ebook img

OXYGEN OPTODE ANALYSIS OF CORAL-ALGAL INTERACTIONS PDF

71 Pages·2013·3.67 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview OXYGEN OPTODE ANALYSIS OF CORAL-ALGAL INTERACTIONS

OXYGEN OPTODE ANALYSIS OF CORAL‐ALGAL INTERACTIONS ____________________ A Thesis Presented to the Faculty of San Diego State University ____________________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology with a Concentration in Molecular Biology ____________________ by Allison Kathleen Gregg Fall 2013 iii Copyright © 2013 by Allison Kathleen Gregg All Rights Reserved iv DEDICATION This thesis is dedicated to my parents, Karin and Roy, whose unwavering support is why I was able to accomplish this. And to my Dad, Chris, who passed down to me a love of the ocean I never realized I had. v We shall not cease from exploration, and the end of all our exploring will be to arrive where we started and know the place for the first time. ‐‐ T.S. Eliot Little Gidding vi ABSTRACT OF THE THESIS Oxygen Optode Analysis of Coral‐Algal Interactions by Allison Kathleen Gregg Master of Science in Biology with a Concentration in Molecular Biology San Diego State University, 2013 Coral reefs contain a diverse consortium of benthic macro‐organisms including scleractinian corals, fleshy algae, calcifying algae, and their associated microbiotas. These organisms are in a constant battle, competing for space and resources. Over the last 50 years, fleshy algae have increasingly been shown to outcompete corals; however, the mechanisms are not completely known. Algal‐derived dissolved organic matter (DOM) can induce mortality of reef building corals. One proposed killing mechanism is a zone of hypoxia created by rapidly growing microbes. To investigate this hypothesis, oxygen optodes were used to investigate dissolved oxygen concentrations at coral‐algal interfaces, as well as how the biological oxygen demand (BOD) of coral‐associated microbial communities are affected by algal DOM. Oxygen optodes were visualized with a novel, low‐cost Submersible Oxygen Optode Recorder (SOOpR) system, which is capable of accurately measuring oxygen concentrations in the lab or in situ. The BOD studies examined the effects of two types of algal organic matter; turf algae, shown to be detrimental to corals, and crustose coralline algae (CCA), which have been shown to be beneficial. This investigation of oxygen dynamics of coral‐algal interactions shows that algae can create complex oxygen dynamics that change with flow, and when in close contact with coral, the interface becomes hypoxic. When microbial communities from coral are exposed to turf algal exudate and CCA exudate, exudates from turf algae elicit the greatest BOD. Together, the results of these studies show that coral‐algal interaction zones can be hypoxic, and this is due in some part to microbial activity. vii TABLE OF CONTENTS PAGE ABSTRACT ........................................................................................................................................................... vi LIST OF FIGURES ................................................................................................................................................ x CHAPTER 1 INTRODUCTION .................................................................................................................................. 1 1.1 Microbes and DOC— Quantity or Quality? ............................................................... 1 1.2 Microbially‐Mediated Hypoxia— The DDAM Model ............................................ 2 1.3 Using Planar Optodes to Study Coral Reefs .............................................................. 3 2 VISUALIZATION OF OXYGEN AT CORAL‐ALGAL INTERFACE ........................................ 5 2.1 Introduction ........................................................................................................................... 5 2.2 Materials and Methods ...................................................................................................... 6 2.2.1 Experimental Design ............................................................................................... 6 2.2.2 Planar Optode Images ............................................................................................. 7 2.2.3 Preparation of Optodes .......................................................................................... 9 2.2.4 Image Analysis ........................................................................................................... 9 2.3 Results and Discussion .................................................................................................... 10 2.4 Conclusions .......................................................................................................................... 15 2.5 Acknowledgements ........................................................................................................... 16 3 BIOLOGICAL OXYGEN DEMAND OF CORAL‐ASSOCIATED MICROBES ..................... 17 3.1 Introduction ......................................................................................................................... 17 3.2 Materials and Methods .................................................................................................... 18 3.2.1 Lighting and Camera System ............................................................................. 18 3.2.2 Construction of BOD Optode Plates ................................................................ 19 3.2.3 Calibration of Optodes .......................................................................................... 19 3.3 Experiment 1‐ Algal Exudate Studies ........................................................................ 19 3.4 Experiment 2‐ Single Strain Studies .......................................................................... 22 3.5 Experiment 3‐ Different Organism‐Associated Bacteria Assemblage Study .............................................................................................................. 23 viii 3.5.1 Sequencing of M. Annularis Isolates ............................................................... 23 3.5.2 Image Analysis ......................................................................................................... 24 3.5.3 Statistical Analyses ................................................................................................ 24 3.6 Results and Discussion .................................................................................................... 25 3.6.1 Validation of Camera System ............................................................................. 25 3.6.2 Bacterial Isolates Respond Differently to Turf Algal Exudate ............. 25 3.6.3 Bacterial Communities Cultured from Coral, Turf Algae, and CCA Respond Similarly to Turf Algal Exudate ............................................ 26 3.6.4 Turf Algae Elicit the Greatest Oxygen Drawdown by Coral‐ Associated Bacteria ................................................................................................ 26 3.6.5 Caveats ........................................................................................................................ 31 3.7 Conclusions .......................................................................................................................... 32 3.8 Acknowledgements ........................................................................................................... 33 4 OXYGEN OPTODES FOR IN SITU APPLICATION .................................................................. 34 4.1 Introduction ......................................................................................................................... 34 4.2 Materials and Methods .................................................................................................... 34 4.2.1 Preparation of Optode Strips and Contour Gauge .................................... 35 4.2.2 Lighting and Camera Settings ............................................................................ 36 4.2.3 Image Analysis ......................................................................................................... 37 4.2.4 Calibration of Optodes .......................................................................................... 37 4.3 Results and Discussion .................................................................................................... 38 4.4 Conclusions .......................................................................................................................... 38 5 CONCLUSIONS AND FUTURE DIRECTIONS .......................................................................... 42 5.1 Recommendations for Future Directions ................................................................ 43 5.2 Conclusion............................................................................................................................. 44 ACKNOWLEDGEMENTS ............................................................................................................................... 46 REFERENCES ..................................................................................................................................................... 49 APPENDICES A SCRIPTS ................................................................................................................................................ 56 B SUPPLEMENTARY DATA ............................................................................................................... 60 ix LIST OF FIGURES PAGE Figure 2.1. Experimental setup. .................................................................................................................. 8 Figure 2.2. Oxygen patterns over coral and algae during light and dark. ............................... 11 Figure 2.3. Algae generated oxygen patterns under flow conditions. ...................................... 13 Figure 2.4. Oxygen patterns generated by coral algae interaction. ........................................... 14 Figure 3.1. Schematic of the SOOpR system. ....................................................................................... 20 Figure 3.2. Dissolved oxygen drawdown by four single bacterial strains isolated from M. annularis and exposed to turf exudate. .................................................................. 21 Figure 3.3. Dissolved oxygen drawdown by bacterial communities cultured from turf, coral and CCA. .......................................................................................................................... 27 Figure 3.4. Experimental biological oxygen demand (BOD) plates. .......................................... 28 Figure 3.5. Dissolved oxygen drawdown by coral‐associated bacteria when exposed to different algal exudate treatments. ................................................................... 29 Figure 4.1. In situ oxygen optode strips. ............................................................................................... 35 Figure 4.2. In situ oxygen patterns generated above algal bed. .................................................. 39 Figure 4.3. In situ oxygen patterns generated around coral‐algal interface. ......................... 40 Figure A.1. Matlab script. ............................................................................................................................. 57 Figure A.2. Ultra intervalometer CHDK script. ................................................................................... 58 Figure B.1. Example of optode calibration curve. ............................................................................. 61 Figure B.2. Spectrum of oxygen optode excited by lighting system. ......................................... 62 1 CHAPTER 1 INTRODUCTION Coral reefs are home to a rich diversity of life forms, from microscopic bacteria to Goliath groupers and sharks. The reef structure itself is made up of calcifying organisms such as Scleractinian corals and crustose coralline algae (CCA), as well as sponges, fleshy macroalgae, and turf algal mats. These organisms are in a constant battle competing for resources and space, with the outcome of these battles shaping the benthos (Lang and Chornesky 1990, Tanner 1995, McCook et al. 2001, Chadwick and Morrow 2011, Barott and Rohwer 2012). When anthropogenic impacts such as overfishing and eutrophication increase, fleshy algae gain a competitive advantage over calcifying organisms (Lirman 2001, Littler et al. 2006, Barott et al. 2012). These stressors are associated with coral‐ algal phase shifts worldwide (McClanahan et al. 2002, Dulvy et al. 2004, Sandin et al. 2008, Vermeij et al. 2010), whereby abundances of fleshy macro‐ and turf algae increase and subsequently lead to coral mortality (Done 1992, Harvell et al. 1999, Pandolfi et al. 2003, Harvell et al. 2007, Hughes et al. 2007). 1.1 MICROBES AND DOC— QUANTITY OR QUALITY? Algal‐dominated reefs are associated with elevated microbial abundances (Dinsdale et al. 2008, Bruce et al. 2012) and greater microbial energy usage (McDole et al. 2012). Increased microbial growth on algal‐dominated reefs have been attributed to higher release rates of bioavailable dissolved organic carbon (DOC) by fleshy algae compared to calcifying reef organisms such as coral and CCA, as this algal‐ derived DOC promotes microbial growth and respiration (Wild et al. 2010, Haas et al. 2011, Nelson et al. 2013). Further, experimental additions of bioavailable DOC (e.g., glucose, algal exudates) resulted in increased microbial growth followed by coral mortality (Kline et al. 2006). These effects were prevented by the addition of antibiotics (Smith et al. 2006), suggesting microbially mediated mechanisms are involved.

Description:
Oxygen Optode Analysis of Coral‐Algal Interactions by turf algae, shown to be detrimental to corals, and crustose coralline algae .. Matlab script.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.