ebook img

Outflows, infall and evolution of a sample of embedded low-mass protostars. The William Herschel Line Legacy (WILL) survey PDF

6.4 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Outflows, infall and evolution of a sample of embedded low-mass protostars. The William Herschel Line Legacy (WILL) survey

Astronomy&Astrophysicsmanuscriptno.will˙overview (cid:13)c ESO2017 January20,2017 Outflows, infall and evolution of a sample of embedded low-mass protostars The William Herschel Line Legacy (WILL) survey(cid:63) J.C.Mottram1,2,E.F.vanDishoeck1,3,L.E.Kristensen4,5,A.Karska3,6,I.SanJose´-Garc´ıa1,S.Khanna1, G.J.Herczeg7,Ph.Andre´8,S.Bontemps9,10,S.Cabrit11,12,M.T.Carney1,M.N.Drozdovskaya1,M.M.Dunham4, N.J.Evans13,D.Fedele2,14,J.D.Green13,15,D.Harsono1,16,D.Johnstone17,18,J.K.Jørgensen5,V.Ko¨nyves8, B.Nisini19,M.V.Persson1,M.Tafalla20,R.Visser21,andU.A.Yıldız22 (Affiliationscanbefoundafterthereferences) 7 ReceivedXXXX;acceptedXXXX 1 0 2 ABSTRACT n a Context. Herschel observations of water and highly excited CO (J >9) have allowed the physical and chemical conditions in the more active J partsofprotostellaroutflowstobequantifiedindetailforthefirsttime.However,todate,thestudiedsamplesofClass0/Iprotostarsinnearby 9 star-formingregionshavebeenselectedfrombright,well-knownsourcesandhavenotbeenlargeenoughforstatisticallysignificanttrendstobe 1 firmlyestablished. Aims.Weaimtoexploretherelationshipsbetweentheoutflow,envelopeandphysicalpropertiesofaflux-limitedsampleofembeddedlow-mass ] Class0/Iprotostars. R Methods.WepresentspectroscopicobservationsinH O,COandrelatedspecieswithHerschelHIFIandPACS,aswellasground-basedfollow-up 2 S withtheJCMTandAPEXinCO,HCO+andisotopologues,ofasampleof49nearby(d<500pc)candidateprotostarsselectedfromSpitzerand . HerschelphotometricsurveysoftheGouldBelt.ThismorethandoublesthesampleofsourcesobservedbytheWISHandDIGITsurveys.These h dataareusedtostudytheoutflowandenvelopepropertiesofthesesources.Wealsocompiletheircontinuumspectralenergydistributions(SEDs) p fromthenear-IRtommwavelengthsinordertoconstraintheirphysicalproperties(e.g.L ,T andM ). bol bol env - Results.Wateremissionisdominatedbyshocksassociatedwiththeoutflow,ratherthanthecooler,slowerentrainedoutflowinggasprobedby o ground-basedCOobservations.TheseshocksbecomelessenergeticassourcesevolvefromClass0toClassI.Outflowforce,measuredfromlow-J r t CO,alsodecreaseswithsourceevolutionarystage,whilethefractionofmassintheoutflowrelativetothetotalenvelope(i.e.M /M )remains s broadlyconstantbetweenClass0andI.Themedianvalueof∼1%isconsistentwithacoretostarformationefficiencyontheoourtdereonfv50%and a [ anoutflowdutycycleontheorderof5%.Entrainmentefficiency,asprobedbyFCO/M˙acc,isalsoinvariantwithsourcepropertiesandevolutionary stage.Themedianvalueimpliesavelocityatthewindlaunchingradiusof6.3kms−1,whichinturnsuggestsanentrainmentefficiencyofbetween 2 30and60%ifthewindislaunchedat∼1AU,orcloseto100%iflaunchedfurtherout.L[Oi]isstronglycorrelatedwithL butnotwith M , bol env v incontrasttolow-JCO,whichismorecloselycorrelatedwiththelatterthantheformer.Thissuggeststhat[Oi]tracesthepresent-dayaccretion 7 activityofthesourcewhileCOtracestime-averagedaccretionoverthedynamicaltimescaleoftheoutflow.H Oismorestronglycorrelatedwith 2 4 M thanL ,butthedifferenceissmallerthanlow-JCO,consistentwithwateremissionprimarilytracingactivelyshockedmaterialbetweenthe env bol 6 wind,tracedby[Oi],andtheentrainedmolecularoutflow,tracedbylow-JCO.L[Oi]doesnotvaryfromClass0toClassI,unlikeCOandH O. 2 4 Thisislikelyduetotheratioofatomictomoleculargasinthewindincreasingasthesourceevolves,balancingoutthedecreaseinmassaccretion 0 rate.InfallsignaturesaredetectedinHCO+andH Oinafewsources,butstillremainsurprisinglyillusiveinsingle-dishobservations. 2 . 1 Keywords.Stars:formation,Stars:protostars,ISM:jetsandoutflows,Surveys 0 7 1 1. Introduction comeofthestar-formationprocessforindividualsources,stellar : v clustersandevenwholegalaxies. i Thegeneral,cartoonpictureofhowstarsformhasbeenagreed X The first step is improved quantification of the basic phys- for some time: a dense core within a molecular cloud becomes ical properties (e.g. L , M ) and evolutionary state of low- r gravitationallyunstable,causingmaterialtofallinwardstowards bol env a massprotostars,onwhichconsiderableprogresshasbeenmade. the centre; a protostar forms and launches a bi-polar molecular Improvements in detectors and telescopes have lead to full- outflow;overtimetheoutflowandinfallcombinetoremovethe wavelength coverage from optical to radio wavelengths at bet- envelope, eventually starving the protostar, which then slowly ter sensitivity and resolution, while dedicated very long base- settles to the main sequence (e.g. Shu et al. 1987). However, a lineinterferometry(VLBI)campaignsintheradioareproviding moredetailedunderstandingisstillrequired,particularlyonin- much more accurate distances for nearby star-forming regions fall and outflow, in order to quantitatively track the conversion (e.g.Loinard2013,forarecentreview). ofmatterintostarsandaccuratelypredicttheevolutionandout- A framework for defining the evolutionary status of proto- starshasalsobeendeveloped,dividingprotostellarsourcesinto (cid:63) Herschel is an ESA space observatory with science instruments oneoffivecategories(Class0,ClassI,Flat,ClassIIandClass providedbyEuropean-ledPrincipalInvestigatorconsortiaandwithim- III) using various ways of quantifying the shift in the spectral portantparticipationfromNASA. energy distribution (SED) to shorter wavelengths as the source 1 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars evolves: the infrared spectral index (α , e.g. Lada & Wilking ditions (T,N,n) remain the same (Mottram et al. 2014; Manoj IR 1984; Lada 1987; Greene et al. 1994); the submillimetre (λ > etal.2013;Karskaetal.2013;Greenetal.2013a;Karskaetal. 