GeneticsandMolecularBiology,40,1(suppl),238-252(2017) Copyright©2017,SociedadeBrasileiradeGenética.PrintedinBrazil DOI:http://dx.doi.org/10.1590/1678-4685-GMB-2016-0093 ReviewArticle A walk on the wild side: Oryzaspecies as source for rice abiotic stress tolerance PalomaKoprovskiMenguer1,RaulAntonioSperotto2andFelipeKleinRicachenevsky3 1DepartamentodeBotânica,UniversidadeFederaldoRioGrandedoSul(UFRGS),PortoAlegre,RS, Brazil. 2SetordeGenéticaeBiologiaMoleculardoMuseudeCiênciasNaturais(MCN),CentrodeCiências BiológicasedaSaúde(CCBS),ProgramadePós-GraduaçãoemBiotecnologia(PPGBiotec),Centro UniversitárioUNIVATES,Lajeado,RS,Brazil. 3ProgramadePós-GraduaçãoemAgrobiologia,DepartamentodeBiologia,UniversidadeFederaldeSanta Maria(UFSM),SantaMaria,RS,Brazil. Abstract Oryzasativa,thecommoncultivatedrice,isoneofthemostimportantcropsforhumanconsumption,butproduction isincreasinglythreatenedbyabioticstresses.Althoughmanyeffortshaveresultedinbreedingricecultivarsthatare relativelytoleranttotheirlocalenvironments,climatechangesandpopulationincreaseareexpectedtosooncallfor new,fastgenerationofstresstolerantricegermplasm,andcurrentwithin-speciesricediversitymightnotbeenough toovercomesuchneeds.TheOryzagenuscontainsother23wildspecies,withonlyOryzaglaberrimabeingalsodo- mesticated.Ricedomesticationwasperformedwithanarrowgeneticdiversity,andtheotherOryzaspeciesareavir- tuallyuntappedgeneticresourceforricestresstoleranceimprovement.Herewereviewtheoriginofdomesticated Oryzasativafromwildprogenitors,theecologicalandgenomicdiversityoftheOryzagenus,andthestresstolerance variationobservedforwildOryzaspecies,includingthegeneticbasisunderlyingthetolerancemechanismsfound. Thesummaryprovidedhereisimportanttoindicatehowweshouldmoveforwardtounlockthefullpotentialofthese germplasms for rice improvement. Keywords:Oryza,rice,wildspecies,abioticstress,domestication. Received:April06,2016;Accepted:September27,2016. Introduction increasinglyexposedtoamyriadofabioticstresses(Foley et al., 2011; Mueller et al., 2012; Sang and Ge, 2013; Continuous population and consumption growth are Palmgrenetal.,2014). placingenormousdemandsonnaturalresourcesandagri- culture.Today,approximatelyabillionpeoplearechroni- Rice is one of the world’s most important staple callymalnourishedanditisuncertainwhetherourcurrent crops, feeding more than 2.7 billion people worldwide agriculturalsystemwillbeabletofeedtheexpectedworld (Muthayyaetal.,2014),andalsoamodelforgenomicre- population,projectedtoreachninebillionby2050.Theef- searchinmonocots.Itiscultivatedon150millionhectares ficient use of resources and reduced food waste can save of land, and its annual yield is close to 610 million tons muchfood,andincreasedcropproductionisfundamental (http://irri.org/). Due to global adverse climate changes, tomeettheworld’sfuturefoodneeds(Godfrayetal.,2010; ricegrowthandproductivityinrecentyearshasbeenseri- Foleyetal.,2011;Palmgrenetal.,2014).However,thereis ously affected by abiotic stresses such as cold, drought, an urgent need to reduce agriculture’s environment foot- heat, flood, and salt (Zhang et al., 2015). Plants have print, and farming land should not be expanded at the evolved complex but not well understood responses. A expenseofnaturalecosystems.Wearefacedwiththechal- complicated signaling network is effectively and timely lenge of increasing food production without degrading initiated,whichultimatelyreprogramstheexpressionofa land, water and biodiversity in an environment becoming large set of stress-responsive genes (Hong et al., 2016), leading to a series of morphological, physiological, and biochemicalchanges(Scafaroetal.,2011;Leietal.,2013). Send correspondence to Felipe Klein Ricachenevsky. Departa- The acclimation processes that result from stress percep- mentodeBiologia,UniversidadeFederaldeSantaMaria(UFSM), tionaimsatprotectingplantsfromdamagesandincreases Av.Roraima1000,CEP97105-900,Prédio16,sala3254,Santa Maria, RS, Brazil. E-mail: [email protected] thechanceofsurvival(HuandXiong,2014).However,itis Mengueretal. 239 important to highlight that acclimation to stressful condi- damagearelowpercentageanddelayedgermination(Cruz tionsdoesnotoccurinallplantspecies,anddependingon et al., 2013; Dametto et al., 2015), resulting in yield de- stress intensity and duration, growth and yield can be se- creasesupto25%ofthefinalyieldandinincreasedweed verely affected. In nature, there is a wide variability to competition (Fujino et al., 2004). During the vegetative stress response and tolerance, making worthwhile the stage,itcanseverelyaffectseedlingestablishment,leading searchfor“tolerancegenes”inwildrelativesofcultivated to yellowing of the leaves, growth retardation, and de- species. creasedtillering(Cruzetal.,2013).Lowtemperaturesthat Abioticstressisamajorconcernforriceproduction, occur at critical reproductive stages can adversely affect and an increasing threat to food security considering cli- grainquality(incompletegrainmaturation)orcauseyield mate change, population increase and area of arable land reductions(Jenaetal.,2012;Cruzetal.,2013;Zhangetal., available. Drought, flooding and extreme temperatures 2014). should become more frequent according to predictions Availabilityofirrigationwaterisalimitingfactorin (Wang, 2005; Bita and Gerats, 2013; Hirabayashi et al., attainingthefullpotentialyieldinmanycrops(Singhetal., 2013), which are likely to increase pressure on grain har- 2015).Droughtisoneofthemostwidespreadanddamag- vest.Foodsecurityisanissuetothehumanpopulationasa ingenvironmentalstressfactorsinplants(Krannichetal., whole, but especially in rural areas of Asia and Africa, 2015), especially in rice, which is sensitive to drought whichrepresentabout35%ofthetotalriceharvestarea.In stressbecauseitisacclimatedtoeitherrain-fedorfullyirri- Asia, where 700 million people live in extreme poverty, gatedfields.Theeffectofdroughtmayvarywiththediffer- 