ebook img

Overview of Active AFOs PDF

156 Pages·2011·6.55 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Overview of Active AFOs

THE DESIGN AND CONTROL OF ACTIVE ANKLE-FOOT ORTHOSES BY KENNETH ALEXANDER SHORTER DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2011 Urbana, Illinois Doctoral Committee: Associate Professor Elizabeth Hsiao-Wecksler, Chair Professor William Durfee, University of Minnesota Professor Karl Rosengren Associate Professor Srinivasa Salapaka Dr. Geza Kogler, Georgia Institute of Technology UMI Number: 3479345 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI 3479345 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346 Abstract Ankle foot orthoses (AFOs) can be used to ameliorate the impact of impairments to the lower limb neuromuscular motor system that affect gait. Existing AFO technologies include passive devices with fixed and articulated joints, semi-active devices that modulate damping at the joint and active devices that make use of a variety of technologies to produce power to move the foot. Emerging technologies provide a vision for fully powered, untethered AFOs. In this dissertation, a novel portable powered ankle-foot orthosis (PPAFO) cabable of providing un- tethered assistance during gait is presented. The PPAFO provides both plantarflexor and dorsiflexor torque assistance via a bi-directional pneumatic rotary actuator. The system uses a portable pneumatic power source (compressed CO2 bottle) and embedded electronics to control the motion of the foot. Experimental data from two impaired and five healthy subjects were collected to demonstrate design functionality. The impaired subjects had bilateral impairments to the lower legs that caused weakness to the plantarflexors, in one case, and to the dorsiflexors in the other. Data from the healthy walkers demonstrated the PPAFO’s capability to provide correctly timed plantarflexor and dorsiflexor assistance during gait. The results from the impaired subjects demonstrated the PPAFO’s ability to provide functional assistance during gait. Additionally, this dissertation presented a modeling and control approach to address limitations present in the PPAFO through the introduction of a new hardware configuration and new control architecture. A combined model consisting of both the PPAFO and the human foot and shank segments was first derived and validated. Next, the current and the new PPAFO system ii configurations were evaluated both in simulation and experimentally during three simplified functional gait tasks: (1) motion control of the foot at the start of the gait cycle, (2) plantarflexor torque assistance during late stance, and (3) dorsiflexor position control of the foot during swing. The resulting analysis showed that the new system configuration both outperformed and was more efficient than the current PPAFO configuration. The stringent design requirements of light weight, small size, high efficiency and low noise make the creation of daily wear assist devices challenging, but once such devices appear they will present new opportunities for clinical treatment of gait abnormalities. iii Dedication To Kira, Adelynn and my fantastic family! iv Acknowledgements This work was supported by National Science Foundation grant #0540834 and the Center for Compact and Efficient Fluid Power, an NSF Engineering Research Center. I would also like to thank Professor Andrew Alleyne, Professor Eric Loth, Professor Tim Bretl, Kira Barton, Yifan (David) Li, Emily Morris, Aaron Becker, Henry Kohring, Jason Thomas, Joel Gilmer, Anastasia Borok, Richard Kessler, Enric Xargay, Dave Hoelzle, Louis DiBerardino, my HDCL lab mates, my committee members, and the investigators in the Comparative Neuromechanics Laboratory at Georgia Tech (Prof. Young-Hui Chang, Megan Toney, and Jasper Yen) for their assistance with this work. v Table of Contents LIST OF TABLES……………………………………………………………………………….ix LIST OF FIGURES………………………………………………………………………………xi CHAPTER 1 INTRODUCTION ................................................................................................ 1  1.1 Motivation ...................................................................................................................... 1  1.2 Dissertation Overview .................................................................................................... 3  CHAPTER 2 TECHNOLOGIES FOR POWERED AFOS: POSSIBILITIES AND CHALLENGES* ............................................................................................................................. 5  2.1 Introduction .................................................................................................................... 5  2.2 Motivation ...................................................................................................................... 6  2.3 Normal and Pathological Gait ........................................................................................ 7  2.4 Existent Passive and Active AFO Designs................................................................... 11  2.4.1 Passive AFO Designs............................................................................................... 11  2.4.2 Active and Semi-Active AFO Designs ...................................................................... 18  2.5 Discussion..................................................................................................................... 28  CHAPTER 3 A PORTABLE POWERED ANKLE-FOOT ORTHOSIS FOR REHABILITATION * ................................................................................................................... 35  3.1 Introduction .................................................................................................................. 35  3.2 Methods ........................................................................................................................ 38  3.2.1 PPAFO System Description ..................................................................................... 39  3.2.2 Empirical Testing of PPAFO Functional Performance during Gait .............................. 46  3.3 Results .......................................................................................................................... 49  3.3.1 PPAFO System Performance Characteristics ............................................................. 49  vi 3.3.2 Functional Walking Results...................................................................................... 52  3.4 Discussion..................................................................................................................... 56  3.5 Conclusion .................................................................................................................... 60  CHAPTER 4 EXPERIMENTAL EVALUATION OF THE PPAFO ...................................... 62  4.1 Introduction .................................................................................................................. 62  4.2 Methods ........................................................................................................................ 64  4.2.1 System Description Hardware and Control ................................................................ 64  4.2.2 Subject Information ................................................................................................. 65  4.2.3 Experimental Procedure and Data Collection ............................................................. 66  4.2.4 Data Analysis .......................................................................................................... 68  4.3 Results .......................................................................................................................... 73  4.3.1 Results from the Healthy Walkers............................................................................. 73  4.3.2 Results from ISubPF ................................................................................................ 83  4.3.3 Regions of Deviation Analysis ................................................................................. 86  4.3.4 Results from ISubDF ............................................................................................... 88  4.4 Discussion..................................................................................................................... 92  4.5 Conclusion .................................................................................................................... 96  CHAPTER 5 MODELING, ANALYSIS AND CONTROL OF A POWERED ANKLE-FOOT ORTHOSIS ......................................................................................................... 97  5.1 Introduction .................................................................................................................. 97  5.2 Modeling, System Identification, and Model Validation ........................................... 100  5.2.1 PPAFO System Hardware ...................................................................................... 100  5.2.2 Modeling of the PPAFO-Leg System ...................................................................... 102  5.2.3 PPAFO-Leg Model Validation ............................................................................... 112  5.3 Model-Based System Analysis and Control Design .................................................. 114  5.3.1 Description of Functional Tasks Required for Gait................................................... 115  5.3.2 PPAFO Control Design.......................................................................................... 118  5.3.3 Experimental and Simulation Results ...................................................................... 120  5.4 Discussion................................................................................................................... 125  5.5 Conclusion .................................................................................................................. 126  vii CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTION.............................................. 128  6.1 Conclusions ................................................................................................................ 128  6.2 Future Work................................................................................................................ 131  6.2.1 Improving the Efficiency of the Current System ...................................................... 132  6.2.2 The Next Generation PPAFO System...................................................................... 132  6.2.3 Improved Control of the PPAFO ............................................................................ 133  6.2.4 Continued Subject Testing ..................................................................................... 135  LIST OF REFERENCES ............................................................................................................ 136  viii List of Tables Table 2.1 A comparison of weight, torque, advantages, disadvantages, performance metrics, and effectiveness of the novel passive AFO designs described in Section 2.4. ...................................... 33  Table 2.2 A comparison of weight, torque, advantages, disadvantages, performance metrics, and effectiveness of the novel Active and Semi-Active AFOs designs described in Section 2.4............... 34  Table 4.1 Healthy subject joint range of motion, mean (and standard deviation), for each speed and footwear condition. N unitless ROM symmetry index (SI) between the bilateral joint pairs was calculated for each joint pair. A negative SI indicates that the parameter value for the left side was greater than the right. ........................................................................................................ 74  Table 4.2 Healthy subject, mean (and standard deviation), values for step length, cycle time, stance time, and step width for all speed and footwear conditions. A unitless symmetry index (SI) was also calculated for the bilateral parameters. A negative SI indicates that the parameter value for the left side was greater than the right. ................................................................................ 75  Table 4.3 Peak moment and powers and associated % gait cycle timing for the left ankle joint. ............. 76  Table 4.4 Peak moment and powers and associated % gait cycle timing for the right ankle joint. ........... 77  Table 4.5 Mean (and standard deviation) values of complexity and variability separated by body segment, side of the body, and footwear condition at the normal walking speed. ........................... 81  Table 4.6 Mean (and standard deviation) values of complexity and variability separated by body segment, side of the body, and walking speed for shoe walking. ................................................... 82  Table 4.7 Mean (and standard deviation) values of complexity and variability separated by body segment, side of the body, and walking speed for PPAFO assisted walking. .................................. 83  Table 4.8 ISubPF joint range of motion, mean (and standard deviation), for shoe and PPAFO footwear conditions. A symmetry index (SI) between the bilateral joint pairs was calculated for each joint. A negative SI indicates that the parameter value for the left side was greater than the right. .......................................................................................................................... 84  ix

Description:
Professor William Durfee, University of Minnesota Ankle foot orthoses (AFOs) can be used to ameliorate the impact of impairments to (David) Li, Emily Morris, Aaron Becker, Henry Kohring, Jason Thomas, Joel Gilmer, Anastasia.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.