350µm) to bolometric luminosity ratio (L /L used as a 2014a;Matuszaketal.2015).However,thesestudieshavetyp- submm bol proxyforM /L ,e.g.Andre´etal.1993);andbolometrictem- ically considered relatively small samples (N (cid:46)30) of bright, env bol perature(T ,e.g.Myers&Ladd1993;Chenetal.1995).For well-known sources and so the statistical significance of trends bol this latter measure, which is the intensity-weighted peak of the with evolution and other source parameters has, in some cases, SED,theseclassificationsaredefinedas:Class0(T < 70K), beenlow. bol Class I (70≤ T <650K), Class II (650≤ T <2800K) and Two of the main surveys studying nearby Class 0/I proto- bol bol Class III (T ≥2800K). Flat-SED sources have T values in starswithHerschelwerethe“Waterinstar-formingregionswith bol bol the 350−950K range with a mean around 650K (Evans et al. Herschel”(WISH)guaranteedtimekeyprogram(vanDishoeck 2009). et al. 2011), which observed 29 Class 0/I protostars with HIFI The Spitzer Space Telescope (Gallagher et al. 2003) and and PACS plus ground-based follow-up, and the “Dust, Ice, more recently the Herschel Space Observatory (Pilbratt et al. and Gas in Time” (DIGIT) Herschel key program (Green et al. 2010)haveallowedthefullpotentialofthisevolutionaryframe- 2013a,2016),whichobservedafurther13Class0/Iprotostars, worktobeexploitedinconstraininghowthepropertiesofpro- primarily with full-scan PACS spectroscopy. Both the WISH tostars change as the source evolves through large-area, high andDIGITsurveysselectedtheirsamplestotargetwellknown, spatialresolution,uniformphotometricsurveysofmanynearby archetypalsources,ensuringsuccessindetectingwater,COand star-forming regions (e.g. Evans et al. 2003, 2009; Andre´ et al. other species and the availability of complementary data. As a 2010; Rebull et al. 2010; Megeath et al. 2012; Dunham et al. result, these samples favoured luminous sources with particu- 2014; Furlan et al. 2016). Furthermore, the statistics available larly prominent and extended outflows, which may not be rep- from such large surveys have enabled estimates of the relative resentative of the general population of protostars. In addition, lifetimesofthedifferentClassestobeobtained,showinginpar- both programs together only included a total of 42 low-mass ticularthatthecombinedClass0andIphases,wherethemajor- sources split between Classes 0 and I, limiting the statistical ityoftheprotostellarmassisaccretedandthefinalpropertiesof significance of trends with evolution that might otherwise have the star and its accompanying disk are imprinted, last approxi- beenexpected,forexamplebetweenintegratedintensityinwater mately 0.4−0.7Myr (Dunham et al. 2015; Heiderman & Evans emissionandT . bol 2015;Carneyetal.2016). The motivation of the “William Herschel Line Legacy” For a 1M star, such lifetimes imply typical time-averaged (WILL)surveywasthereforetofurtherexplorethephysics(pri- (cid:12) mass-accretion rates onto the protostar of approximately marilyinfallandoutflow)andchemistryofwater,COandother 10−6M yr−1. Since not all material in the core will end up on complementary species in Class 0/I protostars in nearby low- (cid:12) thestar,theinfallrateintheenvelopemustpresumablybehigher massstarformingregionsusingacombinationofHerscheland thanthisbyatleastafactorof2or3.Searchestoquantifythein- ground-basedobservations,buildingonWISHandDIGIT.The fallinprotostarshavepresentedcandidatesusingmolecularline aimwastoincreasethenumberofClass0/Iprotostarsobserved, observations(e.g.Gregersenetal.1997;Mardonesetal.1997) thusimprovingthestatisticalsignificanceoftheexistingcorre- based on the doppler-shift of infalling material causing asym- lationsfoundbyforexampleKristensenetal.(2012),andallow- metries in the line profile (Myers et al. 2000). However, con- ingshallowercorrelationstobetested,aswellasimprovingthe firmingandquantifyinginfallinprotostellarenvelopesremains samplingoffainterandcoldersources. extremelychallenging,limitingourunderstandingoftherateat This paper is structured as follows. Section 2 discusses which,androutebywhich,materialreachesthediskandproto- the selection of the WILL sample, the basic physical proper- star, as well as how this changes with time and depends on the ties of the sources and evaluates the properties of the com- massofthecore/star. bined WISH+DIGIT+WILL sample. Section 3 gives the de- Bipolarmolecularoutflowsalsoplayanimportantroleinthe tails and basic results of both the Herschel observations and evolution and outcome of star formation, as they remove mass a complementary ground-based follow-up campaign. More de- fromandinjectenergyintotheenvelopeandsurroundingmate- tailed results and analysis are then presented thematically, cen- rial. However, the driving mechanism for protostellar outflows tred around outflows (Sect. 4) and envelope emission (Sect. 5), isstilluncertain(e.g.Arceetal.2007;Franketal.2014).Ade- followedbyadiscussiononthevariationofwaterwithevolution