ebook img

Overview talk : The growth of BHs and the fueling of AGN PDF

23 Pages·2015·14.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Overview talk : The growth of BHs and the fueling of AGN

Growth  of  Black  Holes  &  Fueling  of  AGN     Ayçin Aykutalp TCAN Meeting, 3 March 2015, Atlanta Journey  to  the  Unknown   Ayçin Aykutalp TCAN Meeting, 3 March 2015, Atlanta How Do Black Holes Grow? Accretion of Gas Via Mergers Tidal  Capture  of  Stars   Efficiency of these channels depends on:   §  black hole seed masses and cosmic time §  occurrence of merger events Large dyn. range §  properties of the central region and of the host galaxy 10 kpc - <0.01 pc §  larger scale environment of the host dark matter halo §  stellar and black hole feedback processes Observations of High-z Quasars 4-8 orders of magnitude in mass in only ~700 Myr!!!   ULAS J1120+0641, Mortlock et al. 11 SDSS J010013.02+280225.8, Wu et al. 15 Seed BH M =102-106 M M = 2 x 109 M M = 1.2 x 1010 M BH ¤ BH ¤ BH ¤ z = 20-15 z = 7.085 z = 6.3   4 Eddington Luminosity & Accretion Eddington Luminosity Salpeter Time σ c GMm Lσ t   T =   p T Sal =   4πcGm r2 4πr2c p t = 45 (ε /0.1) (L/L ) Myr Sal r Edd 4πcGMm L   p =   Edd σ T L = 1.26×1038 (M/M ) erg/s Edd ¤ Eddington Limited Accretion .   4πGM m M   BH p =   Edd ε σ c   .   r T M = 2.26 (M/M )(ε /0.1) M /yr In order to grow 1010 M SMBH by z=6.3, Edd ¤ r ¤ ! assuming Edd. Accretion, the seed BH should be at least 104 M @ z=20 !!! ! Angular Momentum Problem How cosmic gas from large scales fall into accretion disks and feed BHs? Angular momentum acts as an ‘accretion barrier’: Gas parcel starts out at ~10 kpc needs to lose ~99.9% of its angular momentum, without forming stars!   For  rapid  BH  growth,  an  efficient  mechanism  is  needed  to  transport  angular   momentum. Angular Momentum Transport Mechanisms Major  Galaxy  Mergers:  gravitaDonal  Ddal  forces  during  mergers  can  efficiently  extract   angular  momentum  from  gas  and  drive  it  towards  the  center     Internal  Disk  Instabili=es:  e.g.  “bars-­‐within-­‐bars”,  t =  T /|W|>0.14-­‐0.26  (Shlosman   crit rot et  al.  ‘89)     Hydrodynamical  Turbulence:  e.g.  “supernovae”,  convergent  turbulent  flows  create   dens  filaments  which  is  not  affected  by  the  hydro.  drag     MHD  Turbulence:  at  small  scales  ??? letters to nature observations point to the existence of strong outflows in bright interval of time, the object would be a bright quasar with a specific quasars18–20.Inthispicture,blackholeaccretionisexpectedtohave lifetime. a crucial effect on the evolution of the host galaxy. However, the Differences persist as the remnants settle into a relaxed state couplingofstarformationwithblackholegrowthinthecontextof (fourthpairof images inFig.1,t 2.5Gyr).Theremnantwithout ¼ galaxy evolution is difficult to treat on the basis of analytical blackholes(bottomimage)retainsalargeamountofdensecoldgas, estimates alone. yielding prolonged star formation at a steady rate. However, in the Wehave,therefore,performeddetailednumericalsimulationsof simulationwithsupermassiveblackholes(topimage),nearlyallthe galaxy mergers thatinclude radiativecooling, starformation, black gasisexpelledfromthecentre,quenchingstarformationandblack hole growth, energetic feedback from supernovae and accretion hole accretion itself. Consequently, the black hole mass saturates, onto black holes, as well as the gravitational dynamics of gas, stars quasar activity stops, and star formation is inhibited, so that the and dark matter (see Supplementary Information and further remnantresemblesa‘dead’ellipticalgalaxywhosestellarpopulation details in ref. 21). As described in the Supplementary Information, quickly reddens24. In the particular example we show, the remnant we include a novel treatment of gas accretion onto supermassive ofthismajormergerisanellipticalgalaxy.Inthehierarchicalmodel black holes and its associated feedback in the centres of merging of galaxy formation, a new disk can grow around this spheroid, lettegraslatxoiens.aWtueredescribe black holes using collisionless ‘sink’ particles turning it into the bulge component of a spiral galaxy. Invery gas- ........t.h..a..t..c..a..n...g..r..o..w...i..n...m...a..s..s..b..y...a..c..c.r..e..t.i.n. ggasfromtheirsurroundings.The rich mergers, a disk component may even survive directly25 (an haveremainedunclear.Herewereportsimulationsthatsimul- Eneragcycrinetpiuotnfrroamteqisuaessatirmsaretegdulbaytesrelatatnienougslytfohlleowsstmarafolrml-asticonaalned,thuengrrowetshoolfvbeladckholesexample of this is shown in the Supplementary Figure). We there- during galaxy–galaxy collisions. We find that, in addition to thegflroowwtahroaundndacthtievibtylaocfkbhlaoclekthootlehselagrengeera-tisncgaalebu,rrsteosfosltavrefdormgaatisonp10r,oapmeerrgetrielesads toforeexpectblackholesinbulgesofspiralgalaxiestobeassembledin stronginflowsthatfeedgastothesupermassiveblackholeand anduthseinirghaosstphgaerlaicxaielsBondi–Hoyle22 mtheoredbyeplo.wWertehefquuarsatrh.Tehreeanesrsguyrmeleaesedthbyattheaquasaramannersimilartothoseinellipticals.Ourresultsshouldalsoapply small fraction, f, of the radiateedxpellsuenmougihngoasstiotqyuencchobuotphlsetasrfotrmhaetiornmanod-furtherfor cases involving minor mergers. TizianaDiMatteo1*,VolkerSpringel1&LarsHernquist2 blackholegrowth.Thisdeterminesthelifetimeofthequasar dynamically to the surrounding gphaasse.(aTpphroiaschi‘nfge1e00dmbillaiocnkyeaersn)aendrgexypl’aingsithveereslation- Theevolutionofstarformationrate,blackholeaccretionrateand 81M57a4x0-PGlaaarnccnhki-nIgnesbteiftiufMtefu¨u¨cnrcAthesitnrv,oGpeherymsfikae,nKeyadrl-Sbchawacrzkschield-nStreasrseg1,y heatinsdhigsipperrbaseiottwne.eeEn_the blackfLhole mfashsMa_ndc2th,ewstehllaerrveelocityblack hole mass for mergers when the progenitor galaxy mass is 2AstronomyDepartment,HarvardUniversity,60GardenStreet,Cambridge, Alargefractiofeneodfth¼eblackh¼olemassingalaxiestodayisthought Massachuwsettes02fi138x,UStAhe radiative efficiency, h, ttoohav0e.b1ee,natshsemebltedydpuiricngatlhevpaealkuoefqudasearraicvtiveitdyinthevaried (including the model shown in Fig. 1) are shown in Fig. 2. earlyUniverse11,12,whenlargeamountsofmatterwereavailablefor *Presentadfdrresso:DempartmenStofhPhyasicks,Cuarnergiae-M–elloSnUunivnersiyty,a500e0Fvorb2es3Avenauec,Picttsbruerght,ion models onto a non-rotating Modelswithdifferent massqualitatively reproducethekey features Pennsylvania15213,USA accretion onto central black holes. Interactions and mergers ....................b......l...a.....c.....k.........h......o.......l...e...........