ebook img

Package 'caret' - The Comprehensive R Archive Network PDF

206 Pages·2016·0.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Package 'caret' - The Comprehensive R Archive Network

Package ‘caret’ October12,2022 Title ClassificationandRegressionTraining Version 6.0-93 Description Miscfunctionsfortrainingandplottingclassificationand regressionmodels. License GPL(>=2) URL https://github.com/topepo/caret/ BugReports https://github.com/topepo/caret/issues Depends ggplot2,lattice(>=0.20),R(>=3.2.0) Imports e1071,foreach,grDevices,methods,ModelMetrics(>=1.2.2.2), nlme,plyr,pROC,recipes(>=0.1.10),reshape2,stats,stats4, utils,withr(>=2.0.0) Suggests BradleyTerry2,covr,Cubist,dplyr,earth(>=2.2-3), ellipse,fastICA,gam(>=1.15),ipred,kernlab,klaR,knitr, MASS,Matrix,mda,mgcv,mlbench,MLmetrics,nnet,pamr,party (>=0.9-99992),pls,proxy,randomForest,RANN,rmarkdown, rpart,spls,subselect,superpc,testthat(>=0.9.1),themis (>=0.1.3) VignetteBuilder knitr Encoding UTF-8 RoxygenNote 7.2.0 NeedsCompilation yes Author MaxKuhn[aut,cre](<https://orcid.org/0000-0003-2402-136X>), JedWing[ctb], SteveWeston[ctb], AndreWilliams[ctb], ChrisKeefer[ctb], AllanEngelhardt[ctb], TonyCooper[ctb], ZacharyMayer[ctb], BrentonKenkel[ctb], RCoreTeam[ctb], 1 2 Rtopicsdocumented: MichaelBenesty[ctb], ReynaldLescarbeau[ctb], AndrewZiem[ctb], LucaScrucca[ctb], YuanTang[ctb], CanCandan[ctb], TylerHunt[ctb] Maintainer MaxKuhn<[email protected]> Repository CRAN Date/Publication 2022-08-0910:00:02UTC R topics documented: as.matrix.confusionMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 avNNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 bag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 bagEarth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 bagFDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 BloodBrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 BoxCoxTrans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 caretSBF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 classDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 confusionMatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 confusionMatrix.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 cox2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 createDataPartition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 defaultSummary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 densityplot.rfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 dhfr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 diff.resamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 dotPlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 dotplot.diff.resamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 downSample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 dummyVars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 extractPrediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 featurePlot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 filterVarImp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 findCorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 findLinearCombos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 format.bagEarth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 gafs.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 gafsControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 gafs_initial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 GermanCredit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 getSamplingInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Rtopicsdocumented: 3 ggplot.rfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 ggplot.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 histogram.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 icr.formula. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 index2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 knn3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 knnreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 learning_curve_dat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 lift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 maxDissim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 mdrr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 modelLookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 nearZeroVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 negPredValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 nullModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 oneSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 panel.lift2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 panel.needle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 pcaNNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 pickSizeBest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 plot.gafs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 plot.varImp.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 plotClassProbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 plotObsVsPred . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 plsda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 pottery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 prcomp.resamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 predict.bagEarth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 predict.gafs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 predict.knn3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 predict.knnreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 preProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 print.confusionMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 print.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 resampleHist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 resamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 resampleSummary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 rfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 rfeControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Sacramento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 safs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 safs_initial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 sbf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 sbfControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 scat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 4 as.matrix.confusionMatrix segmentationData . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 SLC14_1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 spatialSign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 summary.bagEarth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 tecator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 thresholder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 trainControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 train_model_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 update.safs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 update.train . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 varImp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 varImp.gafs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 var_seq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 xyplot.resamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 Index 219 as.matrix.confusionMatrix Confusionmatrixasatable Description ConversionfunctionsforclassconfusionMatrix Usage ## S3 method for class 'confusionMatrix' as.matrix(x, what = "xtabs", ...) Arguments x anobjectofclassconfusionMatrix what datatoconverttomatrix. Either"xtabs","overall"or"classes" ... notcurrentlyused Details Foras.table,thecross-tabulationsaresaved. Foras.matrix,thethreeobjecttypesaresavedin matrixformat. Value Amatrixortable Author(s) MaxKuhn avNNet 5 Examples ################### ## 2 class example lvs <- c("normal", "abnormal") truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs)) pred <- factor( c( rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))), levels = rev(lvs)) xtab <- table(pred, truth) results <- confusionMatrix(xtab) as.table(results) as.matrix(results) as.matrix(results, what = "overall") as.matrix(results, what = "classes") ################### ## 3 class example xtab <- confusionMatrix(iris$Species, sample(iris$Species)) as.matrix(xtab) avNNet NeuralNetworksUsingModelAveraging Description Aggregateseveralneuralnetworkmodels Usage avNNet(x, ...) ## S3 method for class 'formula' avNNet( formula, data, weights, ..., repeats = 5, bag = FALSE, allowParallel = TRUE, seeds = sample.int(1e+05, repeats), 6 avNNet subset, na.action, contrasts = NULL ) ## Default S3 method: avNNet( x, y, repeats = 5, bag = FALSE, allowParallel = TRUE, seeds = sample.int(1e+05, repeats), ... ) ## S3 method for class 'avNNet' print(x, ...) ## S3 method for class 'avNNet' predict(object, newdata, type = c("raw", "class", "prob"), ...) Arguments x matrixordataframeofxvaluesforexamples. ... argumentspassedtonnet formula Aformulaoftheformclass~x1+x2+... data Data frame from which variables specified in formula are preferentially to be taken. weights (case)weightsforeachexample-ifmissingdefaultsto1. repeats thenumberofneuralnetworkswithdifferentrandomnumberseeds bag alogicalforbaggingforeachrepeat allowParallel ifaparallelbackendisloadedandavailable,shouldthefunctionuseit? seeds random number seeds that can be set prior to bagging (if done) and network creation. Thishelpsmaintainreproducibilitywhenmodelsareruninparallel. subset Anindexvectorspecifyingthecasestobeusedinthetrainingsample. (NOTE: Ifgiven,thisargumentmustbenamed.) na.action AfunctiontospecifytheactiontobetakenifNAsarefound. Thedefaultaction isfortheproceduretofail. Analternativeisna.omit,whichleadstorejection of cases with missing values on any required variable. (NOTE: If given, this argumentmustbenamed.) contrasts alistofcontraststobeusedforsomeorallofthefactorsappearingasvariables inthemodelformula. y matrixordataframeoftargetvaluesforexamples. object anobjectofclassavNNetasreturnedbyavNNet. avNNet 7 newdata matrixordataframeoftestexamples. Avectorisconsideredtobearowvector comprisingasinglecase. type Typeofoutput,either: rawfortherawoutputs,codeforthepredictedclassor probfortheclassprobabilities. Details FollowingRipley(1996),thesameneuralnetworkmodelisfitusingdifferentrandomnumberseeds. Alltheresultingmodelsareusedforprediction. Forregression,theoutputfromeachnetworkare averaged.Forclassification,themodelscoresarefirstaveraged,thentranslatedtopredictedclasses. Baggingcanalsobeusedtocreatethemodels. Ifaparallelbackendisregistered,theforeachpackageisusedtotrainthenetworksinparallel. Value ForavNNet,anobjectof"avNNet"or"avNNet.formula". Itemsofinterestin#’theoutputare: model alistofthemodelsgeneratedfromnnet repeats anechoofthemodelinput names ifanypredictorshadonlyonedistinctvalue,thisisacharacterstringofthe#’ remainingcolumns. OtherwiseavalueofNULL Author(s) TheseareheavilybasedonthennetcodefromBrianRipley. References Ripley,B.D.