creaseinthedrivingforcewasmeasuredbetweenClass0andI (Sect.6).Finally,wesummariseourmainconclusionsinSect.7. sources,inadditiontorelationswithL andM ,byBontemps bol env et al. (1996) using ground-based observations of CO. They at- tributedthedecreaseinoutflowdrivingforcewithClasstoade- 2. Sample creaseintheaccretion/infallrateasthesourceevolves.However, 2.1. Selection theirstudyonlyincludedtenClass0sources,asfewwereknown atthetime. The starting point for selecting a flux-limited sample of low- RecentobservationsofH Oandhighly-excitedCOusingthe mass protostars was the catalogue of Class 0/I protostars iden- 2 Heterodyne Instrument for the Far-Infrared (HIFI; de Graauw tified as part of photometric surveys with the Spitzer Space etal.2010)andPhotodetectorArrayCameraandSpectrometer Telescopeoftheclosestmajorstar-formingcloudsthatmakeup (PACS; Poglitsch et al. 2010) with Herschel have shown that the Gould Belt (Gould 1879). In particular, these were drawn theseprimarilytraceactiveshocksrelatedtotheoutflowand/or from the Spitzer c2d (Evans et al. 2009), Spitzer Gould Belt warmdiskwindsheatedbyambipolardiffusion,ratherthanthe (Dunham et al. 2015) and Taurus Spitzer (Rebull et al. 2010) entrained outflow as is accessible with ground-based CO ob- surveys. servations (Nisini et al. 2010; Kristensen et al. 2013; Tafalla The initial catalogue was compiled from individual cloud et al. 2013; Santangelo et al. 2013, 2014; Mottram et al. 2014; catalogues for the Perseus, Taurus, Ophiuchus, Scorpius (also Yvart et al. 2016). The line-width and intensity in these trac- known as Ophiuchus North), Corona Australis and Chameleon ers decreases between Class 0 and I while the excitation con- star-formingregions(formoredetails,seeJørgensenetal.2007; 2 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars Rebull et al. 2007, 2010; Padgett et al. 2008; Jørgensen et al. 2.2. Propertiesandevaluation 2008; Hatchell et al. 2012; Peterson et al. 2011; Alcala´ et al. The properties of the final sample of 49 sources that make up 2008).Atthetimeofselectionin2011,theHerschelGouldBelt the WILL sample are presented in Table 1. For simplicity, we (Andre´ etal.2010)surveyhadalsoproducedcataloguesofpro- giveeachanamebasedontheregionandanumberorderedby tostellarcandidatesintheAquilaRiftregion(Mauryetal.2011), rightascension,butmanyarealreadywellknownandtherefore sothesewerealsoconsideredinanattempttoextendthecover- thetablealsogivesdetailsofcommonnamesusedbyprevious ageoftheWILLsurveytoparticularlyyoung(cold)embedded studiesforthesamesources. youngstellarobjects(YSOs). From this master catalogue of protostars in major star- Thefollowingdistancesareusedforthevariousregionscov- formingregionswithin500pc,thefollowingcriteriawereused ered by our sample: 235pc for Perseus (Hirota et al. 2008), toselectthefinalWILLsample: 140pc for Taurus (Kenyon et al. 2008), 125pc for Ophiuchus andScorpius(deGeusetal.1989),130pcforCoronaAustralis (i) infraredslope(2−24µm)αIR >0.3ornon-detection, (Knude & Høg 1998), 150pc for Chameleon I and 178pc (ii) Tbol <350K, for Chameleon II (Whittet et al. 1997). For Aquila, W40 and (iii) Lbol>0.4L(cid:12)forClass0(Tbol <70K), SerpensSouth,Ortiz-Leo´netal.(2016)recentlyfoundthatthese Lbol ≥1L(cid:12)forClassI(70≤Tbol <350K), regions, as well as Serpens Main, are at a common distance of (iv) δ<35◦. 436pc. Thedeterminationofthesourcepropertiesandevolutionary ThedistinctionbetweenClassIandIIsourcesisnormallymade at T =650K (Chen et al. 1995), however Evans et al. (2009) classificationisdiscussedindetailinAppendixA.Tosummarise bol briefly,theSEDforeachsourceisconstructedfromthenear-IR foundthatFlatSEDsourcescovertherange350−950Kwitha to(sub-)mmandusedtocalculateL ,L /L ,T andα . meanaround650Kandthereforelikelyconsistofmoreevolved bol submm bol bol IR M isobtainedfromsub-mmormmphotometryassumingthat Class I or younger Class II sources. An upper limit of 350K env thedustisopticallythin,while(cid:51) iscalculatedfrommolecu- wasthereforeimposedinordertoexcludemoreevolvedClassI LSR larlineobservations.Finally,theclassificationofeachsourceis sourcesfromthesample.Wateremissionistypicallyweakerfor reachedbyconsideringthespatialandspectralpropertiesofboth ClassIsourcesthanClass0sandisgenerallyhigherformorelu- thegasanddustassociatedwitheachsource(seeAppendixA.7 minoussources(e.g.Kristensenetal.2012),soahigherL cut bol formoredetails). wasusedforClassIsourcesinanattempttoensuredetections. Criteria i−iii were therefore designed to ensure that the sample Thesamplecomprises23Class0,14ClassI,8ClassIIand4 uncertain,potentiallypre-stellarsources.Inthecaseofthislast includesonlyyoung,deeplyembeddedprotostarsthatarebright group of sources, all in W40, they are faint or not detected at enough to be detected in H O and related species based on the 2 <160µm,showfewdetectionsinPACSandhavenoindications experienceoftheWISHandDIGITsurveys.Criterionivensures of outflow activity, but the presence of the W40 PDR, detected that all WILL sources can be observed with ALMA to allow insomeoftheHIFIandground-basedlines,leavessomeambi- high spectral and spatial resolution ground-based interferomet- guity.Theseandothercasesofnotearediscussedinmoredetail ricfollow-upofinterestingsources. inAppendixC. Unfortunately,edge-ondisks,reddenedbackgroundsources and evolved asymptotic giant-branch (AGB) stars all have the Figure 1 shows the Lbol, Tbol and Menv distribution of the potentialtopresentsimilarinfraredcoloursandthuscontaminate WILL sample, along with the WISH and DIGIT samples for any sample selected purely based on continuum properties. As comparison.ThepropertiesoftheWISHsamplearetakenfrom first highlighted by van Kempen et al. (2009) for a sample of Kristensen et al. (2012) while those for the DIGIT sample are sourcesinOphiuchus,molecularemissiontracingdensegascan takenfromGreenetal.(2013a)andLindbergetal.(2014).These helptobreakthisdegeneracy.Morespecifically,thehighcritical are corrected to the distances for the various regions discussed density of HCO+ J=4−3 or J=3−2 means it will not be strong abovewhereneeded.Itshouldbenotedthat Menv valuesarenot inforegroundcloudmaterial,whiletherarityofC18Osimilarly availablefortheDIGITsample,leadingtothedifferenceinthe meansthatthe J=3−2transitionisonlybrightandconcentrated number of sources between the upper-left and upper-right pan- in protostellar sources. In addition, more evolved disk sources els. will not present strong emission in single-dish HCO+ spectra The probability (p) that a given value of the Pearson corre- due to beam-dilution. Such data, particularly for HCO+, have lationcoefficient(ρ)forsamplesizenrepresentsarealcorrela- beencollectedandusedtoremovecontaminantsinanumberof tion(i.e.thelikelihoodthatatwo-tailedtestcanrejectthenull- Gould Belt samples by Heiderman et al. (2010), Heiderman & hypothesisthatthetwovariablesareuncorrelatedwithρ=0)can Evans(2015)andCarneyetal.(2016),whichhavesomeoverlap beexpressedintermsofthestandarddeviationofanormaldis- with the initial candidate sample. Therefore, following the cuts tribution,σ,as: detailedabove,non-detectioninHCO+ J=4−3or3−2wasused, √ wheredatawereavailable,toexcludecontaminantsources. p=|ρ| n−1σ, (1) MostofthesourcesobservedbytheWISHandDIGITsur- veysalsoconformtotheabovecriteria,soanyinitialcandidates following (Marseille et al. 2010). We consider p =3σ (i.e. within 5(cid:48)(cid:48) of a WISH or DIGIT source were also excluded to 99.7%)tobethethresholdforstatisticalsignificance.Thus,fora avoid repeat observations. However, two sources, PER03 and samplesizeof30,valuesof|ρ|>0.56indicatereal,statistically PER11, have enough overlap with the WISH observations of significantcorrelationswhileforasamplesizeof50,thisistrue L1448-MM (offset by 7.7(cid:48)(cid:48)) and NGC1333-IRAS4B (offset by for | ρ |> 0.43. While one might expect correlations between 6.4(cid:48)(cid:48)), respectively, particularly in the H O 1 −1 (557GHz) someoftheobservedpropertiesofembeddedprotostarsdueto 2 10 01 ground-statelineobtainedina39(cid:48)(cid:48) beam,thattheyareremoved the related nature of their different components (e.g. envelope, fromtheWILLsampleaspresentedhere.Finally,sourceTAU05 outflowanddrivingsource),suchtestsareasimplewayofascer- wasremovedasitistheyoungandactiveClassIIsourceDGTau tainingwhetherornotthedataareabletosupportsuchlinks.As B,whichhasanedge-ondisk(Podioetal.2013). mentionedabove,theextensionofthesampleofsourcesstudied 3 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars n=78 n=63 102 ρ=0.02 ρ=0.54 p=0.2σ p=4.2σ 8M ) 101 ⊙ ⊙ L ( ol b L 2M 100 ⊙ WILL Class0 WISH ClassI 0.6M DIGIT ⊙ ClassII 10 1 SGB 0.08M 0.2M PS? − ⊙ ⊙ 102 101 10 1 100 101 102 − T (K) M (M ) bol env ⊙ 25 ALL WILL 20 WISH&DIGIT s e SGB c ur15 o s of10 . o N 5 0 10 1 100 101 102 0 100 200 300 400 0 1 2 3 4 5 − L (L ) T (K) M (M ) bol bol env ⊙ ⊙ Fig.1.Top:ThedistributionofL vs.T andM fortheWILL(filledcircles),WISH(opensquares)andDIGIT(opendiamonds) bol bol env surveys.Intheleft-handpanel,theSpitzerGouldBelt(SGB)determinationsfromDunhametal.(2015)areshownforcomparison (blackdots).Thedifferentcoloursareusedtodistinguishbetweendifferentsourceclassifications:Class0(red),ClassI(blue)Class II(green)andpre-stellar(PS,magenta).Thenumberofsources(n),Pearsoncorrelationcoefficient(ρ),andtheprobability(p)that thecorrelationisnotjustduetorandomdistributionsinthevariablesareshownintheupper-leftofeachpanelincludingonlyClass 0/Isources.EvolutionarytracksbetweenL andM fromDuarte-Cabraletal.(2013)areshownintheright-handpanel(seetext bol env fordetails),withthefinalstellarmassindicatedforeachtrack.Bottom:histogramsshowingthedistributionofL ,T and M bol bol env fortheWILL(blue),combinedWISHandDIGIT(magentahatched),andtotalWILL,WISHandDIGIT(black)samples.Thegrey shadedregionindicatesthedistributionoftheSpitzerGouldBeltdeterminationsforsourceswithT ≤350K. bol inspectrallineswithPACSandHIFIenabledbytheWILLsur- sourcesabove∼1L .Belowthisluminosity,thesamplerapidly (cid:12) veyandpresentedhereallowsustostudythesemorecompletely becomes incomplete, and thus the combined sample is still bi- forthefirsttime. ased towards higher mean L compared with the general dis- bol TheevolutionarytracksbetweenL andM showninthe tribution, but the addition of the WILL sources shifts the com- bol env top-right panel of Figure 1 are taken from Duarte-Cabral et al. pleteness limit approximately a factor of three lower. In terms (2013).TheyassumeanexponentialdecreaseofM andacore- of T , the sample is biased towards lower values, but judging env bol to-star formation efficiency of 50%, such that the net accretion from upper-left panel of Fig. 1, the higher T sources in the bol rateisgivenby: SGB data are primarily those below our L limit, that is, the bol meanL decreasesasT increasesforSGBsources.Thedif- bol bol M (t) M˙ (t) = 0.5 env , (2) ferencesbetweenthevaluesofDunhametal.(2015)andthose acc τ givenhereforindividualsourcesarelikelyduetoourinclusion whereτisthee-foldingtime,whichisassumedtobe3×105yrs. offar-IRdatainthesedeterminations. The WILL sample doubles the number of low-mass YSOs Itisworthmentioningacoupleofcaveats.Firstly,thesam- observed,whichhaveslightlylowervaluesof L and M ,as ple of Class 0 sources is dominated by sources in the Perseus bol env wellaslowerT forClass0sources,thantheWISHandDIGIT molecular cloud, while the Class I sources are drawn from a bol samples. Comparing to Spitzer Gould Belt (SGB) sources with number of regions that vary in the concentration and activity T ≤350K,takenfromDunhametal.(2015),itcanbeseenin of their star formation (e.g. Taurus vs. Ophiuchus). There may bol Fig.1thatthecombinedWILL+DIGIT+WISHsampleisrepre- wellberegionaldifferencesduetoenvironmentaleffects,which sentative of the overall Class 0/I population and contains most we cannot test due to the overall small sample size for a given 4 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars Table1.TheWILLsurveysourcesample. Name RA(J2000) Dec(J2000) d (cid:51) a L b Lsubmmb T b α b M b Classc Othernamesd (hms) (◦(cid:48)(cid:48)(cid:48)) (pc) (kmLSRs−1) (Lbol) L(b%ol) (bKol) IR (Menv) (cid:12) (cid:12) AQU01e 18:29:03.82 −01:39:01.5 436 +7.4 2.6 11.8 24 − 3.15 0 Aqu-MM2 AQU02e 18:29:08.60 −01:30:42.8 436 +7.5 9.0 7.8 33 − 2.17 0 Aqu-MM4,IRAS18265-0132 AQU03e 18:30:25.10 −01:54:13.4 436 +7.1 3.5 5.3 246 0.7 0.79 II Aqu-MM6,IRAS18278-0156 AQU04e 18:30:28.63 −01:56:47.7 436 +7.6 6.5 4.5 320 0.5 1.21 I Aqu-MM7,IRAS18278-0158 AQU05 18:30:29.03 −01:56:05.4 436 +7.3 2.4 9.2 37 1.4 0.68 0 Aqu-MM10 AQU06 18:30:49.94 −01:56:06.1 436 +8.3 1.3 8.2 40 1.9 0.59 0 Aqu-MM14 CHA01 11:09:28.51 −76:33:28.4 150 +4.9 1.6 − 189 1.6 − II GMCha,ISO-ChaI192,CaINa2 CHA02 12:59:06.58 −77:07:39.9 178 +3.0 1.8 0.6 236 1.3 − I ISO-ChaII28,IRAS12553-7651 CRA01 19:02:58.67 −37:07:35.9 130 +5.6 2.4 2.2 55 1.7 0.49 0 ISO-CrA182,IRAS18595-3712 OPH01 16:26:59.10 −24:35:03.3 125 +3.8 4.3 − 69 2.0 0.17 II+PDR? ISO-Oph90,WL22 OPH02 16:32:00.99 −24:56:42.6 125 +4.2 8.6 0.1 80 1.8 0.09 I ISO-Oph209,Oph-emb10 PER01 03:25:22.32 +30:45:13.9 235 +4.1 4.5 2.7 44 2.3 0.89 0 L1448IRS2,Per-emb22 PER02 03:25:36.49 +30:45:22.2 235 +4.5 9.2 1.7 54 2.6 3.48 0 L1448N(A),L1448IRS3,Per-emb33 PER04 03:26:37.47 +30:15:28.1 235 +5.2 1.2 4.2 60 1.2 0.29 0 IRAS03235+3004,Per-emb25 PER05 03:28:37.09 +31:13:30.8 235 +7.3 11.1 0.6 84 2.2 0.36 I NGC1333IRAS1,Per-emb35 PER06 03:28:57.36 +31:14:15.9 235 +7.3 7.1 − 82 1.5 0.34 I NGC1333IRAS2B,Per-emb36 PER07 03:29:00.55 +31:12:00.8 235 +7.4 0.7 3.9 37 2.1 0.32 0 Per-emb3 PER08 03:29:01.56 +31:20:20.6 235 +7.7 16.9 1.3 129 2.5 0.83 I Per-emb54,NGC1333IRAS6 PER09 03:29:07.78 +31:21:57.3 235 +7.5 22.7 − 129 2.6 0.26 I IRAS03260+3111(W),Per-emb50 PER10 03:29:10.68 +31:18:20.6 235 +8.7 6.0 2.2 47 1.9 1.10 0 NGC1333IRAS7,Per-emb21 PER12 03:29:13.54 +31:13:58.2 235 +7.8 1.1 8.7 31 2.4 1.20 0 NGC1333IRAS4C,Per-emb14 PER13 03:29:51.82 +31:39:06.0 235 +8.0 0.7 5.0 40 3.5 0.49 0 IRAS03267+3128,Per-emb9 PER14 03:30:15.14 +30:23:49.4 235 +6.2 1.8 1.6 88 1.8 0.15 I IRAS03271+3013,Per-emb34 PER15 03:31:20.98 +30:45:30.1 235 +6.9 1.6 5.8 36 1.2 1.16 0 IRAS03282+3035,Per-emb5 PER16 03:32:17.96 +30:49:47.5 235 +7.0 1.1 13.3 29 1.0 2.88 0 IRAS03292+3039,Per-emb2 PER17 03:33:14.38 +31:07:10.9 235 +6.6 0.2 − 71 2.4 1.94 I B1SMM3,Per-emb6 PER18 03:33:16.44 +31:06:52.5 235 +6.6 0.5 − 38 1.6 1.59 0 B1d,Per-emb10 PER19 03:33:27.29 +31:07:10.2 235 +6.8 1.1 1.7 93 1.9 0.29 I B1SMM11,Per-emb30 PER20 03:43:56.52 +32:00:52.8 235 +8.9 2.2 6.3 27 0.7 1.93 0 IRAS03407+3152,HH211,Per-emb1 PER21 03:43:56.84 +32:03:04.7 235 +8.8 1.9 3.8 35 1.5 1.54 0 IC348MMS,Per-emb11 PER22 03:44:43.96 +32:01:36.2 235 +9.8 2.4 3.4 45 0.9 0.70 0 IRAS03415+3152,Per-emb8 SCO01 16:46:58.27 −09:35:19.8 125 +3.6f 0.5 0.6 201 0.9 0.10 II IRAS16442-0930,L260SMM1 SERS01 18:29:37.70 −01:50:57.8 436 +8.2 17.4 3.9 46 1.3 1.10 0 IRAS18270-0153,SerpS-MM1 SERS02 18:30:04.13 −02:03:02.1 436 +7.8 73.2 4.6 34 2.5 8.44 0 SerpS-MM18 TAU01 04:19:58.40 +27:09:57.0 140 +6.8 1.5 3.3 136 1.4 0.27 I IRAS04169+2702 TAU02 04:21:11.40 +27:01:09.0 140 +6.6 0.5 0.8 282 0.5 − I IRAS04181+2654A TAU03 04:22:00.60 +26:57:32.0 140 +7.4f 0.4 0.2 196 1.0 − II IRAS04189+2650(W) TAU04 04:27:02.60 +26:05:30.0 140 +6.3 1.4 1.5 161 0.8 0.64 I DGTAUB TAU06 04:27:57.30 +26:19:18.0 140 +7.2 0.6 2.7 80 0.8 0.09 I HH31IRS2,IRAS04248+2612 TAU07 04:29:30.00 +24:39:55.0 140 +6.3f 0.6 0.2 169 0.9 − II HH414,IRAS04264+2433 TAU08 04:32:32.00 +22:57:26.0 140 +5.5g 0.5 1.2 300 0.5 0.18 II L1536IRS,IRAS04295+2251 TAU09 04:35:35.30 +24:08:19.0 140 +5.5 1.0 1.7 82 1.4 0.06 II L1535IRS,IRAS04325+2402 W4001 18:31:09.42 −02:06:24.5 436 +4.9 13.3 7.4 40 2.3 1.97 0+PDR W40-MM3 W4002 18:31:10.36 −02:03:50.4 436 +4.8 32.6 3.7 46 4.6 2.25 0 W40-MM5 W4003 18:31:46.54 −02:04:22.5 436 +6.4 8.3 20.6 15 − 3.37 PS?+PDR W40-MM26 W4004 18:31:46.78 −02:02:19.9 436 +6.7 6.1 9.4 16 − 1.69 PS?+PDR W40-MM27 W4005 18:31:47.90 −02:01:37.2 436 +6.5 5.9 27.3 14 − 1.97 PS?+PDR W40-MM28 W4006 18:31:57.24 −02:00:27.7 436 +6.6 4.1 2.2 33 − 0.31 PS?+PDR W40-MM34 W4007 18:32:13.36 −01:57:29.6 436 +7.4 3.6 3.3 36 0.9 0.25 0 W40-MM36 Notes.(a) FromGaussianfitstotheC18O J=3−2observations(seeTableA.9).(b) CalculatedasdiscussedinSect.A.7.(c) Evolutionaryclassi- fication, see Sect. A.7 for details of the determination. PS=pre-stellar, PDR=narrow, bright 12CO J=10−9 emission consistent with a photon- dominated region. (d) First additional names for Aquila, Serpens South and W40 are from Maury et al. (2011), ‘-emb’ names from Enoch et al. (2009). (e) Sources off-centre in beam. Peak coordinates in PACS maps used for extraction of ground-based data: AQU01 18:29:03.61 −01:39:05.6;AQU0218:29:08.20−01:30:46.6;AQU0318:30:24.69−01:54:11.0;AQU0418:30:29.32−01:56:42.4.(f) FromGaussianfitsto the13CO(J=3−2)observationsasC18Oisnotdetected.(g)TakenfromCasellietal.(2002). region. Secondly, by excluding older Class I and flat-spectrum DIGIT are designed to probe, the addition of the WILL survey sources,weintroduceabiastowardsyoungerClassIsources,so leavesthecombinedsamplebroadlycomplete. thepropertiesofanaverageClassIsourcemaywellbeslightly different from those determined with this sample. However, in general for the part of parameter space that WILL, WISH and 5 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars 3. Observationsandresults Few differences have been found in line-shape or gain be- tween the H and V polarisations (e.g. Kristensen et al. 2012; TheprimaryobservationsfortheWILLsurveyweretakenwith Yıldız et al. 2013; Mottram et al. 2014), so after visual inspec- Herschel1 usingtheHeterodyneInstrumentfortheFar-Infrared tion the two polarisations were co-added to improve signal-to- (HIFI,deGraauwetal.2010)andPhotodetectorArrayCamera noise.Thevelocitycalibrationisbetterthan100kHz,whilethe and Spectrometer (PACS, Poglitsch et al. 2010) detectors be- pointing uncertainty is better than 2(cid:48)(cid:48) and the intensity calibra- tween the 31st October 2012 and 27th March 2013. The ob- tionuncertaintyis(cid:46)10%(Mottrametal.2014). servingmodes,observationalproperties,datareductionandde- tection statistics are described for each instrument separately in Sections 3.1 and 3.2. Complementary spectroscopic maps 3.1.2. Results obtained through follow-up observations of the sample with Figures 2 and 3 present the observed HIFI ortho-H O 1 −1 ground-basedfacilitiesarethendescribedinSection3.3. 2 10 01 (557GHz) ground-state transition and 12CO J=10−9, respec- tively, for all WILL sources. The water spectra are complex, 3.1. HIFI containingmultiplecomponents,someabsorption,whichisusu- allynarrow,andemissionupto± ∼100kms−1 fromthesource 3.1.1. Observationaldetails velocity, similar to other Herschel HIFI observations of water HIFI was a set of seven single-pixel dual-sideband hetero- towards Class 0/I sources (e.g. Kristensen et al. 2012). 12CO dyne receivers that combined to cover the frequency ranges J=10−9 typically shows two gaussian emission components 480−1250GHzand1410−1910GHzwithasidebandratioofap- withalowertotalvelocityextentthanH2O.Strong,narrowab- proximatelyunity.Spectraweresimultaneouslyobservedintwo sorption in 12CO J=10−9 for W40 sources 01, 03 and 06 (see polarisations, H andV,whichpointedatslightlydifferentposi- Fig. 3) indicates that contamination in at least one of the refer- tions on the sky (∼6.5(cid:48)(cid:48) apart at 557GHz decreasing to ∼2.8(cid:48)(cid:48) ence positions affects these spectra and also likely affects most at 1153GHz), with two spectrometers simultaneously provid- oftheH2Otransitionsforthesesourcesaswell.Thenarrowyet ing both wideband (WBS, 4GHz bandwidth at 1.1MHz reso- brightnatureofthe12CO J=10−9seeninsixsources(OPH01, lution)andhigh-resolution(HRS,typically230MHzbandwidth W4001andW4003−06,seeFig.3),combinedwiththenarrow at250kHzresolution)frequencycoverage. andlow-intensitynatureoftheH2Oemission,suggeststhatthey The HIFI component of the WILL Herschel observations arerelatedtophoton-dominatedregions(PDRs,c.f.forexample consistsofsinglepointedspectraatfourfrequencysettings,prin- COobservationsoftheOrionBarPDR,Hogerheijdeetal.1995; cipally targeting the H O 1 −1 , 1 −0 and 2 −1 tran- Jansenetal.1996;Nagyetal.2013). 2 10 01 11 00 02 11 sitions at 557, 1113 and 988GHz respectively and the 12CO Thedetectionstatisticsforalltransitionsaregiveninthelast J=10−9 transition at 1152GHz, which also includes the H O column of Table 2, excluding W40 sources 01, 03 and 06 due 2 3b1e2a−m2-2s1wtirtacnhsmitioodne. Awlilthobasenrovdatoiofn3s(cid:48)wuseirnegcfaarsritecdhoopuptiinng.duTahle- ttoionthiescdoentetacmteidnatotiwonarodfst3h9e/s4e6sspoeucrtcrae.sTinhetoHta2lO, in1c10lu−d1i0n1gtr3a3n/s3i6- specificcentralfrequenciesofthesettingswerechosentomax- confirmed Class 0/I sources (not detected in CHA02, PER04 imisethenumberofobservableH O,COandH18Otransitions, and W4007, see Fig. 2), while 12CO J=10−9 is detected to- the details of which are given in2Table 2 along2 with the cor- wards40/46sourcesintotalincluding32/36Class0/Is(notde- responding instrumental properties, spectral and spatial resolu- tectedinCHA02,PER07,PER15andW4007).H128O110−101 tion, and observing time. The main difference compared to the isonlydetectedtowardsthesourcewiththestrongestH2Oemis- WISH HIFI observations of low-mass sources (see Kristensen sion,SERS02,whileC18OJ=9−8isonlydetectedtowardsfour et al. 2012; Mottram et al. 2014) was that the frequency of the sources(PER02,SERS02,W4004and 05). WILL observations for the H O 1 −1 and 1 −0 settings AmoredetailedanalysisofthekinematicsoftheHIFIlines 2 10 01 11 00 wassetsothatthecorrespondingH18Otransitionwasobserved is presented and discussed in San Jose´-Garc´ıa (2015), includ- 2 simultaneously, and longer observing times were used for the ingtheresultsofGaussiandecompositionofthelinesusingthe H O1 −1 setting.TheobservationIDnumbersforallWILL methodsoutlinedfortheWISHsamplebyMottrametal.(2014) 2 10 01 HIFIobservationsaregiveninTableB.1. andSanJose´-Garc´ıaetal.(2013)forH2OandCO,respectively. Initial data reduction was conducted using the Herschel In summary, the minimum number of Gaussian components is Interactive Processing Environment (hipe v. 10.0, Ott 2010). found that results in no residuals above 3σ, with these com- After initial spectrum formation, any instrumental standing ponentsthencategorisedbetweentheenvelopeandCorJ-type waves were removed. Next, a low-order (≤2) polynomial base- outflow-relatedshocksdependingontheirwidthandoffsetfrom line was subtracted from each sub-band. The fit to the baseline the source velocity. A global fit is used for the H2O transitions wasthenusedtocalculatethecontinuumlevel,compensatingfor with the component peak velocity and line-widths constrained the dual-sideband nature of the HIFI detectors (the initial con- byalllinesandtheintensityallowedtovarybetweentransitions tinuumlevelisthecombinationofemissionfromboththeupper because the lines all have a consistent shape. The different CO and lower sideband, which we assume to be equal). Following transitionsarefitindependentlyastheirlineprofileshapesvary this the WBS sub-bands were stitched into a continuous spec- betweendifferenttransitions. trumandalldatawereconvertedtotheT scaleusingthelat- MB est beam efficiencies (see Table 2). Finally, for ease of analy- 3.2. PACS sis, all data were converted to FITS format and resampled to 0.3kms−1 spectral resolution on the same velocity grid using 3.2.1. Observationaldetails bespokepythonroutines. PACS consisted of four detectors, two photoconductor arrays 1 Herschel is an ESA space observatory with science instruments with16×25pixelsforintegralfieldunit(IFU)spectroscopyand providedbyEuropean-ledPrincipalInvestigatorconsortiaandwithim- two bolometer arrays with 16×32 and 32×64 pixels for broad- portantparticipationfromNASA. band imaging photometry. In IFU spectroscopy mode, obser- 6 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars 1.0 AQU01 4 AQU02 6 AQU03 10 AQU04 9 AQU05 9 × × × × × 0.5 0.0 1.0 AQU06 10 CHA01 10 CHA02 10 CRA01 10 OPH01 8 OPH02 8 × × × × × × 0.5 0.0 1.0 PER01 10 PER02 6 PER04 10 PER05 7 PER06 3 × × × × × 0.5 0.0 1.0 PER07 2 PER08 2 PER09 4 PER10 8 PER12 3 PER13 9 × × × × × × 0.5 0.0 1.0 PER14 10 PER15 10 PER16 5 PER17 7 PER18 8 × × × × × 0.5 0.0 1.0 PER19 10 PER20 3 PER21 7 PER22 6 SCO01 10 SERS01 5 × × × × × × 0.5 0.0 1.0 SERS02 TAU01 10 TAU02 10 TAU03 10 TAU04 10 × × × × 0.5 0.0 1.0 TAU06 10 TAU07 9 TAU08 10 TAU09 10 W4001 W4002 3 × × × × × 0.5 0.0 1.0 W4003 W4004 6 W4005 4 W4006 10 W4007 10 ) × × × × K ( 0.5 B M T 0.0 75 0 75 75 0 75 75 0 75 75 0 75 75 0 75 − 1 − − − − v(km s ) − Fig.2.H O1 −1 (557GHz)continuum-subtractedspectraforthefinalWILLsample.Allhavebeenrecentredsothatthesource 2 10 01 velocityisatzero.Thenumberintheupper-rightcornerofeachpanelindicateswhatfactorthespectrahavebeenmultipliedbyin ordertoshowthemonacommonscale. 7 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars 8 AQU01 5 AQU02 6 AQU03 5 AQU04 6 AQU05 5 × × × × × 6 4 2 0 8 AQU06 6 CHA01 5 CHA02 5 CRA01 3 OPH01 0.5 OPH02 3 × × × × × × 6 4 2 0 8 PER01 3 PER02 PER04 5 PER05 5 PER06 5 × × × × 6 4 2 0 8 PER07 5 PER08 PER09 0.6 PER10 6 PER12 6 PER13 5 × × × × × 6 4 2 0 8 PER14 7 PER15 6 PER16 6 PER17 6 PER18 4 × × × × × 6 4 2 0 8 PER19 5 PER20 5 PER21 4 PER22 2 SCO01 5 SERS01 5 × × × × × × 6 4 2 0 8 SERS02 TAU01 5 TAU02 5 TAU03 5 TAU04 5 × × × × 6 4 2 0 8 TAU06 5 TAU07 6 TAU08 5 TAU09 5 W4001 0.1 W4002 × × × × × 6 4 2 0 8 W4003 0.2 W4004 0.8 W4005 W4006 2 W4007 5 ) × × × × K 6 ( 4 B M 2 T 0 25 0 25 25 0 25 25 0 25 25 0 25 25 0 25 − 1 − − − − v (km s ) − Fig.3.CO J=10−9continuum-subtractedspectraforthefinalWILLsample.Allhavebeenrecentredsothatthesourcevelocityis at zero. The number in the upper-right corner of each panel indicates what factor the spectra have been multiplied by in order to s8howthemonacommonscale. J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars Table2.PrinciplelinesobservedwithHIFI. Species Transition RestFrequencya E /k A b n c η d θ e WBSresolution HRSresolution Obs.Timef Det.g u b ul cr mb mb (GHz) (K) (s−1) (cm−3) (H/V) ((cid:48)(cid:48)) (kms−1) (kms−1) (min) o-H O 1 -1 556.93599 61.0 3.46×10−3 1×107 0.62/0.62 38.1 0.27 0.03 38 39/46 2 10 01 3 -2 1153.12682 249.4 2.63×10−3 8×106 0.59/0.59 18.4 0.13 0.06 13 7/46 12 21 p-H O 1 -0 1113.34301 53.4 1.84×10−2 1×108 0.63/0.64 19.0 0.13 0.06 28 28/46 2 11 00 2 -1 987.92676 100.8 5.84×10−3 4×107 0.63/0.64 21.5 0.15 0.07 36 25/46 02 11 o-H18O 1 -1 547.67644 60.5 3.29×10−3 1×107 0.62/0.62 38.7 0.27 0.07 38 1/46 2 10 01 p-H18O 1 -0 1101.69826 52.9 1.79×10−2 1×108 0.63/0.64 19.0 0.13 0.06 28 0/46 2 11 00 C18O 9−8 987.56038 237.0 6.38×10−5 2×105 0.63/0.64 21.5 0.15 0.07 36 4/46 CO 10−9 1151.98545 304.2 1.01×10−4 3×105 0.59/0.59 18.4 0.13 0.06 13 40/46 13CO 10−9 1101.34966 290.8 8.86×10−5 3×105 0.63/0.64 19.3 0.13 0.06 28 20/46 Notes. (a) Taken from the JPL database (Pickett et al. 2010). (b) Taken from Daniel et al. (2011) and Dubernet et al. (2009) for H O, the JPL 2 database (Pickett et al. 2010) for H18O and CO isotopologues. (c) Calculated for T=300K. (d) Taken from the latest HIFI calibration docu- 2 mentathttp://herschel.esac.esa.int/twiki/pub/Public/HifiCalibrationWeb/HifiBeamReleaseNote Sep2014.pdf.