ebook img

Oversampled ADCs Last Lecture PDF

31 Pages·2004·7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Oversampled ADCs Last Lecture

EE247 Lecture 23 • Oversampled ADCs – 1-Bit quantization • Quantization error spectrum • SQNR analysis • Limit cycle oscillations – 2nd order DS modulator • Dynamic range • Practical implementation – Effect of various nonidealities on the SD performance EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 1 Oversampled ADCs Last Lecture • Why Oversampling? – Allows trading speed for resolution – Relaxed transition band requirements for analog anti- aliasing filters – Reduced baseband quantization noise power – Utilizes low cost, low power digital filtering – Issue of limit cycle oscillation (spurious inband tones) • By simply increasing oversampling ratio: 2X increase in sampling ratio (cid:224)0.5-bit increase in resolution • To achieve greater improvement in resolution: – Embed quantizer in a feedback loop (cid:224)Predictive (delta modulation) (cid:224)Noise shaping (sigma delta modulation) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 2 Oversampling A/D Conversion Signal BW=f/2M s 1-bit n-bit @ f @ f/M s s • Analog front-end (cid:224)oversampled noise-shaping modulator •Converts original signal to a 1-bit digital output at the high rate of (2MX f ) signal • Digital back-end (cid:224)digital filter •Removes out-of-band quantization noise •Provides anti-aliasing to allow re-sampling @ lower sampling rate EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 3 Oversampled ADC Predictive Coding + v IN ADC _ d OUT Predictor • Quantize the difference signal rather than the signal itself • Smaller input to ADC (cid:224)Buy dynamic range • Only works if combined with oversampling • 1-Bit digital output • Digital filter computes “average” (cid:224)n-Bit output EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 4 Oversampled ADC f = M f f = f +d s1 N s2 N Signal E.g. Decimator “wide” Pulse-Count “narrow” DSP transition fs= MfN Modulator transition Analog Sampler Modulator Digital B Freq AA-Filter AA-Filter 1-Bit Digital N-Bit Digital Decimator: • Digital (low-pass) filter • Removes quantization error for f > B • Provides most anti-alias filtering • Narrow transition band, high-order • 1-Bit input, N-Bit output (essentially computes “average”) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 5 Modulator • Objectives: – Convert analog input to 1-Bit pulse density stream – Move quantization error to high frequencies f >>B – Operates at high frequency f >> f s N • M = 8 … 256 (typical)….1024 • Better be “simple” (cid:224) SD = SD Modulator EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 6 Sigma- Delta Modulators Analog 1-Bit SD modulators convert a continuous time analog input v into a 1-Bit sequence d IN OUT f s + v H(z) IN d _ OUT DAC Loop filter 1b Quantizer (a comparator) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 7 Sigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous time • Switched-capacitor filters are “easier” to implement and scale with the clock rate • Continuous time filters provide anti-aliasing protection • Can be realized with passive LC’s at very high frequencies f s + v H(z) IN _ d OUT DAC EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 8 DS 1st Order Modulator In a 1storder modulator, simplest loop filter (cid:224)an integrator z-1 H(z) = 1 – z-1 + (cid:242) v IN d _ OUT DAC EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 9 DS 1st Order Modulator Switched-capacitor implementation f f 1 2 f 2 - d OUT 1,0 + V i +D/2 -D/2 EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 10 SD 1st Order Modulator + (cid:242) v IN _ -D/2£v £+D/2 d IN OUT -D/2 or +D/2 DAC • Properties of the first-order modulator: – Analog input range is equal to the DAC reference – The average value of d must equal the average value of v OUT IN – +1’s (or –1’s) density in d is an inherently monotonic function of v OUT IN (cid:224)linearity is not dependent on component matching – Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error but loose this inherent monotonicity EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 11 DS 1st Order Modulator Tally of 1-Bit quantization error quantizer Analog input 1 2 3 -D /2£ V £ +D /2 X Q Y in z -1 1-z -1 1-Bit digital Sine Wave Integrator Comparator output stream, -1, +1 Instantaneous Implicit 1-Bit DAC quantization error +D /2, -D /2 (D = 2) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 12 1st Order Modulator Signals 1st Order Sigma-Delta X analog input 1.5 X Q tally of q-error Q Y Y digital/DAC output 1 e0.5 d Mean of Y approximates X u mplit 0 A -0.5 -1 T = 1/f = 1/ (M f ) s N -1.5 0 10 20 30 40 50 60 Time [ t/T ] EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 13 DS Modulator Characteristics • Quantization noise and thermal noise (KT/C) distributed over –fs/2 to +fs/2 (cid:224) Total noise reduced by 1/M • Very high SQNR achievable (> 20 Bits!) • Inherently linear for 1-Bit DAC • Quantization error independent of component matching • Limited to moderate to low speed EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 14 Output Spectrum First order sigma-delta, A=0.79, fx=0.0628319, offset=0.020944, N=1024, K=30 • Definitely not white! 30 20 Input • Skewed towards higher frequencies 10 N ] W 0 • Tones B mplitude [ d--2100 A • dBWN (dB White -30 Noise) scale sets the 0dB line at the -40 noise per bin of a -50 random -1, +1 0 0.1 0.2 0.3 0.4 0.5 Frequency [ f/sf ] sequence sigma_delta_L1_sin.m EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 15 Quantization Noise Analysis Quantization Error e(kT) Integrator z- 1 x(kT) S H(z)=1+z- 1 S y(kT) Quantizer Model • Sigma-Delta modulators are nonlinear systems with memory (cid:224)very difficult to analyze directly • Representing the quantizer as an additive noise source linearizes the system EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 16 Signal Transfer Function H(z)=1+z-z1- 1 x(kT) S - IntHeg(zr)ator y(kT) H(jw)=w0 jw Signal transfer function (cid:224)low pass function: e d u nit H (jw)= 1 ag Sig 1+ s M w 0 Hz ( )==Y=z(H)( )z (cid:222) z - 1 Delay f0 Frequency Sig Xz(H)1(z) + EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 17 Noise Transfer Function Qualitative Analysis v2 n vi S w0 vo v2 eq - jw v2 = v2· (cid:230)(cid:231) f (cid:246)(cid:247) eq n Ł fł v2· (cid:230)(cid:231) f (cid:246)(cid:247) 2 0 n Ł fł vi S 0 w0 vo - jw f Frequency 0 v2 =v2· (cid:230)(cid:231) f (cid:246)(cid:247) 2 eq n Ł fł 0 S w0 vo vi - jw EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 18 STF and NTF Quantization Error e(kT) Integrator z- 1 x(kT) S H(z)=1+z- 1 S y(kT) Quantizer Model Signal transfer function: STF==Y= z(H)( z) D(cid:222) elay z- 1 Xz(H)1(z) + Noise transfer function: Y(z) 1 NTF= = =1- z-1 (cid:222) Differentiator E(z) 1+H(z) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 19 Noise Transfer Function NTF==Y=()z- 1 1 z- 1 Ez(H)1(z) + NTFj(e)(w1)==2 - e - jwTj T - w /2(cid:230)(cid:231) ejwTj T/2/2- e- w (cid:246)(cid:247) Ł 2 ł =2esij-nj/w2T/2T (w ) =2esie-nj/wT2/2/2· - j p Tغ (w øß) =غ 2sin/(2wT øß) e- j(wT- p)/2 where T=1/f s Thus: ( ) ( ) NTFf(T)=f2sfin/2=2wsin/ p s N (f)= NTFf(N)( 2)f y e EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 20

Description:
To achieve greater improvement in resolution: – Embed quantizer in a feedback loop. →Predictive (delta modulation). →Noise shaping (sigma delta
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.