(1996)PatternRecognitionandNeuralNetworks. Cambridge. SeeAlso nnet,preProcess Examples data(BloodBrain) ## Not run: modelFit <- avNNet(bbbDescr, logBBB, size = 5, linout = TRUE, trace = FALSE) modelFit predict(modelFit, bbbDescr) ## End(Not run) 8 bag bag AGeneralFrameworkForBagging Description bag provides a framework for bagging classification or regression models. The user can provide theirownfunctionsformodelbuilding, predictionandaggregationofpredictions(seeDetailsbe- low). Usage bag(x, ...) bagControl( fit = NULL, predict = NULL, aggregate = NULL, downSample = FALSE, oob = TRUE, allowParallel = TRUE ) ## Default S3 method: bag(x, y, B = 10, vars = ncol(x), bagControl = NULL, ...) ## S3 method for class 'bag' predict(object, newdata = NULL, ...) ## S3 method for class 'bag' print(x, ...) ## S3 method for class 'bag' summary(object, ...) ## S3 method for class 'summary.bag' print(x, digits = max(3, getOption("digits") - 3), ...) ldaBag plsBag nbBag ctreeBag svmBag bag 9 nnetBag Arguments x amatrixordataframeofpredictors ... argumentstopasstothemodelfunction fit a function that has arguments x, y and ... and produces a model object #’ that can later be used for prediction. Example functions are found in ldaBag, plsBag,#’nbBag,svmBagandnnetBag. predict a function that generates predictions for each sub-model. The function should have #’ arguments object and x. The output of the function can be any type of object (see the #’ example below where posterior probabilities are gener- ated. Example functions are found in ldaBag#’ , plsBag, nbBag, svmBag and nnetBag.) aggregate afunctionwithargumentsxandtype. Thefunctionthattakestheoutput#’of thepredictfunctionandreducesthebaggedpredictionstoasingleprediction per sample. #’ the type argument can be used to switch between predicting classesorclassprobabilitiesfor#’classificationmodels. Examplefunctionsare foundinldaBag,plsBag,nbBag,#’svmBagandnnetBag. downSample logical: forclassification,shouldthedatasetberandomlysampledsothateach #’classhasthesamenumberofsamplesasthesmallestclass? oob logical: shouldout-of-bagstatisticsbecomputedandthepredictionsretained? allowParallel aparallelbackendisloadedandavailable,shouldthefunctionuseit? y avectorofoutcomes B thenumberofbootstrapsamplestotrainover. vars aninteger. IfthisargumentisnotNULL,arandomsampleofsizevarsistaken ofthepredictorsineachbaggingiteration. IfNULL,allpredictorsareused. bagControl alistofoptions. object anobjectofclassbag. newdata amatrixordataframeofsamplesforprediction. Notethatthisargumentmust haveanon-nullvalue digits minimalnumberofsignificantdigits. Format Anobjectofclasslistoflength3. Anobjectofclasslistoflength3. Anobjectofclasslistoflength3. Anobjectofclasslistoflength3. Anobjectofclasslistoflength3. Anobjectofclasslistoflength3. 10 bag Details Thefunctionisbasicallyaframeworkwhereuserscanpluginanymodelintoassesstheeffectof bagging. ExamplesfunctionscanbefoundinldaBag,plsBag,nbBag,svmBagandnnetBag. Each haselementsfit,predandaggregate. Onenote: whenvarsisnotNULL,thesub-settingoccurspriortothefitand#’predictfunctions arecalled. Inthisway,theuserprobablydoesnotneedtoaccountforthe#’changeinpredictorsin theirfunctions. When using bag with train, classification models should use type="prob" #’ inside of the predictfunctionsothatpredict.train(object,newdata,type="prob")will#’work. Ifaparallelbackendisregistered,theforeachpackageisusedtotrainthemodelsinparallel. Value bagproducesanobjectofclassbagwithelements fits a list with two sub-objects: the fit object has the actual model fit for that #’ baggedsamplesandthevarsobjectiseitherNULLoravectorofintegerscorre- spondingtowhichpredictorsweresampledforthatmodel control amirroroftheargumentspassedintobagControl call thecall B thenumberofbaggingiterations dims thedimensionsofthetrainingset Author(s) MaxKuhn Examples ## A simple example of bagging conditional inference regression trees: data(BloodBrain) ## treebag <- bag(bbbDescr, logBBB, B = 10, ## bagControl = bagControl(fit = ctreeBag$fit, ## predict = ctreeBag$pred, ## aggregate = ctreeBag$aggregate)) ## An example of pooling posterior probabilities to generate class predictions data(mdrr) ## remove some zero variance predictors and linear dependencies mdrrDescr <- mdrrDescr[, -nearZeroVar(mdrrDescr)] mdrrDescr <- mdrrDescr[, -findCorrelation(cor(mdrrDescr), .95)] ## basicLDA <- train(mdrrDescr, mdrrClass, "lda")

Description:
Aug 5, 2013 net (>= 1.8),gpls, grid, hda, HDclassif, HiDimDA, Hmisc, ipred, kernlab,kknn, klaR , koho- nen, KRLS .. An alternative is na.omit, which leads to rejection of cases .. Kelly Blue Book resale data for 2005 model year GM cars.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.