30%ofthemareinregionsthatarepronetoabioticstresses ent genotypes, development stages, and degree and dura- suchasflooding,droughtandexcesssoilsalinity(Ismailet tionofdroughtstress(Wangetal.,2011).Riceplantsare al.,2013).Thesestressesoftenoccurincombination,and highly sensitive to drought stress during vegetative stage stressresponsivepathwaysoftenshowextensivecross-talk (resultinginreducedheight,tillernumber,andleafarea),at (Mittler2006). thepanicleinitiationandbootingstages(Jiangetal.,2004; Flooding is a widespread environmental stress. The Wang et al., 2011). In China, the average annual drought rapiddeclineintheoxygen(O )diffusionrateduringflood- affectedareaisupto27millionhectaresandriceproduc- 2 ingisaccompaniedbyareductionincellularO levelsand tion has decreased by 70-80 billion Kg since the 1990s 2 anenergycrisis,whichareparticularlyseverewhenphoto- (Luo,2010). synthesisislimitedorabsent(Bailey-SerresandVoesenek, Adeclineinriceproductioncausedbyheatstressis 2008). Although rice is considered a flood tolerant crop, one of the biggest concerns resulting from future climate only limited cultivars display tolerance to prolonged sub- change. Maximum and minimum daily temperatures, and mergence(Niroulaetal.,2012),withmostdyingwithin14 thenumberofhotdaysandwarmnightsinayear,areesti- daysofcompletesubmergence. matedtoincreaseovermostlandareas(IPCC,2014).Inad- Salinityisoneofthemostdevastatingabioticstresses dition, climate variability is predicted to increase, leading in rice, and the salt-affected soils currently account for to frequent episodes of heat stress, often coinciding with about20%ofthetotalpaddyriceplantingarea(Zhouetal., keydevelopmentalstagesincrops,suchasflowering(Hira- 2016). Soil salinity has adverse effects on plant germina- bayashietal.,2015).Itispredictedthatriceyieldswould tion,strength,andyield(MunnsandTester,2008).Onex- bereducedbyupto10%withanaveragedailytemperature posure to salt stress, the ionic balance (especially Na+/K+ increase of 1 °C (Peng et al., 2004). During early growth ratio)anddistributionistheultimatemanifestationofsev- stagesofrice,theoccurrenceofheatstressinhibitsseedling eralphysiologicprocessesinresponsetosaltstress(Chen establishment,leadingtonon-uniformgrowth,andreduced Yetal.,2013),creatinganimbalanceinthesuppliesofwa- yield. The physiological and genetic basis of the heat re- ter and other nutrient solutes (Sengupta and Majumder, sponseduringtheseedlingstageispoorlyunderstood(Lei 2010).Mostplantscanadapttolowormoderatesalinities, etal.,2013).Hightemperaturesatanthesiscausespikelet buttheirgrowthisseverelylimitedabove200mMNaCl. sterilityduetothefailureofantherdehiscenceandthere- Therefore, plant survival and growth depends on adapta- ductioninthenumberofgerminatingpollengrainsonthe tions to re-establish ionic homeostasis (Hasegawa et al., stigma,leadingtoreductionsingrainyield(Jagadishetal., 2000). 2010). Coldstressisoneofthemajorenvironmentalfactors Therefore, the development of cultivated rice with limitingthegrowth,productivity,andgeographicaldistri- abioticstresstoleranceisneededtostabilizetheproduction butionofcrops,mostlyintemperateandhighaltitudeareas, levelofrice.Themethodcurrentlypracticedforimproving due to the tropical origin of the rice species (Cruz et al., abiotic stress tolerance in rice cultivars is to explore 2013; Zhang et al., 2014). Low temperature can affect germplasmfordesirabletraits(Scafaroetal.,2010).Recent growthanddevelopmentofriceplantsduringanydevelop- attempts(untilnowlimitedtoO.sativaspecies)havebeen mentalstage,fromgerminationtograinfilling.Duringger- successful,withbackcrossingofOryzasativassp.japonica mination,themostcommonsymptomsofcoldtemperature and indica leading to substantial improvements in abiotic 240 Oryzaspeciesandabioticstress stresstolerance(Chengetal.,2007).Asthereareabout24 DivergenceoftheAgenometookplaceoverthepast knownspecieswithintheOryzagenus,alargesourceofge- two million years, and the current most divergent species netic material remains virtually untapped. The search for withinthisgrouparetheperennialO.meridionalis(rhizo- variabilityintheancestorsofcultivatedrice,whichunder- matous) and O. longistaminata (Zhu and Ge, 2005; goesalonghistoryofartificialselection,hasgreatpotential Vaughanetal.,2008).O.sativahastwopresumedwildan- valueforricebreeding.Stresstolerancetraitsarelikelyto cestors(O.rufipogonandO.nivara),whiletheannualO. befoundinwildricespecies(Tianetal.,2015),whichare barthii is the progenitor of African domesticated rice O. recognizedasanimportantgeneticresourceforcultivated glaberrima (please see next section). The two cultivated riceimprovement(SakaiandItoh,2010).Inthisreview,we speciesandtheirrespectiveprogenitorssharedanunknown focusonthericedomesticationhistory,thediversification ancestralofabout0.86MYA(SarlaandSwamy,2005;Zhu oftheOryzagenus,themechanismsandunderlyinggenetic etal.,2014).PerennialO.glumaepatulaistheonlyAge- basisforabioticstresstoleranceinspecieswithintheOryza nome group member with a current distribution in Latin diversity,whichillustratesthefeasibilityofusingricewild Americaandpresentsastrongrelationbetweengeneticand relativesasasourceforbreedingstresstolerantO.sativa. geographicdistances(Jacqueminetal.,2013;Vaughanet al., 2003). The A genome species O. meridionalis, O. Diversity in theOryzagenus longistaminata, O. glaberrima and O. barthii are consid- ered candidates for tolerance to heat and drought stresses RicebelongstothegenusOryza,ofthetribeOryzeae, basedontheirdistributionintemperatureandmoistureex- subfamily Ehrhartoideae and family Poaceae (Grass Phy- tremes(Atwelletal.,2014). logenyWorkingGroup,2001).ThetribeOryzeaeincludes TheCCgenomegroupisformedbyO.officinalis,O. nineortengeneraandupto70species,andisverylikely rhizomatis and O. eichingeri. All three species are peren- monophyletic; in this tribe, Oryza L. and Leersia Sw. are