(e)Calculatedusingequation3from Roelfsemaetal.(2012).(f) Totaltimeincludingon+offsourceandoverheads.(g) Numberofdetections.Duetocontaminationofthereference positions,thestatusforobservationsofW40sources01,03and06cannotbedetermined. Table 3. Wavelength ranges covered by WILL PACS line-scan solved line profiles in a few sources. All observations used a settings. chopping/nodding observing mode with off-positions within 6(cid:48) of the target coordinates. The obsids for WILL PACS observa- Setting Wavelengths PrimaryTransitions tionsaregiveninTableB.1.Foronesource,TAU08,PACSdata (µm) were not obtained because the coolant on Herschel ran out be- 78.6− 79.5 H2O423−312,615−524,CO33−32,OH foretheycouldbesuccessfullyobserved. 81.3− 82.2 H O6 −5 ,CO32−31 2 16 05 Data reduction was performed with hipe v.10 with 84.2− 85.0 H O7 −7 ,CO31−30,OH 2 16 07 89.5− 90.4 H O3 −2 ,CO29−28 CalibrationTree45,includingspectralflat-fielding(seeHerczeg 1 123.7−126.1 H2O422−311,CO21−20 etal.2012;Greenetal.2013a,formoredetails).Thefluxden- 2 04 13 157.0−158.0 [Cii] sitywasnormalisedtothetelescopicbackgroundandcalibrated 162.5−164.5 CO16−15,OH usingobservationsofNeptune,resultinginanoverallcalibration 168.3−170.0 uncertaintyinfluxdensitiesofapproximately20%(Karskaetal. 179.0−180.8 H2O212−101,221−212 2014b).1Dspectrawereobtainedbysummingoveranumberof 53.6− 55.0 spaxelschosenafterinspectionofthe2Dspectralmaps(Karska 63.0− 63.5 H O8 −7 ,[Oi] et al. 2013), with only the central spaxel used for point-like 2 2 18 07 107.3−109.7 H2O221−110,CO24−23 emission multiplied by the wavelength-dependent instrumental 189.0−190.5 correction factors to account for the PSF (see PACS Observers Manual2). vations were taken simultaneously in the red 1st order grating 3.2.2. Results (102−210µm) and one of the 2nd or 3rd order blue gratings (51−73µm or 71−105µm) over 5×5 spatial pixels (spaxels), An overview of the PACS spectra for all sources is shown in which covered a 47(cid:48)(cid:48)×47(cid:48)(cid:48) field of view. For details of the 70, Fig. 4, while an overview of the detection of all transitions is 100and160µmPACS(and250,350and500µmSPIRE,Griffin giveninTableA.4.AnextensiveanalysisofthePACSdatafor etal.2010)photometricmapsusedtodeterminethecontinuum WILL sources in the Perseus molecular cloud was published fluxdensitiesfortheSEDs(discussedinSectionA.1)seeAndre´ in Karska et al. (2014b), while a global study of PACS spec- etal.(2010). troscopy towards all WILL, DIGIT and WISH sources will be WILL PACS observations were carried out using the IFU presentedinKarskaetal.(inprep.).Linefluxdensitieswereex- in line-scan mode where deep observations were obtained for tractedfromthePACSdataasdescribedinKarskaetal.(2013). targetedwavelengthregions(bandwidth∆λ/λ=0.01)aroundse- Thedetectionstatisticsforthemaintransitionsarealsogiven lected transitions. Two wavelength settings were used, each in- in Table A.4. The most frequently detected line is [Oi], which cluding observations in both the blue and red gratings, as sum- is detected in 42 out of 48 sources. Those sources not showing marisedinTable3.Theprincipletransitionswithintheseregions [Oi] detections (AQU03−06, PER13 and W4006) are gener- arefromH2O,OH,[Oi],COand[Cii],thepropertiesofwhich allynotdetectedinotherPACSlines.Thesesourceshaveweak are given in Table A.3. While WILL targeted the key lines ob- and/or narrow lines, where detected, in the HIFI observations served by WISH, some of the wavelength ranges were shifted (c.f.Fig.2).Thereare30sourcesdetectedinatleastonePACS slightly in order to allow for better baseline subtraction or ad- water transition, while 27 are detected in at least one OH line ditional line detections (e.g. those around 82 and 90µm were and 32 in at least one CO line, with a detection more likely in shifted to slightly longer wavelengths) while others were omit- thelower-energytransitions. tedtosavetime(e.g.aroundCOJ=14-13).Thevelocityresolu- tion of PACS ranges from 75kms−1 at the shortest wavelength to 300kms−1, with only [Oi] sometimes showing velocity re- 2 http://herschel.esac.esa.int/Docs/PACS/html/pacs om.html 9 J.C.Mottrametal.:Outflows,infallandevolutionofasampleofembeddedlow-massprotostars Fig.4.Overviewofcontinuum-subtractedPACSspectraforselectedlines.ThesearenotcorrectedforthePSF.H O,COandOH 2 linesaremarkedinblue,redandcyan,respectively,withthe[Oi]markedingreen.They-axisofeachspectrumforalllinesexcept [Oi] goes from 0 to 5Jy, with the brightest sources scaled down by the factor indicated in red below the source name. The [Oi] spectraarescaledseparatelybyafactorbetween0.05and1. 3.3. Ground-basedfollow-up andregionsalreadyobservedinHCO+ J=4−3byCarneyetal. (2016),sosuchobservationswereundertakentoconfirmtheem- Follow-up ground-based observations were conducted towards bedded protostellar nature of the sample (see Appendix A.7). the WILL sample, where not already available, to complement Thefollow-upobservationsalsoincludedmapsof12CO J=3−2 the Herschel spectral line information. Approximately half of tocharacterisetheentrainedmolecularoutflowandC18OJ=3−2 the sources in the final catalogue were not part of the samples 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.