(.....H.........e.....r....e........c.......i...s.......t....h......e........v.....e.....l...o......c.....i...t....y.. obfetwliegenhgta,laxLies arehkMno_wcn2toistritghgerelaargcec-srcaeletinoucnlear gasof the evolution shown in Fig. 1: the star formation and black hole IntheearlyUniverse,whilegalaxieswerestillforming,black inflows13,14, which are required for the growth of central black holes alsummassiivneoassaitbyil,lioannsodlarMm_asisess tpohweeremd qauasssarsa.cchorleestbiyoanccrertiaon¼t.eA)ls.o,Whierearcfhuicarltmhodeerlsoafsgaslauxymfoermationaccretion rates are both quenched in the remnant, and black hole Supermassive black holes are found at the centres of most implythatmergersofgalaxiesformellipticalorspheroidalcom- galaxiesthtodaaty1–3f,where0t.h0ei5rm,asssoesatrehraeltate,dto0th.5ev%elociotyf tpohneeMntsaicncgraelaxtieeasd, byrdeesjsttroyomingasstesllarrednisek srganyMd triisggeringgreowthrsatguratees owirng sto feedback provided by accretion energy. dispersionsofstars¼intheirhostgalaxiesandhencetothemassof nuclearstarbursts. thecentaravlbauillgaeobftlheegtaolaxyh4,5e.Tahtistsuhggeestgsaalsin.kbetweenthe ThishasledtosuggestionsthattheMBH–jrelation(whereMBHHowever, the damping of star formation and black hole activity is growthoftheblackholesandtheirhostgalaxies6–9,whichhas istheblackholemass,andjisthevelocitydispersionofstarsinthe indeedbeenTasosumieldluforsatrnuamtbeertohfyeearse.Bfufettchetoroigfinocfethnetrbaullg,e osfugpalaexiresm) caousldsiavrisee inblgaalacxky mherogerlse,sproovidned that observedrelationbetweenblackholemassandstellarvelocity strong outflows are produced in response to major phases of mergersoftwodiskgalaxies,wecomparethegasevolutionbetween dispersion,anditsconnectionwiththeevolutionofgalaxies, accretion,capableofhaltingfurtherblackholegrowth8,15–17.Indeed, two simulations involving galaxies that are roughly the size of the Milky Way (Fig. 1). Star formation and supernova feedback are includedinbothsimulations,butweaddourblackholegrowthand feedback model in one (top four panels of Fig. 1; see also Sup- plementaryVideo)andneglectitintheother(bottomfourpanels). Thefirstpairofimages(attimet 1.1Gyr)showsthegalaxiessoon ¼ after their first encounter, when strong gravitational forces have spawned extended tidal tails. At this time, the black holes in the Di Matteo et al ‘05 centres of each galaxy (top panel) have already grown significantly from their initial masses and are accreting at a moderate level. However,theoverall starformation rate isessentially unaffected by thepresenceoftheblackholes,asindicatedbyFig.2,whichplotsthe starformationrate(inbothcases),theblackholeaccretionrateand black hole mass (for the top panels of Fig. 1) as a function of time. The second snapshot (t 1.4Gyr) in Fig. 1 shows the galaxies Figure1Snapshotsofthesimulatedtimeevolutionofmergersoftwogalaxieswithand particle-hydrodynamicsimulationcode.Thefirstsnapshot(t 1.1Gyr)showsthe ¼ ¼ withoutblawckhholees.nThetfuhllteimyesebqueengceifonrthitsosimuclaotionaclanebsecvieewe.dHintheere,styhstemesatftiedrthaefilrsitnpastsaegeroafthcettwiooganlaxiehs.aThsesedcoindsstnoapsrhotte(td1.4Gyr) ¼ SupplementaryVideo.Topandbottompanelsshowrespectivelythemodelswithand depictsthegalaxiesdistortedbytheirmutualtidalinteraction,justbeforetheymerge.The withouAtthetihn clmuesiondoafbilasjckkohsolers(iB nH)m.tInobothecaasrespg,foauerisnrarps hooctsfaatdbiffueiresnytstimmeesimsn ebpetakroiincthteshtsarpfo rimsratationlaasn,drblaabcknhuodlearccgrsetaiotns (se&eiaslso Fsigrh.2a)oiscrpeakchieedddatth etime thesimulationsareshown.Theimagesvisualizetheprojectedgasdistributioninthetwo ofthethirdsnapshot(t 1.6Gyr),whenthegalaxiesfinallycoalesce.Atthistime,a galaxies,cboloeur-tcwodedebeytnempertahturee(blutetworeod).Thgecaolllidaingxgailaexises.havTethheseametidstroanglwinrdedrisvepnboyfene¼dbsaeckendergryfirovmethseaccgreationsexpienlsmtuochoftthehgaesfromthe ainnitdiacliomnanssiscstcoefofrarnlenseoptxotrnednawidnegldtodrasarek‘v migriaaotlitveoerlfhoncailto y,s’agVsvotirea¼llafr(Mbseutlog ate£,oca1nh0dGnaHd0gis)t1k/a3mo¼lada1e 6xu0tpkyohmf.sst2aAer1s, l tSisnhynseteorMmresugaiofgtnesrBhitnhethgoeHaslainmxieulsla.ythio anv ewwmitheerbgaleadckk(tholse2st..5FaGinyrar)l,lbyl,etauhveinrlgassbtetshnsinapdsqahuoantssih-dsotwatsicthe ¼ and20%gaasc(hcerreeMttotiiosthnetotealvhaelonmastss,Gaistrheegratvirtaitiognaglceonrstaentdandat thspihseroitdailmgalaxeies,.Inittheisismulaatiolnrweithabdlackyholeesv(toipd),theenremtnantthisvaerytgaspoor H0¼100hkms21Mpc21istheHubbleconstantwherewetaketheconstanth¼0.7). andhaslittlegasleftthatisdenseenoughtosupportongoingstarformation.This Eachindivbidulalagaclaxkyinthheosimluelatiofnseiseredprebsenatecdwkith3a0,0l0t0eparrtsiclestfohrtheedatrkhehrigmhlighotstdheyfacntthaatmthepirecsencsetoafstupeermaossfivebtlahckeholegs,awhsich,acacrsetematter matter,20,000forthestellardisk,20,000forthegaseousdisk,and10,000forthebulge fromthesurroundinggasandheatitwiththeassociatedfeedbackenergy,dramatically componenit.nTwdosiucchagaltaxeiedswerbesyetuptohnaeparrabeollica,ptroigrvadeecloyllisiolnocowursee,arnddealtnerssthietmyergearrnemdnanth.Thiegschaleebarrshtoewsmthepdimeenrsiaontinuunritseofokpcfh21 thenevolvedforwardintimenumericallywithGADGET-2(ref.29),aparalleltree-smooth- (1pc 3.26lightyears). ¼ thegassurroundingthegalaxiesinthesimulationwithblackholes. 604 © 2005 Nature Publishing Group NATURE|VOL433|10FEBRUARY2005|www.nature.com/nature EInnhfaactn, acseigsn itfihcaen tqwuinadshaars satacrtteidvitotyfl oawnodu ttohfeth eecnenetrregsy. When the galaxies finally merge, as shown in the third pair of released by the SMBH expels the gas from the images inFig.1(t 1.6Gyr),much ofthegas isquicklyconverted ¼ into stars in intense bursts of star formation10. Owing to the inner region thus quenching further star formation enhanced gas density, the black holes, which also merge to form Figure2Blackholeactivity,starformationandblackholegrowthplottedasafunctionof and the growth of the SMBH. one object, experience a rapid phase of accretion close to the timeduringagalaxy–galaxymerger.Thestarformationrate(SFR),blackholeaccretion Eddington rate, resulting in significant mass growth. Also, the rate(BHAR)andblackholemassareshowninthetop,middleandbottompanels, morphologies of the remnants in the two simulations begin to respectively.Thethreelinesineachpanel(black,redandorange)correspondtomodels differsignificantly.Inthemodelwithoutblackholes,mostofthegas withgalaxiesofvirialvelocityV 80,160and320kms21,respectively.For vir ¼ is still inflowing in a comparatively cool phase. In contrast, the comparison,wealsoshow(toppanel,dashedline)theevolutionofthestarformationrate simulations with black holes exhibit a significant change in the forthemodelwithoutablackholethatisshowninFig.1(fortheV 160kms21 vir ¼ thermodynamic state of the circumnuclear gas, which is heated by galaxy).Wenote,inparticular,thatowingtoAGNfeedback,thepeakamplitudeofthe thefeedbackenergyprovidedbytheaccretionandpartlyexpelledin starburstduringthemergerisloweredbyasignificantfactor.Theblackfilledcirclesinthe a powerful wind. During this strong accretion phase and for this individualpanelsidentifythetimesofthecorrespondingsnapshotsshowninFig.1. NATURE|VOL433|10FEBRUARY2005|www.nature.com/nature 605 © 2005 Nature Publishing Group BH Growth vs Star Formation AA50CH13-Kennicutt ARI 19July2012 14:3 When gas is moved down to a few pc scale the surface density of gas will go up (Σ > 103-4 M pc-2), which can lead to high star formation rates gas ¤ M51 (Kennicutt et al. 2007) – Apertures   ) M51 (Schuster et al. 2007), NGC 4736 and NGC 5055 (Wong & Blitz 2002), and 3 - NGC 6946 (Crosthwaite & Turner 2007) – Radial profiles c p 2 Non-starburst spirals (Kennicutt 1998b) – Global k Starburst galaxies (Kennicutt 1998b) – Global / LSB galaxies (Wyder et al. 2009) – Global r y 1 / ! M (2)] 0 –c ep Σgas <  cπsκG    , m www.annualreviews.orgQ5. For personal use only.<1   ormation Rat–1log [ (M year kΣSFR☉ ––12 100 % wnloaded frogy on 03/02/1 Star F –3 10 % Doolo g –4 50:531-608. ute of Techn lo –5 1 % 12.stit –1 0 1 2 3 4 BHs grow onAstrophys. 20 aby Georgia In fixeFRideglau triSoen1ab2eltwpeeensttaer-Lfror motaigtimo nS-reautesr(ScfFaaRc)lseuerl fo aGgwce [ΣdaHehIns +s eiH t2di e(rMseea☉n npadcst–so2i)t]a tlsy(att oa(mMricsan! dfm opolrcec-mu2la)r)   goasnsur faace dynamical timescale!! o. ed densitiesforvarioussetsofmeasurements(fromBigieletal.2008).Regionscoloredgray,green,yellow,and Astrovid redshowthedistributionofvaluesfrommeasurementsofsubregionsofSINGSgalaxies.Overplottedas v. pr lightbluedotsaredatafrommeasurementsinindividualaperturesinM51(Kennicuttetal.2007).Datafrom Ress radialprofilesfromM51(Schusteretal.2007),NGC4736andNGC5055(Wong&Blitz2002),andNGC Annu. Acce 6fr9o4m6(6C1rnoostrhmwaalistpei&ralTgualranxeiers2(0d0a7r)kabrleueshstoawrsn)aansdda3r6ksbtalurbeufirlsltedgacliarxcileess.(oTrahnegdeitsrkia-anvgelersa)gferdommeKaesnurneicmuetntts (1998b)arealsoshown.Themagenta-filleddiamondsshowglobalmeasurementsfrom20low-surface- brightness(LSB)galaxies(Wyderetal.2009).Inallcases,calibrationsofinitialmassfunction(IMF),X(CO), etc.,wereplacedonacommonscale.Thethreedottedgraydiagonallinesextendingfromlowerleftto upperrightreflectaconstantglobalstar-formationefficiency.Thetwoverticallinesdenoteregimesthat correspondroughlytothosediscussedinSection6ofthisreview.FiguretakenfromBigieletal.(2008). ReproducedbypermissionoftheAAS. alsoshowthattheUV-basedSFRfallsoffmuchmorerapidlythanthecold-gassurfacedensity, withglobalstar-formationefficiencies(ϵ′)anorderofmagnitudeormorelowerthanthoseinthe innerdisks(Bigieletal.2010).Takentogether,theserecentresultsandstudiesoftheouterMW (Section5.1)confirmthepresenceofapronouncedturnoverintheSchmidtlawfortotalgasat surfacedensitiesoforderafewM pc−2(Figure12). ⊙ www.annualreviews.org StarFormation 583 • Accretion Disc Particle (ADP) Method Any gas that crosses the accretion radius R is removed from the computational acc domain and added to the accretion disc. Gas is added to the accretion disc after a time that is of order the dynamical time-scale t at R dyn acc Gas is transported through the accretion disc and is added to the black hole with a time delay which is of the order of the disc viscous time, t = 10-100 Myr visc

Description:
Journey to the Unknown How cosmic gas from large scales fall into accretion disks and feed BHs? Mechanisms . analytical fit to the maximum.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.