nial,occurringinshadeorsemi-shadeforestenvironments, the two largest genera (reviewed by Kellogg, 2009). The among other habitats. O. officinalis (generally rhizoma- analysisofbothnuclearandchloroplastgenesrevealedthat tous)hasahighlevelofgeneticdiversitybetweenpopula- Oryza and Leersia are sister genera. The divergence of tions, and O. rhizomatis (rhizomatous) is endemic to Sri Oryza–Leersia from the other genera occurred approxi- Lanka(Vaughanetal.,2003;LuandJackson,2004).The mately 20.5 MYA and the divergence of Oryza from only member of the diploid BB genome group is O. Leersia14.2MYA(Geetal.,2002;GuoandGe,2005). punctata, which also exists in the allotetraploid form TheOryzagenusconsistsof24speciesspreadworld- BBCC.BothBBandBBCCpopulationsaredistributedin wide (Table 1) (Kellogg, 2009; Jacquemin et al., 2013). Africa but occupying distinct niches. The diploid form is ThephylogenyoftheOryzagenusspansapproximately15 foundinopenhabitats,whiletheallotetraploidinshadeor millionyears(MY)ofevolutionaryhistory,aprocessthat semi-shade environments (Vaughan et al., 2003). Both created diverse ecological adaptations (Vaughan et al., formsofO.punctataarepotentialgeneticreservoirsfortol- 2003;Ammirajuetal.,2010).TheOryzaspecieshave11 erancetodroughtstressifconsideringtheirplasticityover differentgenometypes(AA,BB,CC,BBCC,CCDD,EE, moistureextremes(Atwelletal.,2014).O.eichingeriisbe- FF,GG,KKLL,HHJJ,andHHKK),anda3.6-genomesize lievedtobetheCCgenomedonortotheallotetraploidO. variation(Luetal.,2009;Jacqueminetal.,2013;Atwellet punctata,whilethediploidO.punctataistheBBgenome al.,2014). donortotheotherallotetraploidBBCCspeciesO.minuta A phylogenomic study sampled and sequenced 142 and O. malampuzhaensis (rhizomatous). Perennial O. single-copy genes to clarify the relationships among all minutaandO.malampuzhaensisseemtohavearisenfrom diploidgenometypesofthericegenus(Zouetal.,2008). different polyploidy events if considering their distinct The analysis identified two episodes of rapid speciation morphology,distributionandgeneticdiversity(Jacquemin thatoccurredapproximatelyfiveandtenmillionyearsago etal.,2013;Vaughanetal.,2003).O.minutadiploidpro- (MYA) and gave rise to almost the entire diversity of the genitors are O. punctata (BB), as already mentioned, and genus. The first event occurred approximately ten MYA O. officinalis (CC), and its recent polyploidization is be- (GuoandGe,2005)andledtoarapiddiversificationofthe lievedtohaveoccurredwithinthelast400,000years(Luet Ggenome,Fgenomeandalineagethatsubsequentlydiver- al., 2009). O. malampuzhaensis, endemic to the Nalla- sifiedintotherestofthericegenomes.Additionally,theH, malaisofEasternGhats(India),isunderseverethreatcon- J and K genomes that are now only present in tetraploid sidering its narrow distribution over a small geographical speciesalsodivergedaroundthistime(Geetal.,1999;Guo area,whichleadstovulnerabilitytohabitatdestructionand andGe,2005).Thesecondeventledtothediversification fragmentation (Elangovan et al., 2012). The CCDD ge- oftheA,B,andCgenomesapproximatelyfiveMYA,con- nomespeciesO.latifolia,O.altaandO.grandiglumisare firmingthattheAandBgenomespeciesaresistersandthe verycloselyrelated,withcurrentdistributioninLatinAme- Cgenomecladeissistertothat(Zouetal.,2008,Kellogg, rica.Infact,somestudiessuggestthatCCDDgroupmem- 2009). bersareonecomplexspecieswithdifferentecotypes(Vau- Mengueretal. 241 es n o si s e 3 Acc 27 52 405 36 f6 37 907 76 16 29 86 6 309 12 65 25 dUsualhabitat Savannaandsometimesinwoodland;wetsites;open UndulatingplainsofEucalyptusandLeptochloaorboxwoodland;wetsites;open Mopaneorsavannawoodland,savannaorfadama;deepwater;open Flatironstonerocks,granite/lateriticoutcrops;waterupto0.5mdeep,butmoreofteninshallowwater;open Saltmarshecosystems;inundated(twiceaday)withsalineriverorseawater;open Undisturbedforest,galleryorevergreenforest,orforestmargins;damporfloodedsites;shadeorsemi-shade Uplandtodeepwater;open Swampsandmarshes;usuallydeepwater;open Savannaorwoodland;wateratriver’sedgesorwetsites;openorshade Forestfloor;dampsites;shade Lowforest,rainforest,secondarygrowthforest,openwoodland,undulatingsavanna,pasture,cultivatedfields,openswamp,hillslopes,highridges,coastalbelts;wetordampsites;openorsemi-shade Forestareas;seasonallywet;shadeorsemi-shade Savannaoropeningsinrainorgalleryforests;deepwater;open Forestpools;seasonallydry;shade Edgesofseasonallyfreshwaterlagoons,temporarypools,andswamps;seasonallywet;open Forestareas;dampsites;shade metypes,lifespan,geographicaldistributions,habitatsandavailableaccessions. cDistribution Belize,Brazil,Colombia,GuyanaandParaguay NorthernAustralia Benin,Botswana,BurkinaFaso,Cameroon,CentralAfricaRepublic,Chad,Côted’Ivoire,Ethiopia,TheGambia,Ghana,Guinea,Mali,Maurita-nia,Namibia,Niger,Nigeria,Senegal,SierraLeone,Sudan,Tanzania,andZam-bia BurkinaFaso,Cameroon,CentralAfricanRepublic,Chad,DemocraticRepublicofCongo,Guinea,Mali,Niger,Senegal,SierraLeone,Sudan,Tanzania,andZambia India,SriLanka,BangladeshandMyanmar CentralAfricaRepublic,Côted’IvoireDemocraticRepublicofCongo,Ke-nya,Rwanda,SriLanka,Tanzania,andUganda WestAfrica Bolivia,Brazil,Colombia,CostaRica,Cuba,DominicanRepublic,FrenchGui-ana,Guyana,Honduras,Mexico,Panama,Surinam,andVenezuela Argentina,Bolivia,Brazil,Colombia,Ecuador,FrenchGuiana,Paraguay,andPeru India,Cambodian,Vietnam,Thailand,southernChina,Malaysia,Philippine,Ne-palandSriLanka Argentina,Belize,Bolivia,Brazil,Colombia,CostaRica,Cuba,DominicanRe-public,Ecuador,ElSalvador,FrenchGuiana,Guatemala,Guyana,Haiti,Honduras,Mexico,Nicaragua,Panama,Paraguay,Peru,PuertoRico,Suri-nam,TrinidadandVenezuela IndonesiaandPapuaNewGuinea Angola,Benin,Botswana,BurkinaFaso,Burundi,Cameroon,CentralAfricaRe-public,Chad,Congo,Côted’Ivoire,DemocraticRepublicofCongo,Ethio-pia,Gabon,TheGambia,Ghana,Kenya,Madagascar,Malawi,Mali,Martinique,Mozambique,Namibia,Niger,Nigeria,Rwanda,Senegal,Sey-chelles,SierraLeone,Somalia,SouthAfrica,Sudan,Tanzania,Uganda,Zambia,andZimbabwe