ebook img

Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae PDF

49 Pages·2017·5.52 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae

International Journal o f Molecular Sciences Review Overview of the Structure–Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi AnnickBarre1,YvesBourne2,ElsJ.M.VanDamme3 andPierreRougé1,* 1 UMR152PharmaDev,InstitutdeRechercheetDéveloppement,FacultédePharmacie,UniversitéPaul Sabatier,35ChemindesMaraîchers,31062Toulouse,France;[email protected] 2 CentreNationaldelaRechercheScientifique,Aix-MarseilleUniv,ArchitectureetFonctiondes MacromoléculesBiologiques,163AvenuedeLuminy,13288Marseille,France; [email protected] 3 DepartmentofBiotechnology,FacultyofBioscienceEngineering,GhentUniversity,Coupurelinks653, B-9000Ghent,Belgium;[email protected] * Correspondence:[email protected];Tel.:+33-069-552-0851 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:11December2018;Accepted:31December2018;Published:10January2019 Abstract: To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-bindingpocketresponsibleforthe“broadsugar-bindingspecificity”towardasingle mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificityoftheso-calledmannose-bindinglectinstowardscomplexmannose-containingN-glycans depends largely on the topography of their mannose-binding site(s). This structure–function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for decipheringandcharacterizingthecomplexmannose-containingglycansthatdecoratebothnormal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of variouscancercells. Keywords: lectin;plant;fungi;mannose-bindingspecificity;structure;function;useastools 1. Introduction Protein-carbohydrate interactions are part of the most efficient signaling pathways occurring inside living organisms or between living organisms and their environment. Lectins or Carbohydrate-BindingAgents(CBAs)areproteinsthathavespecializedinthespecificrecognitionof carbohydratesduringtheevolutionofalllivingorganisms. Thelargefamilyofcarbohydrate-binding proteinscontainsalargevarietyofcarbohydrate-bindingdomains(CBDs),eachwithoneormore carbohydrate-binding sites (CBSs) which specifically recognize simple or more complex sugars. Dependingonthelectin,thecarbohydrate-bindingdomainsbelongtodistinctstructuralscaffolds usuallyorganizedinhomo-orhetero-dimericortetramericstructures[1]. Accordingtothenatureand theorganizationoftheirdomains,plantandfungallectinshavebeenclassifiedintwogroupsoflectins, (1)lectinsexclusivelycomposedofcarbohydrate-bindingdomainsand(2)chimerolectinscomposed ofacarbohydrate-bindingdomainlinkedtoanotherdomain(s)devoidofanycarbohydrate-binding Int.J.Mol.Sci.2019,20,254;doi:10.3390/ijms20020254 www.mdpi.com/journal/ijms Int.J.Mol.Sci.2019,20,254 2of49 properties[1]. Withrespecttotheirbindingproperties,plantandfungallectinscanbesubdivided in different groups, such as for example Man-specific lectins, Gal/GalNAc-specific lectins, and Fuc-specificlectins[2]. However,thebindingoflectinstowardssimplesugarsisprobablynotreally relevant. ItismorerealistictoassumethatlectinswillinteractwiththemorecomplexN-glycanchains thatdecoratethecellsurfaceofalllivingorganisms[3].Inaddition,theideahasprogressivelyemerged that, besides lectins which are abundantly distributed in storage tissues like seeds and bulbs and playadefensive/protectiverole,otherlessabundantlectinsparticipateinmorediscretecarbohydrate recognitionprocessesequallynecessaryfortheproperfunctioningofthelivingorganisms[4]. Inthis respect,thediscoveryofNictaba,alectinlocalizedinthenucleusoftobacco(Nicotianatabacum)cells, representsamilestoneinourvisionofthefunctiondevotedtoplantandfungallectinsinvivo[5]. Owing to the huge amount of structural and functional data that have been accumulated for several decades these carbohydrate-binding proteins from plants and fungi have become a tool to decipher the structure–function relationships inherently associated to protein macromolecules. In this respect, lectins involved in the specific recognition of mannosyl residues, the so-called mannose-binding lectins, represent an important group of functional proteins taking into account thewidespreaddistributionofmannose-containingN-glycansoftheN-acetyllactosaminetypeand high-mannosetype. Thepresentreviewaimstopresentanexhaustiveoverviewthatsummarizes allpublishedinformationsrelatedtothestructure–functionrelationshipsofmannose-specificlectins from plants and fungi, and their possible applications as analytical and therapeutic tools for biomedicalresearch. 2. DiversityofMannose-BindingLectinsinHigherPlants Todate,lectinswithamannosyl-bindingspecificityhavebeenidentifiedinmanydifferentplant families,includingmonocotyledonousaswellasdicotyledonousspecies(Table1).Amongthemonocot families,researchhasfocusedontheLiliaceaeandAmaryllidaceae[6],whereastheFabaceaefamily occupiesapredominantpositioninthedicotgroup[6]. FollowingtothepioneeringworkofAgrawal & Goldstein [7], who reported that concanavalin A (Con A), the lectin from Jack bean (Canavalia ensiformis)seeds,waseasilyretainedbysimplefiltrationthroughacolumncontainingcross-linked dextrangel(Sephadex,Pharmacia)andsubsequentdesorbtionbytheadditionofglucoseormannose totheelutingbuffer,bothConAandmanyothermannose-specificlectins(Table1)wereeasilypurified usingasingleaffinitychromatographystep. Mannose-specificlectinswerealsosuccessfullyisolated fromdifferentalgae,mushroomsandlowerplantspecies[8]. Moreover,somemannose-specificlectins fromredalgaespecificallyrecognizethecore(α1-6)-fucosylatedN-glycansofcancercellsandcanbe usedasbiomarkersforthedetectionofcancerglycoforms[9]. Inthisrespect,theyresembleLcAfrom Lensculinaris,PsAfromPisumsativumandLoL-IfromLathyrusochrus,whichshowstrongbindingto core-fucosylatedmono-andbi-antennaryN-glycans[10,11]. Int.J.Mol.Sci.2019,20,254 3of49 Table1.Overviewofplant,algaeandfungilectinswithamannosyl-bindingspecificity(β-sandwich:βs,β-prism:βp,n.d.:notdetermined). Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Pteridophyta Phlebodiumaureum PAL βbarrel 2 [12] LectinI n.d. 10 Araucariabrasiliensis [13] Lectin2 n.d. 6 Gymnosperms Gingkobiloba Gnk2 αβ 1 [14] Cycasrevoluta CRLL β-prism 2 [15,16] Bowringiamildbraedii BMA β-sandwich 2/4 [17] Cajanuscajan CcL βs 2 [18] Camptosemapedicellatum CPL βs 4 [19] Canavaliaboliviana ConBo βs 4 [20] Canavaliabonariensis CaBo βs 4 [21] Canavaliabrasiliensis ConBr βs 4 [22] Canavaliaensiformis ConA βs 4 [23] Canavaliagladiata CGL βs 4 [24] Canavaliagrandiflora ConGF βs 4 [25] Canavaliamaritima ConM βs 4 [26] Canavaliavirosa ConV βs 4 [27] Centrolobiummicrochaete CML βs 4 [28] Centrolobiumtomentosum CTL βs 4 [29] Cladrastislutea CLAI,II βs 4 [30] Fabaceae Cratyliafloribunda CFL βs 2/4 [31] Cratyliamollis CRAMOLL βs 2/4 [32] Cymbosemaroseum CRLI βs 4 [33] Diocleagrandiflora DGL βs 4 [34,35] Diocleaguianensis Dguia βs 4 [36] Dioclealasiocarpa DLL βs 4 [37] Dioclealasiophylla DlyL βs 4 [38] Diocleareflexa DrfL βs 4 [39] Dioclearostrata DRL βs 4 [40] Diocleasclerocarpa DSL βs 4 [41] Diocleaviolacea DVL βs 4 [42] Diocleavirgata DvirL βs 4 [43] Diocleawilsonii DwL βs 4 [44] Lathyrusaphaca LaphL βs 2 [45] Lathyrusarticulatus LarL βs 2 [45] Int.J.Mol.Sci.2019,20,254 4of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Lathyruscicera LcL βs 2 [45] Lathyrushirsutus LhL βs 2 [46] Lathyrusnissolia LnL βs 1 [47] Lathyrusochrus LoL βs 2 [48] Lathyrusodoratus LodL βs 2 [49] Lathyrussativus LsL βs 2 [50] Lathyrussphaericus LsphL βs 1 [51] Lathyussylvestris LsiL βs 2 [52] Lathyrustingitanus LtL βs 2 [46] Lensculinaris LcA βs 2 [53] Millettiadielsiana MDL βs 2 [54] Onobrychisviciifolia βs n.d. [55] Pisumarvense PAL βs 2 [56] Pisumsativum PsA βs 2 [57] Pterocarpusangolensis PAL βs 2 [58] Sophoraflavescens SFL βs 2 [59] Trigonellafoenumgraecum βs n.d. [60] Viciacracca βs 2 [61] Viciaervilia βs 4 [62] Viciafaba VfA βs 2 [63] Viciasativa βs 2 [64] Parkiabiglobosa PBL βs 2 [65] Mimosaceae Parkiaplatycephala PPL βs 2 [66] Platypodiumelegans nPELa βs 2 [67] Dalbergieae Platymisciumfloribundum PFL βs 2 [68] Fagaceae Castaneacrenata CCA βs 6/8 [69] Artocarpusheterophyllus ArtinM β-prism 4 [70,71] Artocarpusincisa Frutapin βp 4 [72] Artocarpusinteger CMB βp 4 [73,74] Moraceae artocarpin βp 4 [75,76] Artocarpusintegrifolia jacalin βp 4 [77,78] Artocarpuslakoocha artocarpin βp 4 [79] Morusnigra Moniga-M βp 4 [80] Int.J.Mol.Sci.2019,20,254 5of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Asteraceae Helianthustuberosus Heltuba βp 8 [81] Brassicaceae Arabidopsisthaliana PP2-A1 βp n.d. [82] Ranonculaceae Clematismontana CML βp 2 [83] Aloeae Aloearborescens ALOE βp 4 [84] Arisaemalobatum ALA n.d. 2+2 [85] Arisaemaheterophyllum AHA βp n.d [86] Arummaculatum AMA βp 2+2 [87] Colocasiaesculenta CEA,tarin βp 2+2 [88] Dieffenbachiasequina βp 2+2 [87] Araceae Lysichitoncamtschatcensis βp 2+2 [89] Pinelliaternata PTA βp 2+2 [90] Remusatiavivipara RVL βp 2+2 [91] Typhoniumdivaricatum TDL βp 2+2 [92] Xanthosomasagittifolium XSL βp 2+2 [93] Zantedeschiaaethiopica ZAA βp n.d. [94] Ophiopogonjaponicus OJL βp n.d. [95] Asparagaceae Polygonatumcyrtonema PCL βp 4 [96] Polygonatummultiflorum PMA βp 4 [97] Polygonatumodoratum POL βp 4 [98] Convolvulaceae Calystegiasepium Calsepa βp 2 [99] Ipomoeabatatas ipomoelin βp 4 [100] Alliumaltaicum AALTA βp 2 [101] Alliumascalonicum AAA βp 2 [102] Alliumcepa ACA βp 2 [103] Alliaceae Alliumporrum APA βp 2 [103] Alliumsativum ASA-I/II βp 2 [104] Alliumtuberosum ATA βp 2 [105] Alliumursinum AUA-I/II βp 2 [106] Int.J.Mol.Sci.2019,20,254 6of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Amaryllisvittata AVA βp n.d. [107] Cliviaminiata CMA βs 2 [108] Crinumasiaticum CAA βp n.d. [109] Galanthusnivalis GNA βp 4 [110] Hippeastrumhybrid HHA βp 2 [111] Amaryllidaceae Leucojumvernum LVL βp n.d. [112] Zephyranthescandida ZCA βp 4 [113] Zephyranthesgrandiflora ZGA βp 4 [114] Lycorisaurea LAA βp 2 [115] Lycorisradiata LRA βp 2 [116] Dioscoreabatatas DB1 βp 1 [117] Dioscoreaceae Dioscoreabulbifera DBL βp 1 [118] Crocussativus CSL βp n.d. [119,120] Iridaceae Crocusvernus CVA βp 4 [121] Aspidistraelatior AEL n.d. 2 [122] Narcissuspseudonarcissus NPA βp 2,4 [111] Narcissustazetta NTL βp 2 [123] Liliaceae Narcissustortifolius NTA βp n.d. [124] TxLCI βp 4 Tulipahybrid [125] TL-MII βp 2 Smilacaceae Smilaxglabra SGM2 βp 3 [126] Hyacintheae Scillacampanulata SCAman βp 2 [127] Musaacuminata BanLec βp 2 [128] Musaceae Musaparadisiaca βp 2 [129] Pandanaceae Pandanusamaryllifolius pandanin βp n.d. [130] Cymbidiumhybridum CHA βp 2 [131] Dendrobiumofficinale DOA2 βp n.d. [132] Epipactishelleborine EHMBP βp 2 [131] Orchidaceae Gastrodiaelata gastrodianine βp 2 [133] Liparisnoversa LNL βp 2 [95] Listeraovata LNL βp 2 [131] Int.J.Mol.Sci.2019,20,254 7of49 Table1.Cont. Plant,Alga,MushroomFamily Plant,Alga,MushroomSpecies Lectin StructuralScaffold Oligomer Ref. Poaceae Oryzasativa Orysata βp 2 [134] Bryothamnionseaforthii BSL n.d. 1 [135] Bryothamniontriquetrum BTL n.d. 1,2 [136] Euchemadenticulatum EDA n.d. 1 [137] Eucheumaserra ESA n.d. 1 [138] Griffithsiasp. griffithsin n.d. 2 [139,140] Redalgae Hypneacervicornis HCA n.d. 1 [141] Hypneajaponica HJA n.d. 1 [9] Hypneamusciformis HMA n.d. 1 [142] Kappaphycusalvarezii KAA-2 n.d. 1 [143] Kappaphycusstriatum KSA n.d. 1 [144] Boodleacoacta BCA β-prism 1 [145] Greenalgae Halimedarenschii HRL40-1/2 n.d. 4 [146] Hydnangiaceae Laccariabicolor tectonin2 β-propeller n.d. [147,148] Trichocomaceae Penicilliumchrysogenum PeCL n.d. n.d. [149] Saccharomycescerevisiae Flo5A β-sandwich 2 [150] Saccharomycetaceae Saccharomycespasteurianus Flo1p βs 4 [151] Schizosaccharo-mycetaceae Schizosaccharomycespombe glucosidase βs 2 [152] Hygrophoraceae Hygrophorusrussula HRL n.d. 4 [153] Marasmiaceae Marasmusoreades MOA β-prism 2 [154] Pteridaceae Ceratopterisrichardii cyanovirin CVN-fold 1 [155] Sordariaceae Neurosporacrassa cyanovirin CVN-fold 1 [155] Tuberaceae Tuberborchii cyanovirin CVN-fold 1 [155] Int.J.Mol.Sci.2019,20,254 8of49 3. StructuralOrganizationofthePlant,AlgalandFungalMannose-BindingLectins 3.1. StructureofMannose-SpecificPlantLectins Mannose-specificlectinsfromplantsessentiallybelongtothreedistinctstructuralscaffoldsthat assembleindifferentwaystogeneratemorecomplexoligomericstructures: 3.1.1. Theβ-SandwichFold Thejellyrollscaffoldoccurringinlegumelectins(Fabaceae)consistsofeitherasingleortwo polypeptidechains. Intwo-chainlectins,thelight(α)andheavy(β)chainsmadeofsixandseven strands of antiparallel β-sheet, respectively, non-covalently associate in a β-sandwich protomer (Figure 1A). Protomers associate by non covalent bonds to give the homodimeric lectins of the Vicieaetribe,e.g.,pealectin(PisumsativumagglutininPsA)[57],lentillectin(Lensculinarisagglutinin LcA)[156],yellowvetchlectin(LathyrusochruslectinLol)[48](Figure1B),andthefababeanlectin (ViciafabaagglutininVfAorfavin)[63](Figure1B).Incontrast,theMan-specificlectinfromLathyrus sphaericusconsistsofanuncleavedsinglechainprotomer[51]. Thesingle-chainprotomersassociate intohomotetramers. Examplesarethemannose-bindinglectinscharacterizedinthetribesBaphieae (Bowringia mildbraedii agglutinin BMA) [17], Dalbergieae (Centrolobium tomentosum lectin CTL [29], PterocarpusangolensislectinPAL[58]),Diocleae(ConA[23,157](Figure1C),CymbosemaroseumCRL[33], Dioclea grandiflora lectin Con GF [25], and other Dioclea sp. lectins). Dimeric lectins such as PsA, possess two identical mannose-binding sites whereas tetrameric lectins like Con A, exhibit four mannose-bindingsites. Gal/GalNAc-specificlectinsfromotherlegumetribessuchasthesoybean agglutininSBA(Glycinemax)fromtheGlycinaetribe(PDBcode1SBF)[158],thepeanutagglutinin PNA(Arachishypogaea)fromtheAeschynomeneae(PDBcode2PEL)[159],thecoraltreelectinEcorL (Erythrina corallodendron) from the Erythrinae tribe (PDB code 1AXY) [160], and the kidney bean leucoagglutininPHA-L(PDBcode1FAT)[161]anderythroagglutininPHA-E(PDBcode3WCR)[162], (Phaseolusvulgaris)belongingtothePhaseolaetribe,allstrikinglyresembleConAandotherDiocleae lectinsbutdifferinthetopologicalorganizationforthesingle-chainprotomersthatconstitutethelectin. 3.1.2. Theβ-PrismIFold Theβ-prismIscaffoldservesasabuildingblockforthemannose-bindinglectinsinseedsofthe Moraceaesuchasartocarpin,thelectinfromtheJackfruit(Artocarpusintegrifolia)seedswhichserves asaprototypeforthisgroup[163]. Theβ-prismIscaffoldconsistsofthreebundlesoffourantiparallel β-strandsformingthreeGreekkeys1,2and3,arrangedintoaβ-prismstructurealongalongitudinal axis (Figure 1D). Depending on the lectins, a posttranslational proteolytic cleavage between the β-strandsβ1andβ2ofGreekkey1occursduringseedripening,toliberatethelightα-chainwitha terminalGly1residueexhibitingafreeH N-group,andtheheavyβ-chaincomprisingtherestofthe 2 β-prismstructure. ThisproteolyticcleavageoccursintheGal/GalNAc-specifichomotetramericlectins ofMoraceae,suchasjacalin(Figure1E)(PDBcode1JAC)[164],theMPAlectinfromOsageorange (Maclurapomifera)seeds(PDBcode1JOT)[165],andtheGal/GalNAc-specificlectinMorniga-Gfrom thebarkofblackberry(Morusnigra)[80]. However,theMan-specificlectinsfromtheMoraceaefamily, e.g.,artocarpinfromJackfruit[163]andMorniga-Mfromblackberry[166],consistofanuncleaved single-chainβ-prismpolypeptidechain. Similarly,Heltuba,thelectinfromtheJerusalemartichocke (Helianthustuberosus),alsoconsistsofasingle-chainβ-prismpolypeptidechainmadeof8β-prisms non-covalentltyassociatedaroundacentralaxistoformaflattenedstar-shapedarchitecturecomprising 8identicalcarbohydrate-bindingsites(Figure1F)[81]. Int.J.Mol.Sci.2019,20,254 9of49 11 Int. J. Mol. Sci. 2019, 20 Figure1.Structuraldiversityofthemannose-bindinglectins.(A).Two-chainlectinprotomerofLathyrus Figure 1. Structural diversity of the mannose-binding lectins. (A). Two-chain lectin protomer of ochrus(PDBcode1LOE[48]). Lightchainandheavychainsarecoloredgreenandred,respectively. Lathyrus ochrus (PDB code 1LOE [48]). Light chain and heavy chains are colored green and red, (B). Homodimeric organization of the L. ochrus isolectin-I (1LOE). The light and heavy chains of respectively. (B). Homodimeric organization of the L. ochrus isolectin-I (1LOE). The light and heavy the dimer are colored differently. (C). Homotetrameric organization of Con A (PDB code 3CNA). chains of the dimer are colored differently. (C). Homotetrameric organization of Con A (PDB code Thefoursingle-chainprotomersareshownindifferentcolors.(D).Theβ-prismorganizationofthe 3CNA). The four single-chain protomers are shown in different colors. (D). The β-prism organization artocarpinprotomerfromArtocarpusintegrifolia(PDBcode1J4S).Thethreebundlesofβ-strandsforming of the artocarpin protomer from Artocarpus integrifolia (PDB code 1J4S). The three bundles of β-strands theβ-prismarecoloredgreen, redandorange, respectively. (E).Homotetramericorganizationof forming the β-prism are colored green, red and orange, respectively. (E). Homotetrameric artocarpinfromA.integrifolia(1J4U).Theβ-prismprotomersarecoloreddifferently.(F).Homooctameric organization of artocarpin from A. integrifolia (1J4U). The β-prism protomers are colored differently. organizationofHeltubafromHelianthustuberosus(1C3M)[81]. Theβ-prismprotomersarecolored (F). Homooctameric organization of Heltuba from Helianthus tuberosus (1C3M) [81]. The β-prism differently.(G).Theβ-prismIIorganizationoftheprotomerofGNAfromGalanthusnivalis(PDBcode protomers are colored differently. (G). The β-prism II organization of the protomer of GNA from 1MSA).(H).Organizationoftheβ-prismIIprotomersintheGNAtetramer(PDBcode1MSA).(I). Galanthus nivalis (PDB code 1MSA). (H). Organization of the β-prism II protomers in the GNA HexamericstructureofthetarinlectinfromColocasiaesculenta(PDBcode5T20).Thesixβ-prism-folded tetramer (PDB code 1MSA). I. Hexameric structure of the tarin lectin from Colocasia esculenta (PDB protomersarecoloreddifferently. code 5T20). The six β-prism-folded protomers are colored differently. 3.1.3. Theβ-PrismIIFold 3.1.3. The β-prism II Fold The β-prism II scaffold was first identified in GNA, the mannose-specific lectin isolated fromTthhee βb-uprlbissmo IfI ssncoafwfodlrdo wpa(sG failrasnt tihduesntnifiiveadli sin), GaNpAla,n tthes pmeacniensobsee-lospnegciinfigc tleocttihne ismoolanteodco ftrofmam thiley bAumlbasr ylolifd ascneoaew[d1r1o0p]. T(hGealsacnatfhfoulsd cnoinvasilsist)s, ofat hprelaenbtu nsdpleecsieosf fobuerloβn-gstirnagn dtsoa rrthane gemdoinntoocoatfl aftatemnielyd Amaryllidaceae [110]. The scaffold consists of three bundles of four β-strands arranged into a flattened β-prism structure around a central pseudoaxis (Figure 1G). A carbohydrate-binding site Int.J.Mol.Sci.2019,20,254 10of49 12 Int. J. Mol. Sci. 2019, 20 βo-cpcruirssm ins tar ugrcotuorvee alorocuatnedd aatc tehnet rcaelnptesre uofd tohaex bisu(nFdigleu oref β1-Gst)r.aAndcsa rfboormhyindgr aetaec-hb iβn-dsihnegets.i Ttehoe cmcuornsoicnoat- gsrpoeocvifeicl oleccattiends aretstuhlet cferonmte rthofe tnhoenb-uconvdalleeonft βas-ssotrcainatdiosnfo orfm fionugr eβa-cphriβsm-sh IeI estc.aTffhoeldms.o Dnoecpoetn-sdpinegci fiocn ltehceti nlescrtiens,u flotufrro imdetnhteicnaol nβ--cporvisamle nIIt aosf s1o2c ikaDtioa nfoorfmfo au rhβom-poritsemtraImIsecra, fefo.gl.d, si.nD GeNpeAn d(Finigguorne 1thHe) le[1c6ti7n],, fwouhreriedaesn otitchaelrβ le-pctriinssm coIInosifst1 2ofk hDeatefroortmretarahmoemrso bteutirlat mupe rf,reo.mg. ,thine GsyNmAm(eFtrigicuarle as1sHo)ci[a1t6io7n], owf htweroe a1s2 oktDhear alnecdt itnwsoc o1n4s kisDtao fβh-petreirsomtr seutrbaumneitrss, beu.gil.t, tuhpe fArormacethaee sleycmtimnse [t6ri]c. aUlsaussaollcyia, tailoln thorfetew coar1b2okhDydaraanted- tbwinod1in4gk sDitaesβ o-pccriusrmrinsgu binu neaitcsh, eβ.-gp.,ritshme Ascraaffcoelade alerec trienasd[i6ly]. fUunsuctaiollny,aal lblutth irne ea cfaewrb olehcytidnrsa, toen-bei onrd tiwngo sciaterbsoohcycdurraritne-gbiinndienagc hsitβe-sp arriesm apspcaarfefnotldly ainreacrteivaed diluyef tuon pctoiionnt amlubtuattiionn(as)f ienw kelyec rteinsisd,uoense inovroltvweod cianr btohhey dHr-abtoe-nbdinindgin gofs imtesananreoasep.p aTraernintl yfirnoamct ivCeoldocuaesitao pesociunltenmtau taatsisoenm(sb)leins kienytor eshiodmueoshienxvaomlveerdic isntrtuhcetuHr-ebso mndaidneg ooff 6m βa-npnriossme. sTcaarfifnolfdrosm [1C68o]lo (cFaisgiaureesc 1uIl)e.n taassemblesintohomohexamericstructures madeTohfe6 ββ--tprerfisomil ssccaaffffoolldds, [a1n6o8t]h(eFrig βu-rper1isI)m. II scaffold, has been primarily identified in type II RiboTsohmeeβ-I-ntraecfotiivlastcinagff oPlrdo,teainnost h(RerIPβ-I-Ip),r iisnm amIIasrcaanftfhoilnd,, ah Tas abnetiegnenp-rsipmeacirfiilcy liedcetinnt iffrieodm inamtyarpaentIhI R(Aibmoasroamnteh-uIns accatuivdaattiunsg) P[1r6o9te],i nasnd(R IiPt -aIIls),o inocacmurasr ainn ththine, satrTesas nitnigdeunc-isbplee clieficctilnesc tcinomfrpoomseadm oafr aEnUthL ((AEmuoanraynmthuuss lceacutidna)t udso)m[16a9in],sa, nsducihta alsso thocec luercstiinnst hfreosmtre rsiscein (dOurcyibzale slaetcitvian)s acnodm AporasebdidoopfsEisU [L17(E0u].o Tnyhme uβs- ltercetfioni)l dscoamffaoilnds ,csouncshisatss othf esilxe cβt-inhsaifrrpoimnsr aicrera(nOgreydza asraotuivnad)a annd aAprparboidxoimpsaiste[1 t7h0r]e.eT-fhoeldβ -styrmefomilestrcyaf afoxlids, cloinnkseisdts toof esxixteβn-dheadir ploinospasr rthanatg esdimaurolautned thane athprpereo xloimbeast eotfh are ter-effooldil slyeamf m(Feitgruyraex i2s),. liTnhkee dMtaone-xbtiennddiendg lsoiotepss athrea tlosicmatuelda tient htheet hsrheaellloowbe sdoepfraetsrseifoonils leoaf ft(hFei gβu-rsetr2a)n.dTsh ebuMt,a un-sbuianldlyin ngosti taelsl abriendloicnagt esditeins tahree sfhuanlclotiwondael.p ressionsoftheβ-strandsbut,usuallynotallbindingsitesarefunctional. Figure 2. Three-dimensional models for the EUL domain of EUL-domains of rice lectin Orysata, sFhiogwurien g2t. hTehβre-ter-edfoimilleonrsgioannaizl amtioondemlsa dfoero tfhteh rEeUebLu dnodmleasionf oanf tEipUaLra-dlloemlβa-isnhse eotfs r(iIc,eII ,leIIcIt)i.n Orysata, showing the β-trefoill organization made of three bundles of antiparallel β-sheets (I, II, III). An unexpected four-bladed β-propeller structure was found to occur in a PA albumin from 2 chickpAena u(Cniecexrpaerciteetidn ufmou),r-wbhlaicdhedd iβsp-plaryospaelwleer llstdrouccutumreen wteads hfeomunagdg tlou toincactuinr gina cat ivPiAty2 malobsutmprino bfarbolmy rcehlaictkedpetao a(Cleiccetrin awriietthinaunmu),n uwshuiaclhh edmisopplaeyxsin afo lwde[l1l 71d]o.cumented hemagglutinating activity most probably related to a lectin with an unusual hemopexin fold [171]. 3.2. StructureofMannose-SpecificAlgalLectins 3.2. Structure of Mannose-Specific Algal Lectins The mannose-specific lectin griffthsin from the red alga Griffthsia sp., consists of a domain- swapTphede mdiamnenromsea-sdpeecoiffitcw loecptirno tgormifeftrhesxinh ifbriotimng ththee rβed-p arilsgma GIrfoiflftdh,stiah astpc.,l ocsoenlysisretss eomf bal edsotmoathine- jsawcaalpinp-eredl adteimdelerc mtinadoerg oafn tizwaoti opnro(tPoDmBerc oedxehi2bGitTinYg) [t1h4e0 β].-Spwrisampp Ii nfgolrde,s uthltast fcrloomsetlhy erepsaermticbilpeast itoon thofe tjwacoalβin-s-trrealnatdesdo lfeoctnine moroglaencuizleatiinonth (ePcDoBm cpoldetei o2nGoTfYt)h [e1t4h0r]e. eSwfoaupr-psitnragn rdeesdulsths eferotsmfo trhme ipnagrttihceipβa-tpiorins mof otwftoh eβo-sthtrearnmdso loefc uolne,e amndolveiccuelev eirns at.hAe scoamrepsluelttioonf thofis tshwe atphpreine gf,obuort-hstmraonldeecudl esshienettsh efodrimmienrgc othnes iβst- opfraiscmo mofp tlheete oβth-perr imsmoleocrugalen, iaznadti ovnic(eF vigeursrae.3 A).s a result of this swapping, both molecules in the dimer consIinst sopfi tae coofmaphliegthe βn-upmribsemr oofrgcalonnizeadtiaonnd (sFeiqguueren c3e)d. lectinsfromdifferentspeciesofredandgreen algae,theirthree-dimensionalorganization(s)werepoorlyinvestigatedandstillremainunknown. Theiraminoacidsequencesreadilydifferfromthatofgriffithsinand,mostprobably,theyalsodiffer fromgriffithsinbytheirthree-dimensionalstructureandmonomerorganization.

Description:
Keywords: lectin; plant; fungi; mannose-binding specificity; structure; .. e.g., artocarpin from Jackfruit [163] and Morniga-M from blackberry [166],
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.