EE247 Lecture 23 • Oversampled ADCs – 1-Bit quantization • Quantization error spectrum • SQNR analysis • Limit cycle oscillations – 2nd order DS modulator • Dynamic range • Practical implementation – Effect of various nonidealities on the SD performance EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 1 Oversampled ADCs Last Lecture • Why Oversampling? – Allows trading speed for resolution – Relaxed transition band requirements for analog anti- aliasing filters – Reduced baseband quantization noise power – Utilizes low cost, low power digital filtering – Issue of limit cycle oscillation (spurious inband tones) • By simply increasing oversampling ratio: 2X increase in sampling ratio (cid:224)0.5-bit increase in resolution • To achieve greater improvement in resolution: – Embed quantizer in a feedback loop (cid:224)Predictive (delta modulation) (cid:224)Noise shaping (sigma delta modulation) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 2 Oversampling A/D Conversion Signal BW=f/2M s 1-bit n-bit @ f @ f/M s s • Analog front-end (cid:224)oversampled noise-shaping modulator •Converts original signal to a 1-bit digital output at the high rate of (2MX f ) signal • Digital back-end (cid:224)digital filter •Removes out-of-band quantization noise •Provides anti-aliasing to allow re-sampling @ lower sampling rate EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 3 Oversampled ADC Predictive Coding + v IN ADC _ d OUT Predictor • Quantize the difference signal rather than the signal itself • Smaller input to ADC (cid:224)Buy dynamic range • Only works if combined with oversampling • 1-Bit digital output • Digital filter computes “average” (cid:224)n-Bit output EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 4 Oversampled ADC f = M f f = f +d s1 N s2 N Signal E.g. Decimator “wide” Pulse-Count “narrow” DSP transition fs= MfN Modulator transition Analog Sampler Modulator Digital B Freq AA-Filter AA-Filter 1-Bit Digital N-Bit Digital Decimator: • Digital (low-pass) filter • Removes quantization error for f > B • Provides most anti-alias filtering • Narrow transition band, high-order • 1-Bit input, N-Bit output (essentially computes “average”) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 5 Modulator • Objectives: – Convert analog input to 1-Bit pulse density stream – Move quantization error to high frequencies f >>B – Operates at high frequency f >> f s N • M = 8 … 256 (typical)….1024 • Better be “simple” (cid:224) SD = SD Modulator EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 6 Sigma- Delta Modulators Analog 1-Bit SD modulators convert a continuous time analog input v into a 1-Bit sequence d IN OUT f s + v H(z) IN d _ OUT DAC Loop filter 1b Quantizer (a comparator) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 7 Sigma-Delta Modulators • The loop filter H can be either a switched-capacitor or continuous time • Switched-capacitor filters are “easier” to implement and scale with the clock rate • Continuous time filters provide anti-aliasing protection • Can be realized with passive LC’s at very high frequencies f s + v H(z) IN _ d OUT DAC EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 8 DS 1st Order Modulator In a 1storder modulator, simplest loop filter (cid:224)an integrator z-1 H(z) = 1 – z-1 + (cid:242) v IN d _ OUT DAC EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 9 DS 1st Order Modulator Switched-capacitor implementation f f 1 2 f 2 - d OUT 1,0 + V i +D/2 -D/2 EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 10 SD 1st Order Modulator + (cid:242) v IN _ -D/2£v £+D/2 d IN OUT -D/2 or +D/2 DAC • Properties of the first-order modulator: – Analog input range is equal to the DAC reference – The average value of d must equal the average value of v OUT IN – +1’s (or –1’s) density in d is an inherently monotonic function of v OUT IN (cid:224)linearity is not dependent on component matching – Alternative multi-bit DAC (and ADCs) solutions reduce the quantization error but loose this inherent monotonicity EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 11 DS 1st Order Modulator Tally of 1-Bit quantization error quantizer Analog input 1 2 3 -D /2£ V £ +D /2 X Q Y in z -1 1-z -1 1-Bit digital Sine Wave Integrator Comparator output stream, -1, +1 Instantaneous Implicit 1-Bit DAC quantization error +D /2, -D /2 (D = 2) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 12 1st Order Modulator Signals 1st Order Sigma-Delta X analog input 1.5 X Q tally of q-error Q Y Y digital/DAC output 1 e0.5 d Mean of Y approximates X u mplit 0 A -0.5 -1 T = 1/f = 1/ (M f ) s N -1.5 0 10 20 30 40 50 60 Time [ t/T ] EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 13 DS Modulator Characteristics • Quantization noise and thermal noise (KT/C) distributed over –fs/2 to +fs/2 (cid:224) Total noise reduced by 1/M • Very high SQNR achievable (> 20 Bits!) • Inherently linear for 1-Bit DAC • Quantization error independent of component matching • Limited to moderate to low speed EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 14 Output Spectrum First order sigma-delta, A=0.79, fx=0.0628319, offset=0.020944, N=1024, K=30 • Definitely not white! 30 20 Input • Skewed towards higher frequencies 10 N ] W 0 • Tones B mplitude [ d--2100 A • dBWN (dB White -30 Noise) scale sets the 0dB line at the -40 noise per bin of a -50 random -1, +1 0 0.1 0.2 0.3 0.4 0.5 Frequency [ f/sf ] sequence sigma_delta_L1_sin.m EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 15 Quantization Noise Analysis Quantization Error e(kT) Integrator z- 1 x(kT) S H(z)=1+z- 1 S y(kT) Quantizer Model • Sigma-Delta modulators are nonlinear systems with memory (cid:224)very difficult to analyze directly • Representing the quantizer as an additive noise source linearizes the system EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 16 Signal Transfer Function H(z)=1+z-z1- 1 x(kT) S - IntHeg(zr)ator y(kT) H(jw)=w0 jw Signal transfer function (cid:224)low pass function: e d u nit H (jw)= 1 ag Sig 1+ s M w 0 Hz ( )==Y=z(H)( )z (cid:222) z - 1 Delay f0 Frequency Sig Xz(H)1(z) + EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 17 Noise Transfer Function Qualitative Analysis v2 n vi S w0 vo v2 eq - jw v2 = v2· (cid:230)(cid:231) f (cid:246)(cid:247) eq n Ł fł v2· (cid:230)(cid:231) f (cid:246)(cid:247) 2 0 n Ł fł vi S 0 w0 vo - jw f Frequency 0 v2 =v2· (cid:230)(cid:231) f (cid:246)(cid:247) 2 eq n Ł fł 0 S w0 vo vi - jw EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 18 STF and NTF Quantization Error e(kT) Integrator z- 1 x(kT) S H(z)=1+z- 1 S y(kT) Quantizer Model Signal transfer function: STF==Y= z(H)( z) D(cid:222) elay z- 1 Xz(H)1(z) + Noise transfer function: Y(z) 1 NTF= = =1- z-1 (cid:222) Differentiator E(z) 1+H(z) EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 19 Noise Transfer Function NTF==Y=()z- 1 1 z- 1 Ez(H)1(z) + NTFj(e)(w1)==2 - e - jwTj T - w /2(cid:230)(cid:231) ejwTj T/2/2- e- w (cid:246)(cid:247) Ł 2 ł =2esij-nj/w2T/2T (w ) =2esie-nj/wT2/2/2· - j p Tغ (w øß) =غ 2sin/(2wT øß) e- j(wT- p)/2 where T=1/f s Thus: ( ) ( ) NTFf(T)=f2sfin/2=2wsin/ p s N (f)= NTFf(N)( 2)f y e EECS 247 Lecture 23: Oversampling Data Converters © 2004H. K. Page 20
Description: