ebook img

Oscillator Representation in Quantum Physics PDF

280 Pages·1995·3.593 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Oscillator Representation in Quantum Physics

Lecture Notes in Physics NewSeries m: Monographs EditorialBoard H.Araki,Kyoto,Japan E.Brezin,Paris,France J.Ehlers,Garching,Germany U.Frisch,Nice,France K.Hepp,Zurich,Switzerland R.1.Jaffe,Cambridge,MA,USA R.Kippenhahn,Gottingen,Germany H.A.Weidenmuller,Heidelberg,Germany J.Wess,Munchen,Germany J. Zittartz,Koln,Germany ManagingEditor W. BeiglbOck AssistedbyMrs.SabineLandgraf c/oSpringer-Verlag,PhysicsEditorialDepartmentII Tiergartenstrasse17,D-69121Heidelberg,Germany The EditorialPolicyfor Monographs TheseriesLectureNotesinPhysicsreportsnewdevelopmentsinphysicalresearchand teaching- quickly, informally,and at ahighlevel.The type ofmaterialconsidered for publicationintheNewSeriesmincludesmonographspresentingoriginalresearchornew anglesinaclassicalfield.Thetimelinessofamanuscriptismoreimportantthanitsform, whichmaybepreliminaryortentative.Manuscriptsshouldbereasonablyself-contained. Theywilloftenpresentnotonlyresults ofthe author(s) butalso relatedworkbyother peopleandwillprovidesufficientmotivation,examples,andapplications. Themanuscriptsoradetaileddescriptionthereofshouldbesubmittedeithertooneofthe serieseditorsortothemanagingeditor.Theproposalisthencarefullyrefereed.Afmal decision concerningpublication can often onlybemade on the basis ofthe complete manuscript,butotherwisetheeditorswilltrytomakeapreliminarydecisionasdefinite astheycanonthebasisoftheavailableinformation. Manuscriptsshouldbenolessthan100andpreferablynomorethan400pagesinlength. FinalmanuscriptsshouldpreferablybeinEnglish,orpossiblyinFrenchorGerman.They should include a table ofcontents and an informative introduction accessible also to readersnotparticularlyfamiliarwiththetopictreated.Authorsarefreetousethematerial inotherpublications.However,ifextensiveuseismadeelsewhere,thepublishershould be informed. Authors receivejointly50 complimentarycopies oftheir book.Theyare entitledtopurchasefurthercopiesoftheirbookatareducedrate.Asarulenoreprintsof individualcontributionscanbesupplied.NoroyaltyispaidonLectureNotesinPhysics volumes.Commitmenttopublishis madebyletterofinterestratherthanbysigninga formal contract.Springer-Verlagsecuresthecopyrightforeachvolume. The Production Process Thebooksarehardbound,andqualitypaperappropriatetotheneedsoftheauthor(s)is used.Publicationtimeisabouttenweeks.Morethantwentyyearsofexperienceguarantee authorsthebestpossibleservice.Toreachthegoalofrapidpublicationatalowpricethe techniqueofphotographicreproductionfrom acamera-readymanuscriptwaschosen. Thisprocessshiftsthemainresponsibilityforthetechnicalqualityconsiderablyfromthe publisher to the author. We therefore urge all authors to observe very carefully our guidelines for the preparation ofcamera-readymanuscripts,which we will supply on request. This applies especially to the quality offigures and halftones submitted for publication.Figuresshouldbesubmittedasoriginalsorglossyprints,asveryoftenXerox copiesarenotsuitableforreproduction. Forthesamereason,anywritingwithinfigures shouldnotbe smallerthan 2.5 mm. Itmightbe usefulto lookatsome ofthe volumes alreadypublishedor,especiallyifsomeatypicaltextisplanned,towrite tothe Physics EditorialDepartmentofSpringer-Verlagdirect.Thisavoidsmistakesandtime-consum ingcorrespondenceduringtheproductionperiod. Asaspecialservice,weofferfreeofchargeLATEXandTEXmacropackagestoformatthe text according to Springer-Verlag's quality requirements.We stronglyrecommend au thors to make use ofthis offer,as the result willbe a book ofconsiderablyimproved technicalquality. Manuscriptsnotmeetingthetechnicalstandardoftheserieswillhavetobereturnedfor improvement. ForfurtherinformationpleasecontactSpringer-Verlag,PhysicsEditorialDepartmentII, Tiergartenstrasse17,D-69121Heidelberg,Germany. M. Dineykhan G.~Efimov G.Ganbold S.N.Nedelko Oscillator ReRresentation in Quantum Physics Springer Authors M.Dineykhan G.V.Efimov G.Ganbold S.N.Nedelko BogoliubovLaboratoryofTheoreticalPhysics JointInstituteforNuclearResearch(JINR) 141980Dubna,Russia ISBN3-540-59085-4Springer-Verlag Berlin Heidelberg NewYork CIPdataappliedfor. Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,re-useofillustra tions, recitation, broadcasting, reproduction on microfIlms or in any other way, and storageindatabanks.Duplicationofthispublicationorpartsthereofispermittedonly undertheprovisionsofthe GermanCopyrightLawofSeptember9,1965,initscurrent version,andpermissionforusemustalwaysbeobtainedfromSpringer-Verlag.Violations areliableforprosecutionundertheGermanCopyrightLaw. ©Springer-VerlagBerlinHeidelberg1995 PrintedinGermany Typesetting:Camera-readybytheauthors SPIN:10127309 55/3142-543210-Printedonacid-freepaper Contents 1. Introduction.............................................. 1 Part I. The Phase Structure of Quantwn Field Systems 2. Formulation ofthe Method ............................... 9 2.1 Breaking Symmetry in Quantum Field Theory.. ... .... .... 9 2.2 Canonical Quantization and the S-matrix 15 2.3 The Renormalization Group 18 2.3.1 Renormalization Schemes ,.. 18 2.3.2 Renormalization Group Equations. ................. 19 2.4 Unitary Nonequivalent Representations ofthe Canonical Relations. .................................... 21 2.4.1 An Infinite Number ofDegrees ofFreedom 22 2.4.2 CanonicalTransformations 25 2.4.3 The Van Hove Model 28 2.4.4 Renormalization Group Transformations 28 2.5 The Oscillator Representation Method 30 3. The Phase Structure ofthe (<p2)2 Field Theory in R1+1 .. 33 3.1 The One-Component <p4 Model ,.............. .. .... 34 3.1.1 The Initial Representation for G ~1 ................ 34 3.1.2 The Canonical Transformation. .... .... .... ........ 34 3.1.3 The Phase Structure. ............................. 36 3.2 The O(N)-Invariant Model (<p2)2 in Rl+1 •• .••• ..•• .••. ..•• 39 3.2.1 Initial Representation. ............................ 40 3.2.2 The Canonical Transformation. .................... 40 3.2.3 The Phase Structure. ............................. 42 4. The Phase Structure of the Three-Dimensional <p4 Theory 45 4.1 The Hamiltonian <p4 in R2+1 ............................. 45 4.2 The Canonical Transformations 47 4.3 The Symmetric Model 50 4.3.1 The BS-phase. ... ............................ .... 51 4.3.2 The S-phases 52 VI 4.4 The Model with SSB in the Initial Representation 53 4.4.1 The BS-phase " .... .... .. .. ........ . 54 4.4.2 The S-phase ............ 54 4.5 The O(N)-Invariant Model in R2+l ... .................... 55 4.5.1 The Hamiltonian ofthe Model. .. .............. .... 55 4.5.2 The Canonical Transformation ,..... 56 4.5.3 The Phase Structure. ............................. 60 4.6 Stability Under Change ofthe R-scheme in the Initial Representation ................................... 65 4.6.1 Subtraction at Zero External Momentum and Arbitrary "Mass" in Propagators. .................. 67 4.6.2 Dimensional Regularization and the Minimal Subtraction Scheme. .............................. 68 4.6.3 DimensionalRegularizationandZero-MomentumSub- traction ......................................... 69 5. The Four-Dimensional 11'4 Theory 71 5.1 The Hamiltonian (<p4)4 and Canonical Transformations.. .... 71 5.2 The Symmetric Phases.. ..... ... .... .... .... ........ .... 73 5.3 DynamicalSymmetry Breaking 77 5.4 The Asymptotically Free Model.. .... .................... 78 5.5 ACorrelationBetween the PhaseStructureandUV Divergences 79 6. The 11'4 Theory at Finite Temperatures ................... 81 6.1 The Two-DimensionalModel. .... .... ................ .... 81 6.1.1 The Hamiltonian at Zero Temperature. ......... .... 81 6.1.2 The Thermo Field Dynamics. ...................... 83 6.1.3 The Symmetric Model 86 6.1.4 The Model with SSB in the Initial Representation. ... 87 6.2 The Three-Dimensional Model <p4 at Finite Temperatures ... 91 6.2.1 The Thermal Vacuum Representation. .............. 91 6.2.2 The Symmetric Model 93 6.2.3 The Case ofSSB in the Initial Representation. ....... 96 6.3 The Systems in Rl+1 and R2+1 ..........•.........•••..• 98 7. The Two-Dimensional Yukawa Theory 99 7.1 The Hamiltonian and Renormalization 100 7.2 The Canonical Transformation 101 7.3 The Phase Structure 104 7.3.1 The Pure YukawaInteraction 104 7.3.2 The Yukawa Model with Boson Self-Interaction 109 7.4 Comparison with Other Approaches 115 7.4.1 The Renormalized Formulation 116 7.4.2 The Regularized Formulation 118 References 121 VII Part II. The Gaussian Equivalent Representation of Functional Integrals in Quantum Physics 8. Path Integrals in Quantum Physics 127 8.1 Gaussian Path Integrals 127 8.2 A Short Historical Review on the Path Integration Method .. 131 8.3 The Feynman Path Integral Formalismin Quantum Mechanics 134 8.4 PIs as Solutions ofDifferential Equations 138 8.5 Path Integrals in Quantum Field Theory 142 9. The Gaussian Equivalent Representation of Functional Integrals 145 9.1 A General Description ofthe Method 145 9.2 The GER Method for Quantum Statistics 150 10. The Polaron Problem 157 10.1 Introduction 157 10.2 The Polaron Path Integral Formulated in d-dimensions 159 10.3 Application ofthe GER Method to the d-dimensional'Polaron 161 10.4 Bounds for the Polaron Ground-State Energy in d Dimensions162 10.5 Particular Case ofFeynman's Estimation 165 10.6 Corrections to the Leading Term ofthe Energy 166 10.7 Scaling Relations 168 10.8 Numerical Results 169 10.8.1 The Weak Coupling Limit 170 10.8.2 The Strong Coupling Regime 174 10.8.3 The Intermediate Coupling Range 177 11. The Character ofthe Phase Transition in Two- and Three- Dimensional cp4 Theory 179 11.1 A Statement ofthe Problem 179 11.2 The Renormalized Lagrangianofthe <p~3 - Model 180 11.3 The Effective Potential in <p~3 - Theory 181 11.4 The Leading-Order Termofthe EP as the "Cactus-type" Po- tential in <p~ .....•.........•................••......... 183 11.5 The Non-Gaussian Correction in <p~ ........•..........•••. 184 11.6 The Strong Coupling Regime in <p~ ....•...••...•.....•••• 187 12. Wave Propagation in Randomly Distributed Media 189 12.1 The Green Function ofthe Wave Equation 189 12.2 Calculation ofthe PI by the GER Method 192 12.3 The Green Function for Large Distances 195 VIII 13. Bound States in QFT 197 13.1 The Mass ofBound States " 197 13.2 The Nonrelativistic Limit 201 References 203 Part III. Oscillator Representation in Quantum Mechanics 14. The Oscillator in Quantum Mechanics 209 15. The Oscillator Representation in Rd ............•......... 215 15.1 Hamiltoniansin the Oscillator Representation 216 15.2 The Second Correction 218 15.3 The General Case " 220 16. The Oscillator Representation in the Space R3 .....•...•. 223 16.1 Large Distances 224 16.1.1 Small Distances 225 16.2 Formulation ofthe Problem 226 16.2.1 The Ground State Energy in the Zeroth and Second Approximations 228 16.2.2 Radial Excitations 229 16.2.3 The Upper Estimate 230 16.2.4 The Parameter D and the Oscillator Basis 231 17. Anharmonic Potentials 235 17.1 Anharmonic Potentials in R1 •••..•••.........•••••.•.•.. 236 17.2 Anharmonic Potentials in R3 240 17.2.1 Power-Law Potentials 241 17.2.2 The Logarithmic Potential. 245 18. Coulomb-Type Potentials '" 247 18.1 The Coulomb Potential 247 18.2 The Screened Coulomb Potential 248 18.2.1 The Critical Screening Length 250 19. The Relativized Schrodinger Equation 251 19.1 Examples 254 20. Three-Body Coulomb Systems 257 20.1 The Three-Body Hamiltonianfor the Ground State 258 20.2 The Hamiltonian in the Oscillator Representation 263 20.2.1 The Accuracy ofthe Zeroth Approximation 265 20.2.2 The Stability ofThree Unit-Charge Systems 267 IX 20.3 Mesic Molecules ofLight Nuclei in the Oscillator Representation 270 20.3.1 The Binding Energy ofthe Mesic Molecules of Light Nuclei 271 20.3.2 The Stability ofMesic Molecules ofLight Nuclei 273 References 277 1. Introduction The investigation ofmost problemsofquantum physics leads to the solution ofthe Schrodinger equation with an appropriate interaction Hamiltonian or potential. However, the exact solutions are known for rather a restricted set of potentials, so that the standard eternal problem that faces us is to find the best effective approximation to the exact solution of the Schrodinger equation under consideration. In the most general form, this problem can be formulated as follows. Let a total HamiltonianH describing a relativistic (quantum field theory) or a nonrelativistic (quantum mechanics) system be given. Our problem is to solve the Schrodinger equation Hlftn= Enlftn, i.e., to find the energy spectrum {En} and the proper wave functions {lftn} = including the'ground state or vacuum lfto 10). The main idea of any ap proximation technique is to find a decomposition in such a way that Ha describes our physical system in the "closest to H" manner, and the Schrodinger equation = HolJt.(O) E(O)lJt.(O) n n n can be solved exactly. The interaction Hamiltonian HI is supposed to give smallcorrections to the zero approximationwhich can be calculated. In this book, we shall consider the problem of a strong coupling regime in quantum field theory, calculations ofpath or functional integrals over the Gaussian measure and spectral problemsin quantum mechanics. Let us con sider these problems briefly. The real problems ofquantum field theory which will be studied in this book can be exemplified by a one-component scalar field. The total Hamil tonian is Ifthecouplingconstant9issmallenoughonecanchooseinthedecomposition H=Ho+HI

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.