WesternGhatsofSouthIndia Australia,Indonesia,andPapuaNewGuinea Indonesia,Malaysia,Philippines,andThailand o includingtheirgen a/Genome bLifehistory CCDD/Perennial EE/Perennial AA/Annual FF/Annual KKLL/Perennial CC/Perennial AA/Annual AA/Perennial CCDD/Perennial GG/Perennial CCDD/Perennial HHJJ/Perennial AA/Perennial BBCC/Perennial AA/Annual GG/Perennial s, Table1-Oryzaspecie Species Oryzaalta Oryzaaustraliensis Oryzabarthii Oryzabrachyantha Oryzacoarctata Oryzaeichingeri Oryzaglaberrima Oryzaglumaepatula Oryzagrandiglumis Oryzagranulata Oryzalatifolia Oryzalongiglumis Oryzalongistaminata Oryzamalampuzhaensis Oryzameridionalis Oryzameyeriana 242 Oryzaspeciesandabioticstress es n o ssi 82 e 4 7 9 Acc 86 206 317 g98 g98 21 21 161 212 3 dUsualhabitat Lowlandareasbesidestreamsandriverbanks;seasonallywet;shadeorsemi-shade Swampyareas;seasonallywetandshallowwater;open Edgeoforinforests,openvegetation,inabandonedculti-vatedricefields,inSoutheastAsianearthecoast;wetsites;openorsemi-shade Seasonallyswampareas,aroundwaterholesandpools,onriverbanksinareasthatfloodto1mdepth;open Forestareas;wetsites;shade Tropicalforestandopen,tallscrubwithgrassyopenings;swampyorperiodicallyfloodedareas;openorsemi-shade Marshesornearstreamsidesinforest;seasonallywet;shade Swampsandmarshes;seasonallydeepwaterandwetyearround;open Uplandtodeepwater;open Forestareas;wetsites;shadeorsemi-shade cDistribution PhilippinesandPapuaNewGuinea Bangladesh,Cambodia,China,India,Laos,Malaysia,Myanmar,Nepal,SriLanka,Thailand,andVietnam Australia,Bangladesh;Brunei,Cambodia,China,India,Indonesia,Laos,Malay-sia,Myanmar,Nepal,PapuaNewGuinea,Philippines,Thailand,andVietnam Angola,Benin,Cameroon,CentralAfricaRepublic,Chad,Congo,Côted’Ivoi-re,DemocraticRepublicofCongo,Ethiopia,Ghana,Kenya,Madagascar,Ma-lawi,Mozambique,Nigeria,Sudan,Swaziland,Tanzania,Uganda,Zambia,andZimbabwe Angola,Benin,Cameroon,CentralAfricaRepublic,Chad,Congo,Côted’Ivoi-re,DemocraticRepublicofCongo,Ethiopia,Ghana,Kenya,Madagascar,Ma-lawi,Mozambique,Nigeria,Sudan,Swaziland,Tanzania,Uganda,Zambia,andZimbabwe SriLanka Cambodia,Indonesia,Laos,Malaysia,Myanmar,PapuaNewGuinea,andThai-land Australia,Bangladesh,China,India,Indonesia,Laos,Malaysia,Myanmar,Ne-pal,PapuaNewGuinea,Philippines,SriLanka,Thailand,andVietnam SoutheastAsia IndonesiaandPapuaNewGuinea a,b,c,da,c,duandJackson2004,SenguptaandMajumder2010,Vaughanetal.,2003heGenesysDatabase(http://www.genesys-pgr.org/).eresiacoarctata.erennialO.punctata. Table1(cont.) aSpeciesGenome/ bLifehistory OryzaminutaBBCC/Perennial OryzanivaraAA/Annual OryzaofficinalisCC/Perennial OryzapunctataBB/Annual OryzapunctataBBCC/Perennial OryzarhizomatisCC/Perennial OryzaridleyiHHJJ/Perennial OryzarufipogonAA/Perennial OryzasativaAA/Annual OryzaschlechteriHHKK/Perennial aa,b,c,dAccordingtoJacqueminetal.,2013,LeNumberofaccessionentriesperspeciesintfIncludesaccessionsregisteredasOryza/PortgIncludesaccessionsfrombothannualandp Mengueretal. 243 ghanetal.,2003).O.altapolyploidizationwasestimatedto ica was introduced and hybridized with indica, around have happened less than 1.6 MYA. Additionally, O. 4,000yearsago(Fulleretal.,2009,2011;GrossandZhao, grandiglumisandO.latifoliaareconsideredcandidatesfor 2014).BothO.rufipogonanditsannualderivedO.nivara tolerancetofloodingstress(Luetal.,2009;Atwelletal., arenativetoIndiatoday.Inmostofthephysiologicaland 2014). morphologicaltraits,O.nivaraisrathersimilartotheculti- The GG genome species O. granulata and O. vated rice than O. rufipogon. Thus, O. nivara could have meyeriana are found in forest shade environments. O. served as the indica progenitor, and domestication would granulataoccupiesthemostbasalpositionintheOryzage- have required fewer genetic modifications or mating sys- nusphylogeny,presentsahighlevelofgeneticdiversitybe- temtransitions(Lietal.,2006;SangandGe,2013).Ifthis tween populations, and is a potential genetic resource for hypothesis is correct, selection would have been less in- tolerancetocoldstress(Aggarwaletal.,1997;Vaughanet tense for indica because O. nivara already presented sev- al., 2003; Atwell et al., 2014). The F genome species O. eral cultivated rice traits. Thus, key domestication alleles brachyantha has a compact genome (the smallest in the had more chance to arise during japonica domestication Oryza genus) and is distributed in West and East Africa fromO.rufipogon,andsemi-domesticatedindicabecame (ChenJetal.,2013).Limitedinformationisavailablefor theprimaryrecipientofthedomesticationalleleswhenja- O. coarctata (KKLL), O. longiglumis (HHJJ), O. ridleyi ponica was brought to India (Vaughan et al., 2008; Sang (HHJJ)andO.schlechteri(HHKK)(Vaughanetal.,2003; andGe,2013). Jacquemin et al., 2013). Regarding abiotic stresses, O. Duringtheprocessofcropdomesticationmanyofthe coarctatashowsconsiderableadaptationtosalinity,andO. inherited traits involved in biotic and abiotic stress resis- ridleyiandO.schlechteriareconsideredgoodgeneticres- tancemayhavebeenweakenedorlost,sinceitisestimated ervoirsfortolerancetoflooding(Luetal.,2009;Sengupta thatonly10-20%ofwildspeciesdiversityispresentincul- andMajumder,2010;Atwelletal.,2014).Asummaryof tivatedrice(Zhuetal.,2007;Palmgrenetal.,2014).Oneof allOryzaspeciescitedinthisreview,includingtheirgeno- themostimportantresourcesforimprovementofcultivated types,lifespan,geographicaldistributionsandhabitats,is riceisthegeneticreservoirhiddeninwildricespeciesdis- presentedinTable1. tributedacrossseveralbiomesworldwide.Itisalsoimpor- tant to underline that isolated populations within species The origin of Asian cultivated rice may also contain critical genes (Jacquemin et al., 2013; TherearetwodistinctgroupsofAsiancultivatedrice, Atwelletal.,2014).Ricegenebanksaroundtheworldex- namely O. sativa ssp. japonica and indica, which can be hibitanextensiveseedcollection,coveringthegeneticdi- differentiated