International Journal o f Molecular Sciences Review Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi AnnickBarre1,YvesBourne2,ElsJ.M.VanDamme3 andPierreRougé1,* 1 UMR152PharmaDev,InstitutdeRechercheetDéveloppement,FacultédePharmacie,UniversitéPaul Sabatier,35ChemindesMaraîchers,31062Toulouse,France;[email protected] 2 CentreNationaldelaRechercheScientifique,Aix-MarseilleUniv,ArchitectureetFonctiondes MacromoléculesBiologiques,163AvenuedeLuminy,13288Marseille,France; [email protected] 3 DepartmentofBiotechnology,FacultyofBioscienceEngineering,GhentUniversity,Coupurelinks653, B-9000Ghent,Belgium;[email protected] * Correspondence:[email protected];Tel.:+33-069-552-0851 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:11December2018;Accepted:31December2018;Published:10January2019 Abstract: To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-bindingpocketresponsibleforthe“broadsugar-bindingspecificity”towardasingle mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificityoftheso-calledmannose-bindinglectinstowardscomplexmannose-containingN-glycans depends largely on the topography of their mannose-binding site(s). This structure–function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for decipheringandcharacterizingthecomplexmannose-containingglycansthatdecoratebothnormal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of variouscancercells. Keywords: lectin;plant;fungi;mannose-bindingspecificity;structure;function;useastools 1. Introduction Protein-carbohydrate interactions are part of the most efficient signaling pathways occurring inside living organisms or between living organisms and their environment. Lectins or Carbohydrate-BindingAgents(CBAs)areproteinsthathavespecializedinthespecificrecognitionof carbohydratesduringtheevolutionofalllivingorganisms. Thelargefamilyofcarbohydrate-binding proteinscontainsalargevarietyofcarbohydrate-bindingdomains(CBDs),eachwithoneormore carbohydrate-binding sites (CBSs) which specifically recognize simple or more complex sugars. Dependingonthelectin,thecarbohydrate-bindingdomainsbelongtodistinctstructuralscaffolds usuallyorganizedinhomo-orhetero-dimericortetramericstructures[1]. Accordingtothenatureand theorganizationoftheirdomains,plantandfungallectinshavebeenclassifiedintwogroupsoflectins, (1)lectinsexclusivelycomposedofcarbohydrate-bindingdomainsand(2)chimerolectinscomposed ofacarbohydrate-bindingdomainlinkedtoanotherdomain(s)devoidofanycarbohydrate-binding Int.J.Mol.Sci.2019,20,254;doi:10.3390/ijms20020254 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2019,20,254 2of49 properties[1]. Withrespecttotheirbindingproperties,plantandfungallectinscanbesubdivided in different groups, such as for example Man-specific lectins, Gal/GalNAc-specific lectins, and Fuc-specificlectins[2]. However,thebindingoflectinstowardssimplesugarsisprobablynotreally relevant. ItismorerealistictoassumethatlectinswillinteractwiththemorecomplexN-glycanchains thatdecoratethecellsurfaceofalllivingorganisms[3].Inaddition,theideahasprogressivelyemerged that, besides lectins which are abundantly distributed in storage tissues like seeds and bulbs and playadefensive/protectiverole,otherlessabundantlectinsparticipateinmorediscretecarbohydrate recognitionprocessesequallynecessaryfortheproperfunctioningofthelivingorganisms[4]. Inthis respect,thediscoveryofNictaba,alectinlocalizedinthenucleusoftobacco(Nicotianatabacum)cells, representsamilestoneinourvisionofthefunctiondevotedtoplantandfungallectinsinvivo[5]. Owing to the huge amount of structural and functional data that have been accumulated for several decades these carbohydrate-binding proteins from plants and fungi have become a tool to decipher the structure–function relationships inherently associated to protein macromolecules. In this respect, lectins involved in the specific recognition of mannosyl residues, the so-called mannose-binding lectins, represent an important group of functional proteins taking into account thewidespreaddistributionofmannose-containingN-glycansoftheN-acetyllactosaminetypeand high-mannosetype. Thepresentreviewaimstopresentanexhaustiveoverviewthatsummarizes allpublishedinformationsrelatedtothestructure–functionrelationshipsofmannose-specificlectins from plants and fungi, and their possible applications as analytical and therapeutic tools for biomedicalresearch. 2. DiversityofMannose-BindingLectinsinHigherPlants Todate,lectinswithamannosyl-bindingspecificityhavebeenidentifiedinmanydifferentplant families,includingmonocotyledonousaswellasdicotyledonousspecies(Table1).Amongthemonocot families,researchhasfocusedontheLiliaceaeandAmaryllidaceae[6],whereastheFabaceaefamily occupiesapredominantpositioninthedicotgroup[6]. FollowingtothepioneeringworkofAgrawal & Goldstein [7], who reported that concanavalin A (Con A), the lectin from Jack bean (Canavalia ensiformis)seeds,waseasilyretainedbysimplefiltrationthroughacolumncontainingcross-linked dextrangel(Sephadex,Pharmacia)andsubsequentdesorbtionbytheadditionofglucoseormannose totheelutingbuffer,bothConAandmanyothermannose-specificlectins(Table1)wereeasilypurified usingasingleaffinitychromatographystep. Mannose-specificlectinswerealsosuccessfullyisolated fromdifferentalgae,mushroomsandlowerplantspecies[8]. Moreover,somemannose-specificlectins fromredalgaespecificallyrecognizethecore(α1-6)-fucosylatedN-glycansofcancercellsandcanbe usedasbiomarkersforthedetectionofcancerglycoforms[9]. Inthisrespect,theyresembleLcAfrom Lensculinaris,PsAfromPisumsativumandLoL-IfromLathyrusochrus,whichshowstrongbindingto core-fucosylatedmono-andbi-antennaryN-glycans[10,11]. Int.J.Mol.Sci.2019,20,254 3of49 Table1.Overviewofplant,algaeandfungilectinswithamannosyl-bindingspecificity(β-sandwich:βs,β-prism:βp,n.d.:notdetermined). Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Pteridophyta Phlebodiumaureum PAL βbarrel 2 [12] LectinI n.d. 10 Araucariabrasiliensis [13] Lectin2 n.d. 6 Gymnosperms Gingkobiloba Gnk2 αβ 1 [14] Cycasrevoluta CRLL β-prism 2 [15,16] Bowringiamildbraedii BMA β-sandwich 2/4 [17] Cajanuscajan CcL βs 2 [18] Camptosemapedicellatum CPL βs 4 [19] Canavaliaboliviana ConBo βs 4 [20] Canavaliabonariensis CaBo βs 4 [21] Canavaliabrasiliensis ConBr βs 4 [22] Canavaliaensiformis ConA βs 4 [23] Canavaliagladiata CGL βs 4 [24] Canavaliagrandiflora ConGF βs 4 [25] Canavaliamaritima ConM βs 4 [26] Canavaliavirosa ConV βs 4 [27] Centrolobiummicrochaete CML βs 4 [28] Centrolobiumtomentosum CTL βs 4 [29] Cladrastislutea CLAI,II βs 4 [30] Fabaceae Cratyliafloribunda CFL βs 2/4 [31] Cratyliamollis CRAMOLL βs 2/4 [32] Cymbosemaroseum CRLI βs 4 [33] Diocleagrandiflora DGL βs 4 [34,35] Diocleaguianensis Dguia βs 4 [36] Dioclealasiocarpa DLL βs 4 [37] Dioclealasiophylla DlyL βs 4 [38] Diocleareflexa DrfL βs 4 [39] Dioclearostrata DRL βs 4 [40] Diocleasclerocarpa DSL βs 4 [41] Diocleaviolacea DVL βs 4 [42] Diocleavirgata DvirL βs 4 [43] Diocleawilsonii DwL βs 4 [44] Lathyrusaphaca LaphL βs 2 [45] Lathyrusarticulatus LarL βs 2 [45] Int.J.Mol.Sci.2019,20,254 4of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Lathyruscicera LcL βs 2 [45] Lathyrushirsutus LhL βs 2 [46] Lathyrusnissolia LnL βs 1 [47] Lathyrusochrus LoL βs 2 [48] Lathyrusodoratus LodL βs 2 [49] Lathyrussativus LsL βs 2 [50] Lathyrussphaericus LsphL βs 1 [51] Lathyussylvestris LsiL βs 2 [52] Lathyrustingitanus LtL βs 2 [46] Lensculinaris LcA βs 2 [53] Millettiadielsiana MDL βs 2 [54] Onobrychisviciifolia βs n.d. [55] Pisumarvense PAL βs 2 [56] Pisumsativum PsA βs 2 [57] Pterocarpusangolensis PAL βs 2 [58] Sophoraflavescens SFL βs 2 [59] Trigonellafoenumgraecum βs n.d. [60] Viciacracca βs 2 [61] Viciaervilia βs 4 [62] Viciafaba VfA βs 2 [63] Viciasativa βs 2 [64] Parkiabiglobosa PBL βs 2 [65] Mimosaceae Parkiaplatycephala PPL βs 2 [66] Platypodiumelegans nPELa βs 2 [67] Dalbergieae Platymisciumfloribundum PFL βs 2 [68] Fagaceae Castaneacrenata CCA βs 6/8 [69] Artocarpusheterophyllus ArtinM β-prism 4 [70,71] Artocarpusincisa Frutapin βp 4 [72] Artocarpusinteger CMB βp 4 [73,74] Moraceae artocarpin βp 4 [75,76] Artocarpusintegrifolia jacalin βp 4 [77,78] Artocarpuslakoocha artocarpin βp 4 [79] Morusnigra Moniga-M βp 4 [80] Int.J.Mol.Sci.2019,20,254 5of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Asteraceae Helianthustuberosus Heltuba βp 8 [81] Brassicaceae Arabidopsisthaliana PP2-A1 βp n.d. [82] Ranonculaceae Clematismontana CML βp 2 [83] Aloeae Aloearborescens ALOE βp 4 [84] Arisaemalobatum ALA n.d. 2+2 [85] Arisaemaheterophyllum AHA βp n.d [86] Arummaculatum AMA βp 2+2 [87] Colocasiaesculenta CEA,tarin βp 2+2 [88] Dieffenbachiasequina βp 2+2 [87] Araceae Lysichitoncamtschatcensis βp 2+2 [89] Pinelliaternata PTA βp 2+2 [90] Remusatiavivipara RVL βp 2+2 [91] Typhoniumdivaricatum TDL βp 2+2 [92] Xanthosomasagittifolium XSL βp 2+2 [93] Zantedeschiaaethiopica ZAA βp n.d. [94] Ophiopogonjaponicus OJL βp n.d. [95] Asparagaceae Polygonatumcyrtonema PCL βp 4 [96] Polygonatummultiflorum PMA βp 4 [97] Polygonatumodoratum POL βp 4 [98] Convolvulaceae Calystegiasepium Calsepa βp 2 [99] Ipomoeabatatas ipomoelin βp 4 [100] Alliumaltaicum AALTA βp 2 [101] Alliumascalonicum AAA βp 2 [102] Alliumcepa ACA βp 2 [103] Alliaceae Alliumporrum APA βp 2 [103] Alliumsativum ASA-I/II βp 2 [104] Alliumtuberosum ATA βp 2 [105] Alliumursinum AUA-I/II βp 2 [106] Int.J.Mol.Sci.2019,20,254 6of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Amaryllisvittata AVA βp n.d. [107] Cliviaminiata CMA βs 2 [108] Crinumasiaticum CAA βp n.d. [109] Galanthusnivalis GNA βp 4 [110] Hippeastrumhybrid HHA βp 2 [111] Amaryllidaceae Leucojumvernum LVL βp n.d. [112] Zephyranthescandida ZCA βp 4 [113] Zephyranthesgrandiflora ZGA βp 4 [114] Lycorisaurea LAA βp 2 [115] Lycorisradiata LRA βp 2 [116] Dioscoreabatatas DB1 βp 1 [117] Dioscoreaceae Dioscoreabulbifera DBL βp 1 [118] Crocussativus CSL βp n.d. [119,120] Iridaceae Crocusvernus CVA βp 4 [121] Aspidistraelatior AEL n.d. 2 [122] Narcissuspseudonarcissus NPA βp 2,4 [111] Narcissustazetta NTL βp 2 [123] Liliaceae Narcissustortifolius NTA βp n.d. [124] TxLCI βp 4 Tulipahybrid [125] TL-MII βp 2 Smilacaceae Smilaxglabra SGM2 βp 3 [126] Hyacintheae Scillacampanulata SCAman βp 2 [127] Musaacuminata BanLec βp 2 [128] Musaceae Musaparadisiaca βp 2 [129] Pandanaceae Pandanusamaryllifolius pandanin βp n.d. [130] Cymbidiumhybridum CHA βp 2 [131] Dendrobiumofficinale DOA2 βp n.d. [132] Epipactishelleborine EHMBP βp 2 [131] Orchidaceae Gastrodiaelata gastrodianine βp 2 [133] Liparisnoversa LNL βp 2 [95] Listeraovata LNL βp 2 [131] Int.J.Mol.Sci.2019,20,254 7of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Poaceae Oryzasativa Orysata βp 2 [134] Bryothamnionseaforthii BSL n.d. 1 [135] Bryothamniontriquetrum BTL n.d. 1,2 [136] Euchemadenticulatum EDA n.d. 1 [137] Eucheumaserra ESA n.d. 1 [138] Griffithsiasp. griffithsin n.d. 2 [139,140] Redalgae Hypneacervicornis HCA n.d. 1 [141] Hypneajaponica HJA n.d. 1 [9] Hypneamusciformis HMA n.d. 1 [142] Kappaphycusalvarezii KAA-2 n.d. 1 [143] Kappaphycusstriatum KSA n.d. 1 [144] Boodleacoacta BCA β-prism 1 [145] Greenalgae Halimedarenschii HRL40-1/2 n.d. 4 [146] Hydnangiaceae Laccariabicolor tectonin2 β-propeller n.d. [147,148] Trichocomaceae Penicilliumchrysogenum PeCL n.d. n.d. [149] Saccharomycescerevisiae Flo5A β-sandwich 2 [150] Saccharomycetaceae Saccharomycespasteurianus Flo1p βs 4 [151] Schizosaccharo-mycetaceae Schizosaccharomycespombe glucosidase βs 2 [152] Hygrophoraceae Hygrophorusrussula HRL n.d. 4 [153] Marasmiaceae Marasmusoreades MOA β-prism 2 [154] Pteridaceae Ceratopterisrichardii cyanovirin CVN-fold 1 [155] Sordariaceae Neurosporacrassa cyanovirin CVN-fold 1 [155] Tuberaceae Tuberborchii cyanovirin CVN-fold 1 [155] Int.J.Mol.Sci.2019,20,254 8of49 3. StructuralOrganizationofthePlant,AlgalandFungalMannose-BindingLectins 3.1. StructureofMannose-SpecificPlantLectins Mannose-specificlectinsfromplantsessentiallybelongtothreedistinctstructuralscaffoldsthat assembleindifferentwaystogeneratemorecomplexoligomericstructures: 3.1.1. Theβ-SandwichFold Thejellyrollscaffoldoccurringinlegumelectins(Fabaceae)consistsofeitherasingleortwo polypeptidechains. Intwo-chainlectins,thelight(α)andheavy(β)chainsmadeofsixandseven strands of antiparallel β-sheet, respectively, non-covalently associate in a β-sandwich protomer (Figure 1A). Protomers associate by non covalent bonds to give the homodimeric lectins of the Vicieaetribe,e.g.,pealectin(PisumsativumagglutininPsA)[57],lentillectin(Lensculinarisagglutinin LcA)[156],yellowvetchlectin(LathyrusochruslectinLol)[48](Figure1B),andthefababeanlectin (ViciafabaagglutininVfAorfavin)[63](Figure1B).Incontrast,theMan-specificlectinfromLathyrus sphaericusconsistsofanuncleavedsinglechainprotomer[51]. Thesingle-chainprotomersassociate intohomotetramers. Examplesarethemannose-bindinglectinscharacterizedinthetribesBaphieae (Bowringia mildbraedii agglutinin BMA) [17], Dalbergieae (Centrolobium tomentosum lectin CTL [29], PterocarpusangolensislectinPAL[58]),Diocleae(ConA[23,157](Figure1C),CymbosemaroseumCRL[33], Dioclea grandiflora lectin Con GF [25], and other Dioclea sp. lectins). Dimeric lectins such as PsA, possess two identical mannose-binding sites whereas tetrameric lectins like Con A, exhibit four mannose-bindingsites. Gal/GalNAc-specificlectinsfromotherlegumetribessuchasthesoybean agglutininSBA(Glycinemax)fromtheGlycinaetribe(PDBcode1SBF)[158],thepeanutagglutinin PNA(Arachishypogaea)fromtheAeschynomeneae(PDBcode2PEL)[159],thecoraltreelectinEcorL (Erythrina corallodendron) from the Erythrinae tribe (PDB code 1AXY) [160], and the kidney bean leucoagglutininPHA-L(PDBcode1FAT)[161]anderythroagglutininPHA-E(PDBcode3WCR)[162], (Phaseolusvulgaris)belongingtothePhaseolaetribe,allstrikinglyresembleConAandotherDiocleae lectinsbutdifferinthetopologicalorganizationforthesingle-chainprotomersthatconstitutethelectin. 3.1.2. Theβ-PrismIFold Theβ-prismIscaffoldservesasabuildingblockforthemannose-bindinglectinsinseedsofthe Moraceaesuchasartocarpin,thelectinfromtheJackfruit(Artocarpusintegrifolia)seedswhichserves asaprototypeforthisgroup[163]. Theβ-prismIscaffoldconsistsofthreebundlesoffourantiparallel β-strandsformingthreeGreekkeys1,2and3,arrangedintoaβ-prismstructurealongalongitudinal axis (Figure 1D). Depending on the lectins, a posttranslational proteolytic cleavage between the β-strandsβ1andβ2ofGreekkey1occursduringseedripening,toliberatethelightα-chainwitha terminalGly1residueexhibitingafreeH N-group,andtheheavyβ-chaincomprisingtherestofthe 2 β-prismstructure. ThisproteolyticcleavageoccursintheGal/GalNAc-specifichomotetramericlectins ofMoraceae,suchasjacalin(Figure1E)(PDBcode1JAC)[164],theMPAlectinfromOsageorange (Maclurapomifera)seeds(PDBcode1JOT)[165],andtheGal/GalNAc-specificlectinMorniga-Gfrom thebarkofblackberry(Morusnigra)[80]. However,theMan-specificlectinsfromtheMoraceaefamily, e.g.,artocarpinfromJackfruit[163]andMorniga-Mfromblackberry[166],consistofanuncleaved single-chainβ-prismpolypeptidechain. Similarly,Heltuba,thelectinfromtheJerusalemartichocke (Helianthustuberosus),alsoconsistsofasingle-chainβ-prismpolypeptidechainmadeof8β-prisms non-covalentltyassociatedaroundacentralaxistoformaflattenedstar-shapedarchitecturecomprising 8identicalcarbohydrate-bindingsites(Figure1F)[81]. Int.J.Mol.Sci.2019,20,254 9of49 11 Int. J. Mol. Sci. 2019, 20 Figure1.Structuraldiversityofthemannose-bindinglectins.(A).Two-chainlectinprotomerofLathyrus Figure 1. Structural diversity of the mannose-binding lectins. (A). Two-chain lectin protomer of ochrus(PDBcode1LOE[48]). Lightchainandheavychainsarecoloredgreenandred,respectively. Lathyrus ochrus (PDB code 1LOE [48]). Light chain and heavy chains are colored green and red, (B). Homodimeric organization of the L. ochrus isolectin-I (1LOE). The light and heavy chains of respectively. (B). Homodimeric organization of the L. ochrus isolectin-I (1LOE). The light and heavy the dimer are colored differently. (C). Homotetrameric organization of Con A (PDB code 3CNA). chains of the dimer are colored differently. (C). Homotetrameric organization of Con A (PDB code Thefoursingle-chainprotomersareshownindifferentcolors.(D).Theβ-prismorganizationofthe 3CNA). The four single-chain protomers are shown in different colors. (D). The β-prism organization artocarpinprotomerfromArtocarpusintegrifolia(PDBcode1J4S).Thethreebundlesofβ-strandsforming of the artocarpin protomer from Artocarpus integrifolia (PDB code 1J4S). The three bundles of β-strands theβ-prismarecoloredgreen, redandorange, respectively. (E).Homotetramericorganizationof forming the β-prism are colored green, red and orange, respectively. (E). Homotetrameric artocarpinfromA.integrifolia(1J4U).Theβ-prismprotomersarecoloreddifferently.(F).Homooctameric organization of artocarpin from A. integrifolia (1J4U). The β-prism protomers are colored differently. organizationofHeltubafromHelianthustuberosus(1C3M)[81]. Theβ-prismprotomersarecolored (F). Homooctameric organization of Heltuba from Helianthus tuberosus (1C3M) [81]. The β-prism differently.(G).Theβ-prismIIorganizationoftheprotomerofGNAfromGalanthusnivalis(PDBcode protomers are colored differently. (G). The β-prism II organization of the protomer of GNA from 1MSA).(H).Organizationoftheβ-prismIIprotomersintheGNAtetramer(PDBcode1MSA).(I). Galanthus nivalis (PDB code 1MSA). (H). Organization of the β-prism II protomers in the GNA HexamericstructureofthetarinlectinfromColocasiaesculenta(PDBcode5T20).Thesixβ-prism-folded tetramer (PDB code 1MSA). I. Hexameric structure of the tarin lectin from Colocasia esculenta (PDB protomersarecoloreddifferently. code 5T20). The six β-prism-folded protomers are colored differently. 3.1.3. Theβ-PrismIIFold 3.1.3. The β-prism II Fold The β-prism II scaffold was first identified in GNA, the mannose-specific lectin isolated fromTthhee βb-uprlbissmo IfI ssncoafwfodlrdo wpa(sG failrasnt tihduesntnifiiveadli sin), GaNpAla,n tthes pmeacniensobsee-lospnegciinfigc tleocttihne ismoolanteodco ftrofmam thiley bAumlbasr ylolifd ascneoaew[d1r1o0p]. T(hGealsacnatfhfoulsd cnoinvasilsist)s, ofat hprelaenbtu nsdpleecsieosf fobuerloβn-gstirnagn dtsoa rrthane gemdoinntoocoatfl aftatemnielyd Amaryllidaceae [110]. The scaffold consists of three bundles of four β-strands arranged into a flattened β-prism structure around a central pseudoaxis (Figure 1G). A carbohydrate-binding site Int.J.Mol.Sci.2019,20,254 10of49 12 Int. J. Mol. Sci. 2019, 20 βo-cpcruirssm ins tar ugrcotuorvee alorocuatnedd aatc tehnet rcaelnptesre uofd tohaex bisu(nFdigleu oref β1-Gst)r.aAndcsa rfboormhyindgr aetaec-hb iβn-dsihnegets.i Ttehoe cmcuornsoicnoat- gsrpoeocvifeicl oleccattiends aretstuhlet cferonmte rthofe tnhoenb-uconvdalleeonft βas-ssotrcainatdiosnfo orfm fionugr eβa-cphriβsm-sh IeI estc.aTffhoeldms.o Dnoecpoetn-sdpinegci fiocn ltehceti nlescrtiens,u flotufrro imdetnhteicnaol nβ--cporvisamle nIIt aosf s1o2c ikaDtioa nfoorfmfo au rhβom-poritsemtraImIsecra, fefo.gl.d, si.nD GeNpeAn d(Finigguorne 1thHe) le[1c6ti7n],, fwouhreriedaesn otitchaelrβ le-pctriinssm coIInosifst1 2ofk hDeatefroortmretarahmoemrso bteutirlat mupe rf,reo.mg. ,thine GsyNmAm(eFtrigicuarle as1sHo)ci[a1t6io7n], owf htweroe a1s2 oktDhear alnecdt itnwsoc o1n4s kisDtao fβh-petreirsomtr seutrbaumneitrss, beu.gil.t, tuhpe fArormacethaee sleycmtimnse [t6ri]c. aUlsaussaollcyia, tailoln thorfetew coar1b2okhDydaraanted- tbwinod1in4gk sDitaesβ o-pccriusrmrinsgu binu neaitcsh, eβ.-gp.,ritshme Ascraaffcoelade alerec trienasd[i6ly]. fUunsuctaiollny,aal lblutth irne ea cfaewrb olehcytidnrsa, toen-bei onrd tiwngo sciaterbsoohcycdurraritne-gbiinndienagc hsitβe-sp arriesm apspcaarfefnotldly ainreacrteivaed diluyef tuon pctoiionnt amlubtuattiionn(as)f ienw kelyec rteinsisd,uoense inovroltvweod cianr btohhey dHr-abtoe-nbdinindgin gofs imtesananreoasep.p aTraernintl yfirnoamct ivCeoldocuaesitao pesociunltenmtau taatsisoenm(sb)leins kienytor eshiodmueoshienxvaomlveerdic isntrtuhcetuHr-ebso mndaidneg ooff 6m βa-npnriossme. sTcaarfifnolfdrosm [1C68o]lo (cFaisgiaureesc 1uIl)e.n taassemblesintohomohexamericstructures madeTohfe6 ββ--tprerfisomil ssccaaffffoolldds, [a1n6o8t]h(eFrig βu-rper1isI)m. II scaffold, has been primarily identified in type II RiboTsohmeeβ-I-ntraecfotiivlastcinagff oPlrdo,teainnost h(RerIPβ-I-Ip),r iisnm amIIasrcaanftfhoilnd,, ah Tas abnetiegnenp-rsipmeacirfiilcy liedcetinnt iffrieodm inamtyarpaentIhI R(Aibmoasroamnteh-uIns accatuivdaattiunsg) P[1r6o9te],i nasnd(R IiPt -aIIls),o inocacmurasr ainn ththine, satrTesas nitnigdeunc-isbplee clieficctilnesc tcinomfrpoomseadm oafr aEnUthL ((AEmuoanraynmthuuss lceacutidna)t udso)m[16a9in],sa, nsducihta alsso thocec luercstiinnst hfreosmtre rsiscein (dOurcyibzale slaetcitvian)s acnodm AporasebdidoopfsEisU [L17(E0u].o Tnyhme uβs- ltercetfioni)l dscoamffaoilnds ,csouncshisatss othf esilxe cβt-inhsaifrrpoimnsr aicrera(nOgreydza asraotuivnad)a annd aAprparboidxoimpsaiste[1 t7h0r]e.eT-fhoeldβ -styrmefomilestrcyaf afoxlids, cloinnkseisdts toof esxixteβn-dheadir ploinospasr rthanatg esdimaurolautned thane athprpereo xloimbeast eotfh are ter-effooldil slyeamf m(Feitgruyraex i2s),. liTnhkee dMtaone-xbtiennddiendg lsoiotepss athrea tlosicmatuelda tient htheet hsrheaellloowbe sdoepfraetsrseifoonils leoaf ft(hFei gβu-rsetr2a)n.dTsh ebuMt,a un-sbuianldlyin ngosti taelsl abriendloicnagt esditeins tahree sfhuanlclotiwondael.p ressionsoftheβ-strandsbut,usuallynotallbindingsitesarefunctional. Figure 2. Three-dimensional models for the EUL domain of EUL-domains of rice lectin Orysata, sFhiogwurien g2t. hTehβre-ter-edfoimilleonrsgioannaizl amtioondemlsa dfoero tfhteh rEeUebLu dnodmleasionf oanf tEipUaLra-dlloemlβa-isnhse eotfs r(iIc,eII ,leIIcIt)i.n Orysata, showing the β-trefoill organization made of three bundles of antiparallel β-sheets (I, II, III). An unexpected four-bladed β-propeller structure was found to occur in a PA albumin from 2 chickpAena u(Cniecexrpaerciteetidn ufmou),r-wbhlaicdhedd iβsp-plaryospaelwleer llstdrouccutumreen wteads hfeomunagdg tlou toincactuinr gina cat ivPiAty2 malobsutmprino bfarbolmy rcehlaictkedpetao a(Cleiccetrin awriietthinaunmu),n uwshuiaclhh edmisopplaeyxsin afo lwde[l1l 71d]o.cumented hemagglutinating activity most probably related to a lectin with an unusual hemopexin fold [171]. 3.2. StructureofMannose-SpecificAlgalLectins 3.2. Structure of Mannose-Specific Algal Lectins The mannose-specific lectin griffthsin from the red alga Griffthsia sp., consists of a domain- swapTphede mdiamnenromsea-sdpeecoiffitcw loecptirno tgormifeftrhesxinh ifbriotimng ththee rβed-p arilsgma GIrfoiflftdh,stiah astpc.,l ocsoenlysisretss eomf bal edsotmoathine- jsawcaalpinp-eredl adteimdelerc mtinadoerg oafn tizwaoti opnro(tPoDmBerc oedxehi2bGitTinYg) [t1h4e0 β].-Spwrisampp Ii nfgolrde,s uthltast fcrloomsetlhy erepsaermticbilpeast itoon thofe tjwacoalβin-s-trrealnatdesdo lfeoctnine moroglaencuizleatiinonth (ePcDoBm cpoldetei o2nGoTfYt)h [e1t4h0r]e. eSwfoaupr-psitnragn rdeesdulsths eferotsmfo trhme ipnagrttihceipβa-tpiorins mof otwftoh eβo-sthtrearnmdso loefc uolne,e amndolveiccuelev eirns at.hAe scoamrepsluelttioonf thofis tshwe atphpreine gf,obuort-hstmraonldeecudl esshienettsh efodrimmienrgc othnes iβst- opfraiscmo mofp tlheete oβth-perr imsmoleocrugalen, iaznadti ovnic(eF vigeursrae.3 A).s a result of this swapping, both molecules in the dimer consIinst sopfi tae coofmaphliegthe βn-upmribsemr oofrgcalonnizeadtiaonnd (sFeiqguueren c3e)d. lectinsfromdifferentspeciesofredandgreen algae,theirthree-dimensionalorganization(s)werepoorlyinvestigatedandstillremainunknown. Theiraminoacidsequencesreadilydifferfromthatofgriffithsinand,mostprobably,theyalsodiffer fromgriffithsinbytheirthree-dimensionalstructureandmonomerorganization.
Description: