ebook img

p-adic Banach Space Representations: With Applications to Principal Series PDF

219 Pages·2023·4.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview p-adic Banach Space Representations: With Applications to Principal Series

Lecture Notes in Mathematics 2325 Dubravka Ban p-adic Banach Space Representations With Applications to Principal Series Lecture Notes in Mathematics Volume 2325 Editors-in-Chief Jean-MichelMorel,CMLA,ENS,Cachan,France BernardTeissier,IMJ-PRG,Paris,France SeriesEditors KarinBaur,UniversityofLeeds,Leeds,UK MichelBrion,UGA,Grenoble,France AnnetteHuber,AlbertLudwigUniversity,Freiburg,Germany DavarKhoshnevisan,TheUniversityofUtah,SaltLakeCity,UT,USA IoannisKontoyiannis,UniversityofCambridge,Cambridge,UK AngelaKunoth,UniversityofCologne,Cologne,Germany ArianeMézard,IMJ-PRG,Paris,France MarkPodolskij,UniversityofLuxembourg,Esch-sur-Alzette,Luxembourg MarkPolicott,MathematicsInstitute,UniversityofWarwick,Coventry,UK SylviaSerfaty,NYUCourant,NewYork,NY,USA László Székelyhidi , Institute of Mathematics, Leipzig University, Leipzig, Germany GabrieleVezzosi,UniFI,Florence,Italy AnnaWienhard,RuprechtKarlUniversity,Heidelberg,Germany This series reports on new developments in all areas of mathematics and their applications-quickly,informallyandatahighlevel.Mathematicaltextsanalysing newdevelopmentsinmodellingandnumericalsimulationarewelcome.Thetypeof materialconsideredforpublicationincludes: 1.Researchmonographs 2.Lecturesonanewfieldorpresentationsofanewangleinaclassicalfield 3.Summerschoolsandintensivecoursesontopicsofcurrentresearch. Textswhichareoutofprintbutstillindemandmayalsobeconsiderediftheyfall withinthesecategories.Thetimelinessofamanuscriptissometimesmoreimportant thanitsform,whichmaybepreliminaryortentative. Titles from this series are indexed by Scopus, Web of Science, Mathematical Reviews,andzbMATH. Dubravka Ban p-adic Banach Space Representations With Applications to Principal Series DubravkaBan SchoolofMathematicalandStatistical Sciences SouthernIllinoisUniversity Carbondale,IL,USA ISSN0075-8434 ISSN1617-9692 (electronic) LectureNotesinMathematics ISBN978-3-031-22683-0 ISBN978-3-031-22684-7 (eBook) https://doi.org/10.1007/978-3-031-22684-7 MathematicsSubjectClassification:22E50,20G25,11F70,11F85,46S10 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2022 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewhole orpart ofthematerial isconcerned, specifically therights oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To thememoryof myparents, Anka andNebomir Preface ThisbookgrewoutofacoursetaughtinSpring2021atSouthernIllinoisUniversity. Its purposeis to lay the foundationsof the representationtheoryof p-adic groups onp-adicBanachspaces,explainthe dualitytheoryofSchneiderandTeitelbaum, anddemonstrateitsapplicationstocontinuousprincipalseries.Thismonographis intendedtoservebothasareferencebookandasanintroductorytextforstudents entering the area. In addition, it could be of interest to mathematicians who are working in the representation theory on complex vector spaces and would like to learnmoreaboutp-adicBanachspacerepresentations. The participants in the course were Devjani Basu, Jeremiah Roberts, Layla Sorkatti, Oneal Summers, An Tran, Manisha Varahagiri, and Menake Wijerathne. Theypreparedandpresentedlecturesbased onthe first draftof thebook.I would liketothankthemfortheirpatienceinnavigatingthroughahalf-finishedbookand fortheircorrectionsandcomments. Followingthe suggestionsof the threereferees, this monographincludesmany improvements,broadeningthescopeofexposition.Iwouldliketothankthereferees for their detailed reviews and invaluablecomments.Finally, I would like to thank BrianConrad,MatthiasStrauch,andMarie-FranceVignérasfortheircontributions tothefinalversionofthebook. Carterville,IL,USA DubravkaBan September2022 vii Contents 1 Introduction .................................................................. 1 1.1 AdmissibleBanachSpaceRepresentations........................... 2 1.2 PrincipalSeriesRepresentations....................................... 3 1.3 SomeQuestionsandFurtherReading................................. 5 1.4 Prerequisites............................................................ 6 1.5 Notation................................................................. 7 1.6 Groups .................................................................. 7 PartI BanachSpaceRepresentationsofp-adicLieGroups 2 IwasawaAlgebras............................................................ 11 2.1 ProjectiveLimits ....................................................... 11 2.1.1 UniversalPropertyofProjectiveLimits...................... 13 2.1.2 ProjectiveLimitTopology .................................... 15 2.2 ProjectiveLimitsofTopologicalGroupsandoK-Modules .......... 19 2.2.1 ProfiniteGroups............................................... 21 2.3 IwasawaRings.......................................................... 24 2.3.1 Linear-TopologicaloK-Modules.............................. 25 2.3.2 AnotherProjectiveLimitRealizationofoK[[G0]] .......... 30 2.3.3 SomePropertiesofIwasawaAlgebras ....................... 32 3 Distributions.................................................................. 35 3.1 LocallyConvexVectorSpaces......................................... 35 3.1.1 BanachSpaces................................................. 37 3.1.2 ContinuousLinearOperators ................................. 37 3.1.3 ExamplesofBanachSpaces .................................. 40 3.1.4 DoubleDualsofaBanachSpace............................. 41 3.2 Distributions............................................................ 43 3.2.1 TheWeakTopologyonDc(G0,oK) ......................... 43 3.2.2 DistributionsandIwasawaRings............................. 46 3.2.3 TheCanonicalPairing......................................... 50 ix x Contents 3.3 TheBounded-WeakTopology......................................... 50 3.3.1 TheBounded-WeakTopologyisStrictlyFinerthan theWeakTopology............................................ 53 3.4 LocallyConvexTopologyonK[[G ]]................................ 55 0 3.4.1 TheCanonicalPairing ........................................ 56 3.4.2 p-adicHaarMeasure .......................................... 57 3.4.3 TheRingStructureonDc(G ,K) ........................... 59 0 4 BanachSpaceRepresentations............................................. 63 4.1 p-adicLieGroups...................................................... 63 4.2 LinearOperatorsonBanachSpaces................................... 64 4.2.1 SphericallyCompleteSpaces................................. 64 4.2.2 SomeFundamentalTheoremsinFunctionalAnalysis....... 65 4.2.3 BanachSpaceRepresentations:Definitionand BasicProperties................................................ 68 4.3 Schneider-TeitelbaumDuality......................................... 73 4.3.1 Schikhof’sDuality............................................. 73 4.3.2 Duality for Banach Space Representations: IwasawaModules.............................................. 78 4.4 AdmissibleBanachSpaceRepresentations........................... 81 4.4.1 Locally AnalyticVectors:Representationsin Characteristicp................................................ 84 4.4.2 Dualityforp-adicLieGroups................................. 85 PartII PrincipalSeriesRepresentationsofReductiveGroups 5 ReductiveGroups............................................................ 91 5.1 LinearAlgebraicGroups............................................... 91 5.1.1 BasicPropertiesofLinearAlgebraicGroups................ 92 5.1.2 LieAlgebraofanAlgebraicGroup........................... 95 5.2 ReductiveGroupsOverAlgebraicallyClosedFields................. 96 5.2.1 RationalCharacters............................................ 97 5.2.2 RootsofaReductiveGroup................................... 98 5.2.3 ClassificationofIrreducibleRootSystems................... 103 5.2.4 ClassificationofReductiveGroups........................... 105 5.2.5 StructureofReductiveGroups................................ 107 5.3 F-ReductiveGroups ................................................... 109 5.4 Z-Groups................................................................ 111 5.4.1 AlgebraicR-Groups........................................... 112 5.4.2 SplitZ-Groups................................................. 113 5.5 TheStructureofG(L).................................................. 114 5.5.1 oL-PointsofAlgebraicZ-Groups............................. 114 5.5.2 oL-PointsofSplitZ-Groups .................................. 115 5.5.3 CosetRepresentativesforG/P ............................... 118 5.6 GeneralLinearGroups................................................. 119 Contents xi 6 AlgebraicandSmoothRepresentations................................... 123 6.1 AlgebraicRepresentations............................................. 123 6.1.1 DefinitionandBasicProperties............................... 124 6.1.2 ClassificationofSimpleModulesofReductiveGroups..... 124 6.2 SmoothRepresentations................................................ 132 6.2.1 AbsoluteValue................................................. 133 6.2.2 SmoothRepresentationsandCharacters ..................... 134 6.2.3 BasicProperties................................................ 135 6.2.4 Admissible-SmoothRepresentations......................... 137 6.2.5 SmoothPrincipalSeries....................................... 138 6.2.6 SmoothPrincipalSeriesofGL (L)andSL (L)............ 143 2 2 7 ContinuousPrincipalSeries ................................................ 147 7.1 ContinuousPrincipalSeriesAreBanach.............................. 148 7.1.1 DirectSumDecompositionofIndG0(χ−1) .................. 149 P0 0 7.1.2 UnitaryPrincipalSeries....................................... 153 7.1.3 AlgebraicandSmoothVectors................................ 154 7.1.4 UnitaryPrincipalSeriesofGL2(Qp) ........................ 155 7.2 DualsofPrincipalSeries............................................... 156 7.2.1 ModuleM(χ) .................................................. 156 0 7.3 ProjectiveLimitRealizationofM(χ).................................. 164 0 7.4 DirectSumDecompositionofM(χ)................................... 168 7.4.1 TheCaseG0 =GL2(Zp)..................................... 168 7.4.2 GeneralCase................................................... 169 8 IntertwiningOperators...................................................... 173 8.1 InvariantDistributions.................................................. 174 8.1.1 InvariantDistributionsonVectorGroups .................... 174 8.1.2 “PartiallyInvariant”DistributionsonUnipotentGroups.... 175 8.1.3 T -EquivariantDistributionsonUnipotentGroups.......... 177 0 8.2 IntertwiningAlgebra................................................... 181 8.2.1 OrdinaryRepresentationsofGL2(Qp)....................... 183 8.3 FiniteDimensionalG -InvariantSubspaces.......................... 184 0 8.3.1 InductionfromtheTrivialCharacter:Intertwiners .......... 185 8.4 ReducibilityofPrincipalSeries........................................ 186 8.4.1 LocallyAnalyticVectors...................................... 187 8.4.2 ACriterionforIrreducibility................................. 189 A NonarchimedeanFieldsandSpaces ....................................... 193 A.1 UltrametricSpaces ..................................................... 193 A.2 NonarchimedeanLocalFields......................................... 195 A.2.1 p-AdicNumbers............................................... 195 A.2.2 FiniteExtensionsofQp ....................................... 197 A.2.3 AlgebraicClosureQp ......................................... 199 A.3 NormedVectorSpaces................................................. 199

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.