations for com- paring the simulated power of multiple comparison tests and statistical analysis of rawdatainChaps.5and6,respectively.SugiurawritesChap.7aboutcomputation ofdistributionfunctionsforstatisticsundersimpleorderrestrictions.Thischapteris translated into English from Japanese of Shiraishi and Sugiura (2015, J. Japan Statistical Society; Japanese Issue). We obtain the permission of Japan Statistical Society and publish Chap. 7. Shiraishi writes Chap. 8 as related topics. Nagoya, Japan Taka-aki Shiraishi June 2019 Hiroshi Sugiura Shin-ichi Matsuda Acknowledgements Theauthorsaregratefultotworefereesforvaluablecomments.Wewould like to thank Prof. Takemitsu Hasegawa of the University of Fukui for careful reading and criticisms of the manuscript of Chap. 7. He also made helpful suggestions on improving the presentationofChap.7.ThisresearchwassupportedinpartbyaGrant-in-AidforCo-operative Research(C)18K11204and19K11870fromtheJapaneseMinistryofEducation.Wewouldlike tothankEditage(www.editage.com)forEnglishlanguageediting. References BretzF,HothornT,WestfallP(2010)MultiplecomparisonsusingR.Chapman&Hall,London HochbergY,TamhaneAC(1987)Multiplecomparisonprocedures.Wiley,NewYork HsuJC(1996)Multiplecomparisons-theoryandmethods.Chapman&Hall,London MillerRG(1981)Simultaneousstatisticalinference,2ndedn.Springer,Berlin ShiraishiT,SugiuraH(2015)Theupper100aHthpercentilesofthedistributionsusedinmultiple comparisonproceduresunderasimpleorderrestriction.JJapanStatSoc.JapaneseIssue44, 271–314(inJapanese) Shiraishi T, Sugiura H (2018) Theory of multiple comparison procedures and its computation. Kyoritsu-ShuppanCo.,Ltd.(inJapanese) TukeyJW(1953)Theproblemofmultiplecomparisons.ThecollectedworksofJohnW.Tukey (1994),volumeVIII:multiplecomparisons.Chapman&Hall,London Contents 1 All-Pairwise Comparisons in Homoscedastic Multi-sample Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The Tukey–Kramer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Closed Testing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Multiple Comparisons in Heteroscedastic Multi-sample Models . . . . 13 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 The Games–Howell Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Closed Testing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4 Asymptotic Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 Multiple Comparison Procedures Under Simple Order Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2 Multiple Comparisons Under Equal Sample Sizes . . . . . . . . . . . . 24 3.3 Closed Testing Procedures Under Unequal Sample Sizes . . . . . . . 32 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Nonparametric Procedures Based on Rank Statistics . . . . . . . . . . . . 35 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 The Single-Step Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Closed Testing Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.4 Multiple Comparisons Under Simple Order Restrictions . . . . . . . . 40 4.4.1 Multiple Comparisons Under Equal Sample Sizes . . . . . . . 40 4.4.2 Multiple Comparisons Under Unequal Sample Sizes . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 vii viii Contents 5 Comparison of Simulated Power Among Multiple Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Simulation Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6 Application of Multiple Comparison Tests to Real Data. . . . . . . . . . 49 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 Critical Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.4 Application to Real Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7 Computation of Distribution Functions for Statistics Under Simple Order Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.1 Function Family G and Sinc Approximation . . . . . . . . . . . . . . . . 57 7.1.1 Function Family G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.1.2 Sinc Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 7.1.3 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 7.1.4 Error Analysis for Finite Sinc Approximation . . . . . . . . . . 69 7.1.5 DE Formula (Double Exponential Formula) . . . . . . . . . . . 71 7.2 Computation of Statistic Values of Hayter Type. . . . . . . . . . . . . . 73 7.2.1 Distribution Functions of Hayter Statistic and Their Nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7.2.2 Computation of the Distribution Functions and the Upper 100aH% Point. . . . . . . . . . . . . . . . . . . . . . 74 7.2.3 Numerical Computation of the Density Function gðsjmÞ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 Computation of Level Probability . . . . . . . . . . . . . . . . . . . . . . . . 82 7.3.1 Fundamental Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.3.2 Computation of the Table Q. . . . . . . . . . . . . . . . . . . . . . . 85 7.3.3 Computation of the Table P. . . . . . . . . . . . . . . . . . . . . . . 88 7.3.4 Computation of Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3.5 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 92 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8 Related Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8.1 Multiple Comparisons Under Simple Order Restrictions . . . . . . . . 95 8.2 Two-Way Layouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 8.3 Bernoulli Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 101 Chapter 1 All-Pairwise Comparisons in Homoscedastic Multi-sample Models Abstract We consider multiple comparison procedures among mean effects in homoscedastick-samplemodels.Weproposeclosedtestingproceduresbasedonthe maximumvaluesofsometwo-samplet-teststatisticsandbasedon F-teststatistics. Theresultsrevealthattheproposedproceduresaremorepowerfulthansingle-step proceduresandtheREGW(Ryan-Einot-Gabriel-Welsch)typetests. 1.1 Introduction Weconsiderhomoscedastick-samplemodelsundernormality.(X ,...,X )isa i1 ini randomsampleofsizen fromtheithnormalpopulationwithmeanμ andvariance i i σ2(i =1,...,k),thatis, P(X ≤ x)=(cid:3)((x −μ )/σ),where(cid:3)(x)isastandard ij i normal distribution function. Further, X ’s are assumed to be independent. Then ij (cid:2) unbiased estimators for μ , overall mean ν = k n μ /n, and σ2, respectively, aregivenbyμˆi = X¯i·,νˆ =i X¯··,and i=1 i i VE = 1 (cid:3)k (cid:3)ni (Xij −X¯i·)2, (1.1) m i=1 j=1 (cid:2) (cid:2) (cid:2) where X¯i· :=(1/ni) nji=1Xij, X¯·· :=(1/n) ik=1 nji=1Xij, (cid:3)k m :=n−k, andn := n . (1.2) i i=1 (cid:2) Theratio Ft := ik=1ni(X¯i·−X¯··)2/{(k−1)VE}isusedtotestthenullhypothesis ofnotreatmenteffects, H : μ =···=μ , (1.3) 0 1 k asfollows.WerejectH atlevelαifF > Fk−1(α),whereFk−1(α)denotestheupper 0 t m m 100α%pointofF-distributionwithdegreesoffreedom(k−1,m).Forspecifiedi,i(cid:3) suchthat1≤i <i(cid:3) ≤k,ifweareinterestedintesting ©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2019 1 T.-a.Shiraishietal.,PairwiseMultipleComparisons, JSSResearchSeriesinStatistics, https://doi.org/10.1007/978-981-15-0066-4_1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.