by morphological and physiological traits, versity present in farmers’ cultivars, landraces and Oryza additionallytoanincompletesterilitybarrier(SangandGe, species. The two largest gene banks are the International 2013).Theoriginandevolutionofthejaponicaandindica RiceResearchInstituteinthePhilippines(4,370wildspe- subspeciesisunderconsiderabledebateoverthepastsev- cies and hybrids accessions at IRRI, http://irri.org), and eralyears.Twomodelsofinteractivedomesticationscenar- Oryzabase in Japan (1,703 entries, ios were proposed. The ‘snowballing model’ suggests a http://www.shigen.nig.ac.jp) (Jacquemin et al., 2013). single domestication event that created an early cultivar Moreover, the Genesys database withasetofdomesticationtraits.Thisearlycultivar,when (http://www.genesys-pgr.or) allows searching accessions hybridized with different wild rice populations, japonica- formanyspeciesinseveralseedbanks,beingavaluablere- like and indica-like, would have enabled the fixation of sourceforgermplasmdistribution(seetotalnumberofac- critical domestication alleles in each one of them sepa- cessions available for each Oryza species in Table 1). A rately.Alternatively,inthe‘combinationmodel’,bothsub- genus-wide comparative genome platform is essential to species were domesticated independently from diverse understand the genetic differences associated with abiotic wild rice ecotypes with subsequent hybridization, leading factors. The sequencing of 16 Oryza genomes is either to the introgression and fixation of domestication alleles complete or underway with “gold standard” reference se- (SangandGe,2007). quences available for the cultivated species O. sativa ssp. Consideringarcheologicalandgeneticstudiesavail- japonica and O. glaberrima, and for the wild species O. able to date, the ‘combination model’ is suggested as the barthii and O. brachyantha (Jacquemin et al., 2013). The closestscenariofromwhathadhappenedduringAsianrice introgression of desirable traits via conventional breeding domestication(GrossandZhao,2014).Briefly,thejapon- intocultivatedriceshouldbemorefeasiblefromcloserela- ica subspecies was originated from O. rufipogon in the tives(althoughaviablehybridO.coarctataXO.sativahas YangtzeRiverValleyinChina,wherericecultivationpos- been reported – see below). Among the AA genome spe- siblystartedaround8,000yearsago.Meanwhile,indicaor cies,introgressionlinescanbeobtainedbybackcrossingF1 proto-indica independent origin of cultivation probably hybridsthatarepartiallysterile,andvariouslevelsofpost- took place in the Ganges plains in India, but proto-indica zygotic barriers are known (Doi et al., 2008). The gene domesticationwasonlycompleteafterdomesticatedjapon- groups that cause these incompatibilities were genetically 244 Oryzaspeciesandabioticstress identified,butfurtherstudiesareneededtobreaktherepro- ductiveisolation(Jietal.,2005;Qiuetal.,2005).WhenO. sativa is crossed to non-AA genome species, viable but highlysterileF1hybridscanbeobtainedusingembryocul- ture.However,theaberrantchromosomepairinginmeiosis makes it difficult to introgress genetic information from thesespeciesintocultivatedrice(Doietal.,2008).Trans- genicapproacheswillbeeventuallyneededforgenesfrom taxonomicallydistantspecies(Vaughanetal.,2003;Palm- gren et al., 2014). Therefore, it is of great significance to understandthegeneticdiversitywithinthewildrelativesof Oryzainthecontextoftheirnaturalenvironmentoforigin, Figure1-SubmergencetoleranceandgeneticarchitectureofSUB1locus inordertoidentifythegeneticbasisofphenotypicvariation incultivatedandwildOryzaspecies.GenotypesfromAAgenomespecies Oryzasativa,OryzarufipogonandOryzanivaraaretolerantorsensitive betweenandwithin-species.Thisknowledgeisanimpor- to submergence depending on the presence of SUB1A-1 allele of the tant resource to improve rice production under abiotic SUB1A gene. Genotypes that either have SUB1A-2 allele or lack a stresses(SangandGe,2013;GrossandZhao,2014;Palm- SUB1A,carryingonlySUB1BandSUB1Cgenes,aresensitive.Geno- grenetal.,2014). typesfromCCgenomespeciesOryzaeichingeri,Oryzarhizomatisand theCCDDtetraploidspeciesOryzagrandiglumiswereshowntobetoler- anttosubmergencewhilecarryingaSUB1Agene-lackingSUB1locus, Abiotic stress tolerance in wild relatives: indicatingthelocusdoesnotcontributetothestresstoleranceinthesespe- cies. submergence Riceiscommonlygrowninfloodedsoilcontaininga whereasathirdgene,SUB1A,ispresentonlyinasubsetof thin water layer. Although rice roots are well adapted to them.Interestingly,tolerancetosubmergenceislinkedtoa hypoxicconditions,mostricecultivarsdierapidlyiftheir specificalleleoftheSUB1Agene,namedSUB1A-1(Xuet shoots are submerged (Mackill et al., 2012). Several al.,2006).AccessionsthatlackSUB1Agene,orcarrythe rainfed rice areas are at risk of flooding, a stress that de- SUB1A-2 allele, are sensitive to submergence (Figure 1). creases yield substantially (Ismail et al., 2013). Submer- IntrogressionoffunctionalcopiesofSUB1A-1insensitive gence inhibits aerobic metabolism and photosynthesis, genotypesissufficienttogeneratetolerantplants(Xuetal., leading to carbohydrate depletion and, depending on the 2006). stress intensity, plant death (Fukao and Bailey-Serres, ThetolerantSUB1A-1alleleisderivedfromtheaus 2004). However, rice plants are able to tolerate submer- subgroupofindicarice(Xuetal.,2006).Wildspeciesfrom genceusingdifferentstrategies.Inthelowoxygenescape theOryzagenuscommonlygrowinconstantlyorseason- syndrome(or“escapestrategy”)shootelongationisstimu- allywethabitats(Vaughanetal.,2003),andthussubmer- lated by progressive flooding, keeping leaves in contact gencetolerancecouldbefoundinotherspecies.Niroulaet with the air and escaping the increasing levels of water al.(2012)tested109accessionsofriceandwildrelatives, (Bailey-SerresandVoesenek,2008).Inthe“quiescentstra- including12species,forsubmergencetolerance,andfound tegy”,hypoxiareduceselongation,repressescarbohydrate O.rufipogonandO.nivara(AAgenome;Table2)tolerant degradation and stimulates anaerobic metabolism. When accessions that carry the SUB1A-1 allele, showing that water recedes, plants resume growth. While the escape SUB1 locus architecture determines submergence toler- strategy only results in submergence tolerance if flooding anceinthesespecies,asinO.sativa(Figure1;Niroulaet occursprogressively,ricegenotypesthatusethequiescent al., 2012). Strikingly, accessions of O. rhizomatis and O. strategyareabletosurviveupto14daysofcompletesub- eichingeri(CCgenome;Table2)werealsofoundtobesub- mergence(Bailey-SerresandVoesenek,2008).Bothstrate- mergencetolerant,butSUB1Asequenceswereabsentfrom gies were elucidated at the molecular level: the quiescent genomes of tested accessions, indicating that a novel, strategyislinkedtotheSUB1locus,whiletheescapestrat- SUB1A-independent mechanism is responsible for sub- egyisdependentontheSNORKEL(SK)locus(forreviews mergencetolerance,atleastinthesetwoCCgenomespe- see Bailey-Serres and Voesenek, 2008; Mickelbart et al., cies(Figure1;Niroulaetal.,2012). 2015). Oryza grandiglumis is a tetraploid species with SUB1isthemajorQTLassociatedwithsubmergence CCDD genome (Table 2) that grows in Amazonian tolerance in rice cultivars that use the quiescent strategy floodplains,wherewaterlevelscanreachupto10meters, (Fukaoetal.,2009).TheSUB1locuswasmappedtochro- andthusitwasexpectedtoshowsomedegreeofsubmer- mosome 9, and is composed of a cluster of ethylene re- gencetolerance(Okishioetal.,2014,2015).Dependingon sponse factors (ERF) genes located in tandem, named the flooding conditions, O. grandiglumis showed distinct SUB1A,SUB1BandSUB1C(Figure1).Differentricege- responses: when progressively submerged, the internodes notypeshavetwogenesinthecluster,SUB1BandSUB1C, elongated, resembling the escape strategy of O. sativa; Mengueretal. 245 Table2-TolerancetoabioticstressesfoundinaccessionsofOryzaspeciesandreferences. Species TolerancecomparedtoO.sativa Reference Oryzacoarctata Salt SenguptaandMajumder,2009 Oryzaeichingeri Submergence Niroulaetal.,2012 Oryzaglaberrima Salt,Drought Ndjiondjopetal.,2010,Plattenetal.,2013 Oryzaglumaepatula Submergence Hattorietal.,2009 Oryzagrandiglumis Submergence Okishioetal.,2014,2015 Oryzameridionalis Heat Scafaroetal.,2010 Oryzanivara Drought Singhetal.,2015 Oryzaofficinalis Drought,Heat(EarlyMorningFlowering) Ishimaruetal.,2010,Fengetal.,2012 Oryzarhizomatis Submergence Niroulaetal.,2012 Oryzarufipogon Salinity,Cold,Drought,Submergence Hattorietal.,2009,Tianetal.,2011,Xiaoetal.,2014 however,whenplantswerecompletelysubmerged,growth Thegeneticbasisoftolerancetoionicstressismuch was reduced, as in the quiescent strategy (Okishio et al., betterunderstoodthantoosmoticstress(Royetal.,2014). 2014).Interestingly,SUB1AisabsentinO.grandiglumis, ArangeoftransportersinvolvedinreducingNa+accumula- indicatingthataSUB1A-independentmechanismforaqui- tioninshootsandinsubcellularcompartmentalizationwas escentstrategyispresent,asobservedforO.rhizomatisand described, such as the high affinity potassium transporter O.eichingeri(Figure1).GenessimilartoSNORKEL1and (HKT),saltoverlysensitive(SOS)andNa+/H+exchanger SNORKEL2, responsible for the escape strategy in deep- (NHX)genefamilies(Mickelbartetal.,2015).HKTmem- water-adapted O. sativa, as well as O. rufipogon and O. bersarecrucialdeterminantsoftissueconcentrationofNa+. glumeapatula (AA genome; Table 2), are absent in O. OsHKT1;5isthecausativegeneofSaltol,themajorquanti- grandiglumis (Hattori et al., 2009, Okishio et al., 2015). tative trait locus (QTL) for salt accumulation in O. sativa These results indicate that O. grandiglumis is tolerant to genotypes(Renetal.,2005).OsHKT1;5isaplasmamem- both gradual and full submergence by unknown mecha- branetransporterthatregulatespartitioningofNa+between nisms (Okishio et al., 2014), indicating that CC genome rootsandshootsbyeffluxofNa+fromthexylemtoadja- Oryzaspeciesmightprovidenewmolecularmechanismsto cent parenchyma cells (Hauser and Horie, 2010). Four improvecultivatedrice. aminoacidchangesinOsHKT1;5resultedinincreasedNa+ efflux activity in salt tolerant indica cultivar Nona Bokra comparedtothesaltsensitivecultivarKoshihikari(Renet Salinity al.,2005).AlthoughotherQTLsweredescribed(Negrãoet al.,2011),Saltolistheonlyonethathasbeenclonedsofar. Soilsalinizationisaworldwideproblemforagricul- InalargescreeningeffortwhichincludedseveralO. ture.Itaffects6%oftotalEarth’sland,asaresultofnatural sativacultivars,landracesandO.glaberrima(AAgenome, accumulation over long periods of time (Rengasamy, Table2)genotypes,itwasshownthatsalinitysensitivityis 2002). However, agricultural activity contributes to sec- correlated with Na+ concentration in leaf blades. ondary salinization: 2% of all dry land is becoming OsHKT1;5genotypewasshowntobeamajordeterminant salinized,andmorethan20%ofirrigatedsoilsareaffected, fortolerance:themoreactivetheeffluxtransporter,which mostly because of irrigation water containing small directstheNa+exclusionfromthetranspirationstream,the amountsofsodiumchloride(TesterandDavenport,2003). lessNa+istranslocatedtoleaves(Plattenetal.,2013).In- Plantsvaryintheirsensitivitytosaltstress,andriceis terestingly,theseauthorsfoundtolerantO.glaberrimaac- themostsensitiveamongcereals.Salinityreducesgrowth cessionswithlowNa+concentrationinleaves,butcarrying rate,includingcellularandleafexpansion,numberoftillers OsHKT1;5 alleles that are associated with salt sensitivity andphotosynthesis,andcanleadtoprematuresenescence and Na+ accumulation in leaves of O. sativa genotypes. of older leaves (Munns and Tester, 2008, Sirault et al., TheseresultsindicatethatO.glaberrimagenotypescould 2009).Thedeleteriouseffectsofsaltinplantscanbeare- exclude Na+ from shoots using a mechanism independent sultofosmoticstress(causedbysaltinthesoil),orofionic ofOsHKT1;5(Plattenetal.,2013). stress (toxic effect of Na+ accumulation in plant tissues; OtherspeciesfromthegenusOryzawereexploredfor Munns and Tester, 2008). The tolerance to ionic stress is salttolerancegenes.O.rufipogonwasshowntobesalttol- dealt with by Na+ exclusion from xylem vessels to avoid erantwhencomparedtoricesensitivecultivars(Zhouetal., shootaccumulation,orbytissuetolerance,whenNa+levels 2016).IntrogressionlinesderivedfromO.rufipogonXO. reachtoxiclevelsandplantleafcellscompartmentalizesalt sativacrossrevealed15QTLsforsalinitytolerance,13of toreducedamage(Royetal.,2014). them derived from the O. rufipogon parent (Tian et al., 246 Oryzaspeciesandabioticstress 2011). Over-expression of bHLH transcription factors regulated during the day, presumably reflecting the circa- OrbHLH001andOrbHLH2fromO.rufipogonresultedin dianvariationintideexperiencedbytheplant,andisalso Arabidopsis and O. sativa salt tolerant lines (Zhou et al., rapidly induced by NaCl treatment, compartmentalizing 2009;Lietal.,2010;ChenYetal.,2013).Theseauthors Na+ into vacuoles (Kizhakkedath et al., 2015). Thus, O. showedthatOrbHLH001isabletopositivelyregulatethe coarctataisadaptedtohighsalinityenvironmentsbyusing K+ transporter OsAKT1, suggesting that salt tolerance re- multiplemechanismstocopewithsaltstress,includingde- sultsfrommaintenanceofK+homeostasisunderhighNa+ creasedroot-to-shoottranslocationandincreasedcompart- conditions(ChenYetal.,2013).Basedonheterologousex- mentalizationinthevacuoleandsecretioninsalthairs. pressioninArabidopsis,OrbHLH2wassuggestedtoposi- Proteomic analyses identified up-regulated proteins tivelyregulategenesfromtheCBF/DREBpathway(Zhou by Na+ treatment in O. coarctata, including transcription et al., 2009). Indeed, transcriptomic studies of the O. factors of the CBF/DREB pathway of abiotic stress re- rufipogonresponsetohighsalinityshowedthattranscrip- sponse(ShinozakiandYamaguchi-Shinozaki,2000);acel- tionfactorsareamongthetopup-regulatedgenes(Zhouet lulose synthase-like, which could help maintaining cellu- al.,2016). losesynthesisduringsaltstress(Endleretal.,2015);andan L-myo-inositol 1-phosphate synthase, important for ino- Oryza coarctata, a promising source of salinity sitol synthesis. Inositol metabolism is, in fact, one of the and submergence genes for rice moststudiedaspectsofO.coarctatasalttolerance.Itsde- rivative,pinitol,isaknownosmoprotectantinmanyplant Oryza coarctata (also known as Porteresia species,andaccumulatesinO.coarctataunderhighsalin- coarctata, Lu and Ge, 2003) is an allotetraploid wild rice ity(Senguptaetal.,2008;SenguptaandMajumder,2010). withextremesaltandsubmergencetolerance.Itisunique Strikingly, cloning and characterization of O. coarctata amongwildricespecies,sinceithasaKKLLgenome(Ta- L-myo-inositol 1-phosphate synthase (INO1) showed that ble1;Luetal.,2009).O.coarctatagrowsincoastalregion enzyme activity is maintained properly even in high salt of India and Bangladesh, where it experiences lunar tides concentrations,andthatitsexpressioninplantsandbacte- and is submerged with saline seawater every 12 hours riaconfershigh,albeitvariable,salttolerancetotheseor- (SenguptaandMajumder,2010,Gargetal.,2014).Ithas ganisms (Majee et al., 2004; Das-Chatterjee et al., 2006; alsobeenestablishedasanimportantresourceforprospect- SenguptaandMajumder,2010).Thishighlightsthepoten- inggenestoimprovecultivatedrice(Gargetal.,2014).A tialofwildspeciestoprovideusefulproteinsforrice(and hybrid derived from a cross between O. sativa and O. other crops) improvement. Moreover, inositol methyl coarctatahasbeenreported(Jena,1994),andsalttolerant transferase(IMT1),whichmethylatesinositolintopinitol, rice cultivars with introgressed O. coarctata traits for salt is up-regulated in the same conditions as INO1 in O. tolerance are currently under development in the Interna- coarctata,indicatingthatinositolsynthesisandconversion tional Rice Research Institute (IRRI; www.irri.org). Still, to pinitol are key steps for salt tolerance in this species little is known about the physiological and molecular de- (Senguptaetal.,2008). tailsofthiswildriceadaptationtohighsalinityconditions. Morerecently,astudyevaluatedO.coarctatatrans- O.coarctatagrowth,relativewatercontentandpho- criptomic changes under salt and submergence stresses tosynthesis are unaffected by high concentrations (400 (alone or combined, compared to control conditions), and mM) of NaCl, conditions in which O. sativa salt tolerant found several transcription factors up-regulated in leaves cultivars do not develop properly (Sengupta and Majum- understressconditions,suchasNAC,WRKYandMYBgene der,2009).LeavesofO.coarctatacontain“salthairs”,out- familymembers,indicatingextensivetranscriptionalregu- growthsoftheepidermisthatincreasetheirnumberunder lationinstressresponses(Gargetal.,2014).GeneOntol- highsalinityandsecreteexcessivesalt.Whensaltconcen- ogyanalysesshowedenrichmentofABA-responsivegenes trationinthegrowthmediaishigh(300-400mM),thesalt undersalinitystress,andofcarbohydratemetabolismand hairs in the abaxial surface collapse and fall off from the anaerobic respiration genes under submergence stress. In leaf surface (Sengupta and Majumder, 2009). Still, total plantsundersubmergencestress,genesrelatedtoethylene Na+ concentration in leaves of O. coarctata does not in- andgibberellinresponseswerealsoidentified,alongwith creaseundersaltstress,indicatingthatO.coarctataavoids Alcohol Dehydrogenase, a marker for anoxia stress, indi- Na+toxicityinmesophyllcellsbycompartmentalizationof catingthataSUB1A-relatedresponsemightbepresentin salt in epidermal hairs, a mechanism similar to what is O.coarctata(Gargetal.,2014;seeabovefordiscussionon knownforotherhalophytegrasses(SenguptaandMajum- submergencestressmechanisms).However,demonstration der,2009,2010).Thesecretedsaltisasignificantpropor- of the presence of SUB1A-like ERF transcription factors tionoftheNa+reachingleaves,andimportanttomaintaina andoftheirroleinsubmergenceresponseinO.coarctatais low Na:K ratio (Sengupta and Majumder, 2010). A lacking.Moreover,suberinandcellulosesynthesis-related tonoplast-localizedtransporterfromtheNHXfamilyofO. transcriptswereidentifiedasup-regulatedinbothstresses, coarctata was recently cloned. PcNHX1 transcription is indicatingthattheseprocessesmightbekeyforstresstoler- Mengueretal. 247 ance,asobservedinotherspecies(Gargetal.,2014;Endler sequencefoundintolerantjaponicacultivarsrepresentsan etal.,2015;Barberonetal.,2016). ancient allele from O. rufipogon that was selected during domestication(Maetal.,2015).However,itisimportantto Cold notethattheSNPinCOLD1explainsonlypartofthecold toleranceinrice,atraitforwhichmanyminoreffectQTLs The japonica cultivars of O. sativa are usually are expected to contribute (Cruz et al., 2013; Ma et al., adaptedtotemperateclimates,aprocessthatwasdrivenby 2015;Maoetal.,2015).Thus,otherQTLsshouldbechar- domestication,whileindicacultivarsaregenerallytropical acterized and used in combination in order to develop (Kovachetal.,2007;Maetal.,2015).Thus,temperateja- highlytolerantlines,andnewlyidentifiedgenesfromwild ponicacultivarsaremoretoleranttolowtemperaturesthan speciesmightalsobeuseful. indica,andintrogressionofcoldtolerancetraitsfromtem- perate into tropical genotypes is desirable (Cruz et al., Drought 2013;Damettoetal.,2015).However,littleisknownabout the molecular basis for low temperature tolerance in O. Droughttoleranceisacomplextrait,withmanygenes sativa,andevenlessaboutthevariationofcoldtolerance andprocessesinvolved(Singhetal.,2015).Riceinparticu- amongitswildrelatives. lar demands great amounts of water for proper develop- The Oryza genus has a pan-tropical distribution, ment, owing to its shallow roots compared to other crops growinginregionswithanaveragelowtemperatureof15 (Kondo et al., 2000). QTLs for drought tolerance were °Coraboveduringthegrowthseason,withonlyafewex- identifiedwithinO.sativavariability,andcausativegenes ceptions (Atwell et al., 2014). Hence, it is possible that have been cloned (Vikram et al., 2011; Uga et al., 2013). other species of Oryza might be better adapted to lower DRO1 (DEEPER ROOTING 1), a previously unknown temperatures,beingabletoprovideallelestoimprovecold protein,isresponsiblefordownwardgrowthofriceroots, tolerance.Atwelletal.(2014)usedthedistributionofeach and introgression of DRO1 in otherwise shallow root rice speciesindifferentclimatestoestimatethebestcandidates genotypesincreasesrootangleanddroughttolerance(Uga forstresstolerance,andO.granulataissuggestedasapos- et al., 2013). Still, wild rice species might be a source of siblesourceforcoldtolerance.O.eichingeri(CCgenome, stronger drought tolerance genes and mechanisms, since Table2)alsogrowsinlowtemperatureenvironments,and theyareadaptedtoamuchwiderspectrumofenvironments couldbeconsideredagoodcandidate(Atwelletal.,2014). (Vaughanetal.,2003;Atwelletal.,2014). However,screeningsofcoldtolerancearestilllackingfor Speciesthatarepresentinlowmoistureregionswere mostOryzaspecies. suggestedasmorelikelycandidatesfordroughttolerance, One genotype of O. rufipogon, named Dongxiang namely: O. barthii, O. australiensis, O. glaberrima, O. wild rice, is able to withstand overwintering in its natural longistaminata and O. punctata (Atwell et al., 2014). At habitatandtemperatureaslowas3°Cforthreedaysinlab- least three of these (O. australiensis, glaberrima and oratory conditions (Xiao et al., 2014; Mao et al., 2015). longistaminata),plusO.meridionalis,presentthickleaves UsinganexperimentalpopulationderivedfromDongxiang andhighmesophyllconductancetoCO diffusion,indicat- 2 wildriceXNanjing11(acoldsensitivecultivar)crosses,a ing that they might be drought tolerant, since these traits CBF3/DREB1Ggenewasfoundtoco-localizetoaprevi- canbeassociatedwithahigherwateruseefficiency(Sca- ously identified cold-related QTL (Xiao et al., 2014). faroetal.,2011;Giulianietal.,2013).Indeed,fieldevalua- CBF/DREBsareknownregulatorsofcoldandotherabiotic tion of O. glaberrima showed that some accessions could stress responses (Mao and Chen, 2012; Mickelbart et al., beusedasdonorsincrossingwithO.sativafordroughttol- 2015). Interestingly, CBF3/DREB1G is up-regulated as erancebreeding(Ndjiondjopetal.,2010). earlyasthreehoursaftercoldtreatmentinbothDongxiang TheO.rufipogongenotypeDongxiangwasalsoused wildrice,butonlyafter12hoursinthesensitiveone.Genes tobreeddroughttoleranceinO.sativa.Anintrogressedline known to be downstream of CBF/DREB1 in the cold re- was shown to be more tolerant when compared to the O. sponseareup-regulatedaccordinglyinbothtolerantgeno- sativa recurrent parent, with higher survival rate, along types(Xiaoetal.,2014).OtherQTLsuniquetoDongxiang withhigherprolineandsolublesugaraccumulation(Zhang wildriceweredescribed(Maoetal.,2015). et al., 2014). However, it is clear that the trait is geno- Recently,aSNPassociatedwithtemperatejaponica type-specific, since different O. rufipogon accessions can cold tolerance was described. COLD1 (chilling-tolerance havewidelydifferentsensitivitylevels.Fengetal.(2012) divergence)isaplasmamembrane-andendoplasmicretic- testedtoleranceofeightaccessionsofO.rufipogonandone ulum-localizedregulatorofGproteinthatactivatesCa2+in- ofO.officinalis,andobservedthataccessionsfromtropical fluxduringcoldsensing.OneSNPthatresultsinanamino origin are more tolerant. Interestingly, the single O. acidchangewasfoundtoberesponsibleforthedifference officinalis(CCgenome;Table2)accessionperformedeven incoldtolerance.TheSNPfoundinjaponicaissharedwith betterunderdroughtconditions(Fengetal.,2012). accessions of O. rufipogon, but not with O. nivara or O. Anotherstudyanalyzedleafrollingscoreandrelative barthii (AA genome; Ma et al., 2015). Thus, the COLD1 water content in several O. sativa, O. rufipogon and O.
Description: