ebook img

Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au PDF

19 Pages·2016·5.46 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au

GondwanaResearch40(2016)230–248 ContentslistsavailableatScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization Wen-yanHea,⁎,Xuan-xueMoa,⁎,Li-qiangYanga,Yan-luXingb,Guo-chenDonga,ZhenYanga, XueGaoa,Xin-shangBaoa aStateKeyLaboratoryofGeologicalProcessesandMineralResources,ChinaUniversityofGeosciences,Beijing100083,China bSchoolofEarth,AtmosphereandEnvironment,MonashUniversity,VIC3800,Australia a r t i c l e i n f o a b s t r a c t Articlehistory: TheoriginofmagmaswithhighH O,Sandmetalsthatarelinkedtoporphyryeconomicmineralizationin 2 Received25March2016 continentalcollisionalbeltsiscontroversial.Inthispaper,westudiedthehostporphyriesandassociated Receivedinrevisedform18September2016 microgranularenclaves(MMEs)includinggabbroicenclavesanddioriticenclavesfromthelargeBeiyaporphyry Accepted28September2016 AudepositinJinshajiang-Ailaoshanmineralizationbelt,whichprovidefirsthandevidenceofcrust–mantle Availableonline11October2016 hybridizationintheformationoffertilemagmaforporphyrydeposit.ZirconLA-ICPMSU–Pbagesindicatecoeval formationfortheMMEsandthefelsicporphyriesinEocenetime(~36Ma).TheMMEsshowspheroidalshapes, HandlingEditor:F.Pirajno acicularapatites,andoscillatoryzoningwithrepeatedresorptionsurfacesinplagioclases,whichsuggestthatthe Keywords: MMEsareglobulesofamoremaficmagmathatwasinjectedintoandmingledwiththehostfelsicmagma.One Maficmicrogranularenclaves gabbroicenclavesampleexhibitshighMgO(5.6wt.%),highTiO2(1.7wt.%),enrichedinlarge-ionlithophile Magmamixing element(LILE)anddepletedinhighfieldstrengthelement(HFSE),withnegativeNb,TaandTianomalies.This Porphyrydeposit indicatesthatthegabbroicenclaveissimilartothoseofthecoevalpotassicmaficrocksintheWesternYunnan, Beiya whichoriginatedfromtheenrichedmantlemetasomatizedbytheslab-derivedfluids.Thedioriticenclaveexhibit WesternYunnan bothpotassicandadakitic-likefeatures,andarecharacterizedbyhighcontentsofMgO(4.4–4.9wt.%),K O 2 (6.4–7.4wt.%),andcompatibletraceelements(e.g.Ni:115–142ppm;Cr:214–291ppm),aswellasby highSr/Yratios.Thedioriticenclavesamplesyieldε (t)values(−1.9to+3.6)similartothoseofthehost Hf porphyries.Petrographic,elemental,andisotopicevidencesuggeststhattheBeiyadioriticenclavewereformed bymixingbetweenpotassicmaficandadakitc-likemelts,derivedfrommetasomatizedlithosphericmantleand lowercrust,respectively.Incontrast,theBeiyahostporphyriesarecharacterizedbyhighSiO (66.9–71.9wt.%) 2 andAl O (13.8–15.9wt.%)contents,highSr/Yratios(35–79),lowcompatibleelementcontents(e.g.Ni= 2 3 0.9–7.2ppm;Cr=1.0–8.2ppm),lowMg#values(0.19–0.35),positiveLILEanomalies,markednegativehigh HFSEanomalies,negativeε (t)values(−6to−2),andhigh(87Sr/86Sr)values(0.7071–0.7081).Thesefeatures Nd i indicatethatthehostporphyriesweremainlyformedbypartialmeltingofsubduction-modifiedlowercrustwith acertainassimilationofmaficmeltsrepresentedbyMMEs.MMEshostedintheBeiyaporphyries,formedfrom ahydrous,maficmagmaalthoughtheyformedinanon-arcsetting.Highmagmaticwatercontentisprobably relatedtoanenrichedmantlemetasomatizedbyfluidsfromaProterozoicsubductedoceanicslab.HighCu (341–626ppm)andAucontentsoftheMMEssuggesttheycrystallizedfromametal-richmaficmelt.Complex assemblagesofpyrite–chalcopyrite–apatite–rutilewithhornblendeareobservedintheleastalteredMME.We suggestthatthemaficmeltprobablysuppliedpartofwater,andmetaltotheBeiyaporphyryAusystem. ©2016InternationalAssociationforGondwanaResearch.PublishedbyElsevierB.V.Allrightsreserved. 1.Introduction calc-alkalinetohigh-Kcalc-alkalinesilicicmagmas(Richards,2003; Cooke et al., 2005; Sillitoe, 2010), However, recent studies have Porphyry Cu (-Mo-Au) deposits are widely considered to be shownthatsuchdepositscanformincollisional/orogenicbelts,such productsofisland-andcontinental-arcsettingsinassociationwith as the Eastern Tethyan orogenic belt, including the classic Eocene Jinshajiang-AilaoshanporphyryCu-Mo-AubeltinSouthwesternChina (Houetal.,2003;Liangetal.,2006;Luetal.,2013a;Dengetal.,2014), ⁎ Correspondingauthorsat:StateKeyLaboratoryofGeologicalProcessesandMineral Oligo-MioceneGangdeseporphyryCu-MobeltinSouthernTibet(Hou Resources,andSchoolofEarthScienceandResources,ChinaUniversityofGeosciences, etal.,2004,2013,2015;Quetal.,2004;Yangetal.,2014;Wangetal., Beijing100083,China. E-mailaddresses:[email protected](W.He),[email protected](X.Mo). 2014a,b,c;2015;Lu.,2015),andtheEocenetoMioceneUrumieh- http://dx.doi.org/10.1016/j.gr.2016.09.004 1342-937X/©2016InternationalAssociationforGondwanaResearch.PublishedbyElsevierB.V.Allrightsreserved. W.Heetal./GondwanaResearch40(2016)230–248 231 DokhtarporphyryCu-MobeltintheCentralIran(Ahmadianetal.,2009; Asia collision at 45 Ma, as evidenced by a reduction in the rate of Haschkeetal.,2010;Richards,2013). Indo-Asian continental convergence (e.g. Chung et al., 2005). The Theunderlyingbasisofarcporphyry-Cusystemsisthoughttobethe straincausedbythishardcollisionwasaccommodatedbythelateral generationofcalc-alkalinebasalticarcmagmasthatarehot,hydrous, extrusionoftheSimaoBlockfromca.32Maonward;thisextrusion sulfur-rich,andhaverelativelyhighfO .Thesemagmasaregenerated wasassociatedwithconcomitantshearingthatpartlyoverlappedthe 2 in a mantle wedge that has been metasomatized by fluids from a Jinshajiang-Ailaoshansuture(HouandCook,2009). subductedslab,andthenrisebuoyantlytothebottomofthelower crust,wheretheyundergomelting,assimilation,storage,andhomogeni- 2.1.2.Collisionalmagmatismandmineralization zation(aMASHprocess),resultinginevolved,volatile-rich,metalliferous Continentalorogenesis-relatedpotassicmagmaticsuitesatca.40- intermediatetofelsicmagmas(Richards,2003).Forthecollisional-arc 30Maproducedaseriesofigneousrocksthataregenerallyconcentrated systems,magmasaremostlyderivedfrompartialmeltingofthelower acrosstheQiangtangTerraneandwesternYangtzeCraton,proximalto crustormantlelithosphereratherthanmantlewedge(Richards,2009; theAilaoshan-Jinshajiangsuture(Guoetal.,2005;Sunetal.,2009; Wangetal.,2015,Luetal.,2015).Therefore,thephysicochemicalcondi- Zhangetal.,2010;Fig.1b).Thepotassicrocksformsmallextrusive tionsoflithospheresuchaswatercontent,oxidationstate,sulfurcontent, andintrusivebodiesconsistingofmafictofelsicunits.Maficrocksare andmetalbudgetsarevitalforproductionoffertilemagmasandfurther dominatedbylamprophyredykes(Guoetal.,2005;Lietal.,2002) mineralization.Althoughalargeamountofmodelshavebeenproposed withminormaficlava(Huangetal.,2010;Xuetal.,2001a),whereas fortheoriginofcollisionalporphyrydeposits(Houetal.,2004;Richards, felsicrocksaremainlyporphyriticgranites,someofwhichhostCu 2009;Shafieietal.,2009;Wangetal.,2014a,b;Luetal.,2015;Pirajno (-Mo-Au)mineralization(Houetal.,2009;Luetal.,2013b).Thisbelt andZhou,2015;Yangetal.,2015),littleevidenceexiststoprovethecon- includestwosub-belts:theYulongporphyrysub-beltinthenorthand nectionoflithosphereandmantlewithporphyrydepositformation.In theAilaoshan-RedRiverporphyrysub-beltinthesouth(Dengetal., ordertobetterunderstandthisprocess,wechoosetheBeiyaporphyry 2010,2014;Houetal.,2003,2007;Xuetal.,2012).TheYulongporphyry Audepositasthestudycasebecauseofitswell-documentedmagmatic sub-beltwasassociatedwithasetofsecondaryNNW-directedstrike- system,occurrenceofmaficmicrogranularenclaves(MMEs),andcoeval slipfaultsandfoldstriggeredbytheJinshajiangright-lateralstrike- maficpotassicrocksderivedfromthemantle.TheBeiyadepositisalarge slipfaultsystem(Houetal.,2003,2007).Sofar,fiveporphyry-skarn porphyry Au deposit with 350 t gold, located in the center of the deposits, including Beiya, Machangqing, Habo, Tongchang and Jinshajiang-Ailaoshan magmatic belt (Deng et al., 2015; He et al., Chang’anchong,havebeendiscoveredintheAilaoshan-RedRiverore 2015). Felsic porphyries with MMEs are associated with the gold belt(Dengetal.,2014;Houetal.,2003;Zhuetal.,2010;Zhangetal., mineralization, and formed in a post-collisional environment (Hou 2013).Contemporarylamprophyredikesarealsospatiallyassociated etal.,2006;Heetal.,2013;Luetal.,2013a). with the potassic porphyritic magmatism in these deposits (Wang This work reports the geochronological sequence of magmatic etal.,2001;Wangetal.,2003;Guoetal.,2005). systemsintheBeiyaregion.BycombingournewdataofSr-Nd-Pb-Hf isotopic analyses on felsic porphyries and MMEs with published 2.2.Geologyofthedeposit lithogeochemicalwork,weshowthatthefertilelithosphericmantle playsamajorroleinformationofBeiyaasthelargestgolddepositin TheBeiyadepositcoversanareaof~800km2andislocatedalongthe southeasternChina. limbsoftheN-StrendingBeiyasyncline.Thedepositconsistsoftwo zones,withtheWandongshanandHongnitangzonesonthewestlimb 2.Geologicalsettingandsample oftheBeiyasyncline,andtheWeiganpoandBijiashanprospectson the east limb (Fig. 2). In addition, the Matouwan and Bailiancun 2.1.Regionalgeology prospectsoccuraroundtheperipheryofthedeposittotheeastandwest. 2.1.1.Tectonicframework 2.2.1.Lithology The Beiya gold-polymetallic deposit is located in the center of The rocks in the Beiya area include four major formations. The theJinshajiang-Ailaoshanmagmaticbelt,whichmarginsthewestern lowermostunitistheEmeishanfloodbasalts,whichcompriseslate Yangtze Craton (Fig. 1a). The Yangtze Craton contains an early mid-Permianbasalts.Theoverlyingunit,comprisingLowerTriassic Proterozoic metamorphic basement covered by Late Proterozoic to sandstonesandhornfels,istheQintianbaoFormationthatisoverlain MiddleTriassicsedimentarysequences. bytheBeiyaFormation.TheBeiyaFormationconsistsofwhiteorlight ThewesternmarginoftheYangtzeCratoncontainsNeoproterozoic grayargillaceouslimestoneanddolomiticlimestonethatischaracter- volcanicrocksandcoevalplutonsatca.840Mathathaveanarc-like izedby vermiformtexture.Thisformation isthemainhostforthe geochemicalaffinityandarethoughttohaveformedduringmagmatism skarnmineralizationoftheBeiyadeposit.ThePermianandTriassic associatedwiththePanxi-Hannanarc(Zhouetal.,2002,2006;Lietal., strataoccurinanN-Strendingbasinuponwhichissuperimposeda 2003;Fig.1a).ThewesternpartoftheCratonalsocontainsPermian broadN-Ssyncline.Eocene-Oligoceneintrusionsareabundant,and continentalfloodbasaltsassociatedwiththeEmeishanmantleplume theyaredominatedbymonzograniteporphyries,biotitemonzogranite (ChungandJahn,1995;Fig.1b). porphyries and lamprophyres. The felsic porphyries, controlled by The Yangtze Craton is separated from the Simao Block by the NNE-SWandNNW-SSE-trendingfaults,wereintrudedintotheBeiya Ailaoshansuture,whichconnectstothenorthwiththeJinshajiang Formationcarbonatesintheformofstocksanddikes.Thelamprophyre suture that marks the boundary of the East Qiangtang Block. The dykes are widely distributed in the Beiya mining area (Fig. 2) Jinshajiang-AilaoshansutureformedinthelatePermianasaresult and spatially associated with monzogranite porphyry. The largest of the closure of the Jiashajiang-Ailaoshan Ocean, a branch of the lamprophyreorientedwest-eastandhavealenticularcrosssection. Paleo-Tethys(Moetal.,1994;Metcalfe,2002,2013;Dengetal.,2012, 2014;CocksandTorsvik,2013). 2.2.2.Mineralization ThewesternmarginoftheYangtzeCratonwasalsoinvolvedin There are two types of mineral systems in the Beiya orefield: CenozoicorogenesisresultingfromtheIndo-Asiancontinentalcollision. porphyry–skarnmineralizationandsupergene-enrichedmineraliza- The55-50MaarrivaloftheIndiancontinentatthetrenchmarkedthe tion. The former contains porphyry Cu–Au mineralization mainly initiation of Indo-Asian continental collision (Dupont-Nivet et al., developed within theporphyry intrusions, skarn-typeFe–Au ±Cu 2010;Najmanetal.,2010).ThenorthwardindentationoftheIndian mineralization(themaintypeinthearea)alongthecontactsbetween continentcausedatransitionfromthesofttohardphasesofIndia- the porphyries and Triassic carbonates, and stratiform or vein-like 232 W.Heetal./GondwanaResearch40(2016)230–248 Fig.1.(a)DistributionofprincipalcontinentalblocksandsuturesofsEastTethyanbelt(modifiedfrom2013,Metcalfe).(b)TectonicframeworkoftheSanjiangregioninsouthwest Chinashowingthemajorterranes,suturezones,arcvolcanicbelts,Cenozoicigneousrocks,andlocationsoftheBeiyaAudepositandothermajorCenozoicporphyryCu-Au-Modeposits (modifiedfromDengetal.,2014,Wangetal.,2001;Heetal.,2015).TheagesofthezirconU–PbandmolybdeniteRe-Osfortheporphyry–skarnorebeltinwesternYunnanarefrom Xuetal.(2012). hydrothermalPb-Zn-AgmineralizationalongfracturesintheTriassic porphyries from Wandongshan, Hongnitang, Bijiashan, Bailiancun, carbonatesoralongtheinterfacesbetweendifferentlithologies.The MatouwanandNadapin;TheMMEssamplesarefoundinmonzogranite porphyry-skarn is thoughttobe associatedwiththemonzogranite porphyryfromWandongshanpluton(Figs3a,bandc).Asummaryof porphyries.IntheWandongshanandHongnitangskarndepositoccur thepetrographicalfeaturesisgiveninTable1,andthephotomicro- alongthecontactsbetweentheporphyriesandlimestones,butinthe graphsareshowninFig.3. BijiashanandWeiganpoprospectsthemineralizationoccursatthe Thehostporphyries(Fig.3e)consistofplagioclase(Pl),K-feldspar marginsoftheporphyries.TheMatouwandepositisdominatedby (Kfs),quartz(Q),andbiotite(Bi).Thealteredmonzograniteporphyries skarn-typeFe–Cu±AuwithminorheterogeneousCuinhornfels,and arecharacterizedbythecrystalfacesoftheK-feldsparphenocrysts atBailiancunthemineralizationoccursasvein-likehydrothermalPb– generallyappearasalmostregularhexagonsorrectangles,although Zndepositsinthenorthernpartofthearea,Au-bearinglimonitein somecrystalsexhibitresidualmetasomaticstructuresduetoargillic thecentralpart,anddisseminatedCuinthesouthernpart. alteration(Fig.3d).TheMMEs(Fig.3aandc),whicharemicrogranular andrichinmaficminerals,arerandomlydistributedinthehostporphyry 2.3.Samplesandpetrography (Fig.3fandi).Thegabbroicenclaves(Fig.3fandg)arecharacterized bythepresenceofpyroxene(Px).LargexenocrystsofK-feldsparcan Thecollectedsamplesincludethealteredmonzograniteporphyries becommonlyobservedinthedioriticenclaves(Fig.3h),andaccessory fromWandongshan,Hongnitang;therelativelyfreshmonzogranite apatiteisabundantandgenerallyacicular(Fig.3gandi). W.Heetal./GondwanaResearch40(2016)230–248 233 Fig.2.SimplifiedgeologicalmapoftheBeiyaAuorefield,westernYunnan,China.ModifiedafterHeetal.(2015). 3.Analyticalmethods 0.24(Blacketal.,2003),indicatingthatthedataqualityisreliable. CorrectionforcommonPbwasmadefollowingAndersen(2002).Errors 3.1.ZirconU-Pbdating onindividualanalysesbyLA-ICP-MSarequotedatthe1σlevel,whereas errorsonpooledagesarequotedatthe95%(2σ)confidencelevel. Zirconswereseparatedfromtherocksamplesusingconventional heavy liquid and magnetic techniques, and were purified by 3.2.Majorandtraceelements handpickingunderabinocularmicroscopeattheLangfangRegional Geological Survey, Hebei Province, China. The handpicked zircons Fresh rock samples were selected andcleaned of surfaces, then wereexaminedundertransmittedandreflected-lightwithanoptical powderedinanagatemilltoagrainsizeofb200mesh.Majorelement microscope.Cathodoluminescence(CL)imageswereobtainedusinga compositionsofwholerockswereanalyzedusingaRegaku3080E1 JEOLscanningelectronmicroscope,housedattheInstituteofGeology X-rayfluorescencespectrometer(XRF)atHubeiGeologicalResearch and Geophysics, Chinese Academy of Sciences (IGGCAS). Based on Laboratory.FeOcontentsweremeasuredbyconventionalwetchemical theirCLimages,distinctdomainswithinthezircongrainswereselected titrationmethods.Rareearthelement(REE)andTraceelementcon- foranalysis.Agilent7500aICP-MSequippedwitha193nmlaseratthe tentsweredeterminedbyICP-AESandICP-MSatthesamelaboratory. StateKeyLaboratoryofGeologicalProcessesandMineralResources, Analyticaluncertaintiesaregenerallylessthan2%formajorelements ChinaUniversityofGeosciences(Wuhan),wasusedtomeasurethe except H O+ (b5%), 4% for REE and Y, and 6% for trace elements. 2 U-Pbageofzircons.TEMORAwasusedasanexternalstandardforage Detailedanalyticalproceduresforthemajorandtraceelementswere calibration,andtheNISTSRM610silicateglasswasappliedforthe describedbyGaoetal.(2003). instrumentoptimization.Thecraterdiameterwas32μmduringthe analyses.Theinstrumentsettingsanddetailproceduresfollowthose 3.3.ZirconHfisotopeanalyses describedbyLiuetal.(2008).TheICPMSDataCal8.3wasusedtoprocess theoriginaltestdatawasforisotoperatiosandthecontentoftrace In-situzirconHfanalyseswerecarriedoutonthedatedspotsusing elements (Liu et al., 2008, 2010); Isoplot 3.23 (Ludwig, 2003) was Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany), usedtocalculatetheU–Pbageandsinglespotdataerroris1σ,weighted equippedwithaGeolas2005excimerArFlaserablationsystem(Lambda average206Pb/238Uageis2σ.Theobtainedmeanweighted206Pb/238U Physik,Göttingen,Germany),attheStateKeyLaboratoryofGeological age416±5.5Ma(2σ,MSWD=0.5)fromalltheTEMORAzirconswas ProcessesandMineralResources,ChinaUniversityofGeosciencesin obtained,whichisconsistentwiththerecommendedvalues416.75± Wuhan.Duringanalyses,spotsizeof44μm,andlaserrepetitionof 234 W.Heetal./GondwanaResearch40(2016)230–248 Fig.3.RepresentativefieldandphotomicrographsoftheBeiyaporphyry.a.MMEshostedwithinthemonzograniteporphyry;b.Aquenchedmarginsurroundedbyfine-grainedblack mineralassemblagesinMME;c.MMEwithanirregularshape;d.AlteredmonzograniteporphyriesfromWangdonshan.Inthissample,theplagioclasephenocrystswithsericite alterationarerimmedbyfreshK-feldspar(plane-polarisedlight).e.MonzograniteporphyryfromWangdongshan,thisphotomicrographsshowthemajorrock-formingminerals oftheporphyries(cross-polarisedlight).f.GabbroicenclavefromWangdongshan,thisphotomicrographsshowthemajorrock-formingmineralsoftheenclave(cross-polarised light).g-i.DioriticenclavesformWangdongshan(cross–polarisedlight).Abbreviations:Amp=amphibole;Ap=Apatite;Bi=biotite;Kfs=K-feldspar;Pl=plagioclase;Px= pyroxene;Qtz=quartzSer=sericite. 8Hzwithenergydensityof5.3J/cm2wereused.Detailedoperating yieldedaweighted176Hf/177Hfratioof0.282673±5(2σ,n=50), conditionsforthelaserablationsystemandtheMC-ICP-MSinstrument identicaltotherecommendedvaluewithinerror(Blichert-Toft,2008). andanalyticalmethodsarethesameasthosedescribedbyHuetal. Adecayconstantfor176Luof1.865×10-11year-1(Schereretal., (2012).Standardzircon91500wasusedforexternalcorrection.During 2001)wasadoptedinthiswork.Initial176Hf/177Hfratio,denotedas analytical sessions, the obtained 176Hf/177Hf value of 91500 was ε (t),iscalculatedusingthemeasuredU-Pbagesandwithreference Hf 0.282533±16(2σ),whichwasadjustedto0.282308(correctionof tothechondriticreservoirpresent-day176Hf/177Hfratio=0.282772 0.000006),astandardvaluerecommendedfor91500(Blichert-Toft, and176Lu/177Hf=0.0332(Blichert-ToftandAlbarede,1997).Single- 2008).Duringdataacquisition,analysesofTEMORA-2asanunknown stage Hf model ages (T ) are calculated relative to the depleted DM1 Table1 Summaryofgeneralpetrographicalfeatures. Sample Lithology Texture Mineralassemblage Accessory Alteration minerals WDS11–40,WDS13–2,WDS13–4,WDS13–5, Alteredmonzogranite Porphyritictexture Kfs(35–45%),Qtz(5–10%),Pl(b5%) Ap,Mt.,Zrc,Ti Altered HNT11–4,BLC11–1 porphyry Groundmass:Kfs,Qtz WDS10–4,WDS11–2,WDS11–31,WDS11–47, Monzogranite Porphyritictexture Kfs(30–35%),Pl(20–25%),Qtz(10%); Ap,Mt.,Zrc,Ti Unalteredor 55ZK31–1,MTW10–1,NDP10–1,HNT10–1 porphyry Groundmass:Qtz,Kfs Minoralteration WDS14–1 Gabbroenclave Micro-tofine-grained Pl(50–60%),Hb(15–20%),Bi(10–15%), Ti,Ap,Zrc,Ep Unaltered hypidiomorphic-granular Kfs(5%),andPx(b5%) WDS14–7,WDS14–8,WDS14–9 Dioriticenclave Fine-grained Pl(50–60%),Qtz(10–20%); Ti,Ap,Zrc,Ep Unaltered hypidiomorphic-granular Hb(5–10%)andPl(3–8%) Ap=Apatite,Bi=biotite,Hb=hornblende,Kfs=K-feldspar,Mt.=magnetite,Pl=plagioclase,Px=pyroxene,Qtz=quartz,Ti=titanite,Zrc=zircon. W.Heetal./GondwanaResearch40(2016)230–248 235 mantlepresent-dayvalueof176Hf/177Hf=0.283250and176Lu/177Hf= 4.Results 0.0384(Griffinetal.,2000a,b).Two-stageHfmodelages(T )arecal- DM2 culatedbyassumingamean176Lu/177Hfvalueof0.015fortheaverage 4.1.ZirconU–Pbresults continentalcrust(Griffinetal.,2002). 4.1.1.Felsicporphyry 3.4.Sr-Nd-Pbisotopesanalyses EightintrusiverocksfromtheBeiyaareawereselectedforzircon U-Pbdating.AlargenumberofU-PbzircondatesexistforCenozoic SeparationandpurificationofSrandNdwerecompletedattheKey rocksfromtheBeiyaareaHowever,mostofthesesampleswerecollected LaboratoryofOrogenicBeltsandCrustalEvolution,PekingUniversity. fromWandongshanandHongnitangandwereoutcropsamples.Inthis About150mgpowderofeachsamplewasdissolvedinTeflonbeakers study,wesupplementnewdataofdrillcoresfromWangdongshanand withamixtureacid(HClO +HNO +HF)at150°Cfor7days.Srand HongnitangandanalyzetheagesfromMatouwan,Nandapingandnew 4 3 Nd elements were obtained throughconventional cation-exchange discoveredMMEs.Mostofzircongrainsareeuhedral,colorlessand techniqueandtheirisotoperatioswerethenmeasuredonaThermo- exhibitoscillatoryzoningintheirCLimages,indicatingamagmatic FinniganTritonT1thermalionizationmassspectrometer(TIMS)at origin. TianjinInstituteofGeologyandMineralResource(TIGMR),following Twoalteredmonzograniteporphyrysamples(WDS11-40,WDS13-2, thesimilarmethoddescribedbyLietal.(2012).Measured87Sr/86Sr TableS1)werecollectedfromsurfaceoutcropattheWandongshanopen and 143Nd/144Nd values are normalized to 86Sr/88Sr = 0.1194 and pit.Thesamplesaregenerallyprismaticorbrokenprisms,colorless, 146Nd/144Nd=0.7129formassfractionation.Long-termmeanvalues transparent,andeuhedral,upto~100μminlength,withlengthto oftheSrandNdstandardsNBSstandard987andJNdi-1ofthelabora- widthratiosofabout1:1–2:1.TheyarecharacterizedbypatchyCLim- toryare87Sr/86Sr=0.710249±5and143Nd/144Nd=0.512112±4, ages(Fig.4);afewgrainsshowbroadeuhedralconcentriczoning.Ucon- respectively. tentsrangefrom226to3230ppm,andThfrom307to471ppm.Th/U Pb was separated by anion exchange resins (Bio-rad AG 1×8). ratiosrangefrom0.1to2.1.Allthemeasuredspotsfromthealtered Sample preparation procedure and chemical separation followed monzograniteporphyriessamplesfallontheconcordantlinewithinan- thosedescribedinHeetal.(2005).ThePbisotopicratioswerecorrected alyticalerrors(Fig.5).Indetail,theweightedmean206Pb/238Uagesfor forinstrumentalfractionationusingaveragemeasuredvaluesofthe WDS11-40andWDS13-2intrusionsare36.7±0.3Ma(MSWD=2.4) NBS981standard.ThemeasuredisotopicratiosoftheNBS981showed and36.7±0.2Ma(MSWD=2.2;Fig.5aandb),respectively.Zircon massfractionationaround0.1%relativetotherecommendedvalues. datingresultsandCLimagesdidnotrevealanyinheritedzirconsin Total blank levels were less than 1ng. The results measured for anyofthetwointrusions. NBS981are(±2σ)0.059135(±0.021%)for204Pb/206Pb,0.914174 Fourmonzograniteporphyrysamples(WDS11-1,55ZK31-1,MTW10- (±0.010%)for207Pb/206Pb,and2.161430(±0.016%)for208Pb/206Pb. 1,NDP10-1)werecollectedfromsurfaceoutcropanddrillcoreatthe Fig.4.Cathodoluminescence(CL)images.WhiteandyellowdashedcirclesindicatethelocationsofLA-ICP-MSU–PbanalysesandHf-isotopeanalyses,respectively.ZirconU–Pbagesand εHf(t)valuesaregivenforeachanalyses. 236 W.Heetal./GondwanaResearch40(2016)230–248 Fig.5.ZirconU–PbconcordiaplotsoftheBeiyaporphyriesandtheirMMEs. W.Heetal./GondwanaResearch40(2016)230–248 237 Wandongshan,Hongnitang,MatouwanandNadapin.Zirconfromthese ZircongrainsfromtheWDS14-9dioriticenclavesampleyieldvarying samples are relatively short columnar, colorless, transparent and 206Pb/238U ages of 35–38Ma with aweighted meanage of 36.2 ± euhedral,mostly~100μminlength,withaspectratioofabout1:1–2:1. 0.7Ma(MSWD=2.5;Fig.5h). Euhedralconcentriczoningiscommon(Fig.4).ConcentrationsofU rangefrom527to1162ppm,andThfrom321to725ppm.Th/Uratios 4.2.Geochemicalandisotopicresults range from 0.3 to1.4.Noinherited corewasobserved,but several xenocrysticzirconswerefound,witheuhedralconcentriczoningand 4.2.1.Alterationeffects Th/U ratios from 0.3 to 1.8. The weighted mean 206Pb/238U age of Compared with the Beiya monzogranite porphyry, the altered WDS11-1, 55ZK31-11, MTW10-1, and NDP10-1 are 36.3±0.1 Ma monzograniteporphyryhassimilarcompositionofSiO ,Fe O ,and 2 2 3 (MSWD = 1.0), 36.6 ± 0.4 Ma (MSWD = 2.3), 36.4 ± 0.6 Ma MgO,butshowshigherconcentrationsofK O(7.63–10.95wt.%),Rb 2 (MSWD=2.2)and36.0±0.5Ma(MSWD=2.2),respectively.Several (218–461 ppm) and Pb (16–899 ppm) and lower contents of CaO inheritedzirconsfromWDS11-1,55ZK31-1sampleswerefoundwith (0.01–0.21 wt. %), Na O (0.38–0.91 wt. %) and Sr (303–525 ppm). 2 concordantagesrangingfrom771to268Ma(Fig.5cande). (TableS2;Fig.6).Thesefeaturesmayindicatemonzograniteporphyry wasoverprintedwithstrongpotassicalteration,especiallytheporphyry 4.1.2.MME atWandongshan.Inaddition,thepotassicalterationisalsoproved Zircongrainsfromthemaficenclavesamplescollectedfromthe by the K-feldspar staining of the altered monzogranite porphyry, Wandongshanplutonaremostlylongprismaticorstubbysubhedral whichshowsthattheirsamplesarepervasivelyalteredtoK-feldspar crystalswithaspectratiosrangingfrom2:1–5:1.UnderCL,themajority (Luetal.,2013a).Heetal.(2014)analyzedK-feldsparphenocrysts ofthezirconsexhibitoscillatoryorplanarzoningwithnoresorptionor fromtheBeiyafelsicintrusions,whichhavehighK O(9to13wt.%), 2 inheritedcores(Fig.4gandh).The28analysesfromtwosamplesindi- low Na O (0.8 to 1.0 wt. %) and CaO (b0.1 wt. %) concentrations. 2 catevaryingthorium(166–766ppm)anduranium(694–2433ppm) These values are similar to the whole-rock values for the altered abundanceswithTh/Uratiosof0.3to1.1(TableS1).Thesefeatures monzograniteporphyries(seeabove;TableS2),whichalsosuggests are typical of zircon grains crystallized from mafic to intermediate potassicalteration.PotassicalterationcanalsoexplainthehigherRb, magmas.The18analyzedzirconspotsfromtheWDS14-6gabbroic Pb,andlowerSrcontentsinthealteredmonzograniteporphyriesthan enclavesampleyield206Pb/238Uagesintherangeof34Mato38Ma intherelativelyfreshmonzograniteporphyries,giventhatRbandPb withaweightedmeanageof35.9±0.4Ma(MSWD=2.7;Fig.5g). arehighlycompatiblewithK-feldspar(D =1.75;D =2.47)but Rb Pb Fig.6.GeochemicalclassificationofintrusionsatBeiya.(a).Totalalkaline-silicadiagram(Middlemost,1994);thedashedlineseparatingalkalineseriesfromsubalkalineseriesisfrom IrvineandBaragar(1971).(b).K2Ovs.SiO2diagram(modifiedfromand,PeccerilloandTaylor,1976).TheshadedfieldsrepresentexperimentalmeltsoflowKamphiboliteat0.6to 3.2GPaand795°to1150°C,ofmediumKandhighKamphiboliteat0.7to3.2GPaand825°to1150°C,andofshoshoniteat1.5to2.5GPaand1050°to1075°C(Rappetal.,1991; and,WolfandWyllie,1994;RappandWatson,1995;Winther,1996;Sissonetal.,2005;Xiongetal.,2005;XiaoandClemens,2007;Luetal.,2013a),respectively.(c).K2Ovs.Na2O plot.(d).A/CNK[molarratioAl2O3/(CaO+Na2O+K2O)]vs.SiO2plot(KempandHawkesworth,2003). 238 W.Heetal./GondwanaResearch40(2016)230–248 incompatiblewithplagioclase(D =0.1,D =0.97).Incontrast,Sris The MMEs range in composition from hornblende gabbros to Rb Pb lesscompatibleinK-feldspar(D =5.4)thaninplagioclase(D = diorites(Fig.6a)withanSiO contentof51–59wt.%.Theserockscan Sr Sr 2 15.6;Rollison,1993).Thepotassicalterationisapparentas(1)some beclassifiedintotwogroupsonthebasisofmineralassociationand oftheplagioclasephenocrystswithsericitealterationarerimmedby geochemicaldata. freshK-feldspar(Fig.3),and(2)manyfreshK-feldsparphenocrysts TheWDS14-6gabbroicenclavesample(SiO =51wt.%)ischarac- 2 canbeobservedinathinsection,wherethequartzphenocrystsare terizedbyhighAl O (14.79wt.%)(Fig.7a),highMgO(5.58wt.%),and 2 3 resorbedtoembayment-likeshapes,andtheplagioclasephenocrysts Mg#(78).Itisshoshoniticseries(Fig.6b)withK O=7.33wt.%and 2 arealteredtoK-feldspar(Fig.3). K O/Na O = 6.85. This sample has high TiO (1.70 wt. %; Fig. 7c), 2 2 2 Despite the effects of potassic alteration, the strongly altered andP O (0.27wt.%).ItexhibitsLREEenrichment([La/Yb] =8.14) 2 5 N monzograniteporphyryandweaklyalteredmonzograniteporphyries withamoderateEuanomaly(Eu/Eu*=0.27)(Fig.8a),andanegative at Beiya share similar textures (Fig. 3), SiO range (Fig. 6), REE Nb-Ta-Tianomaly(Fig.8b). 2 and trace element patterns (Fig. 8), whole-rock Sr-Nd-Pb isotopes Three dioritic enclave samples have SiO (54.34–56.19 wt. %) 2 (TableS3),andzirconHfisotopecompositions(Figs.10,11),which contentswithhighMgO(4.36–4.88wt.%),TiO (0.75–1.32wt.%)and 2 suggeststhatalteredmonzograniteporphyryareprobablythepotassic- CaO(3.36–3.42wt.%)contents(TableS2).TheMMEshavevariably alteredequivalentofthemonzograniteporphyries. highK O(4.01–6.04wt.%;TableS2),plotintheshoshoniticseries 2 fieldintheK OversusSiO figure(Fig.6b).Comparedwiththefelsic 2 2 4.2.2.Majorandtraceelements porphyries,thedioriticenclavesamplealsoshowsadakite-likesigna- Whole-rockgeochemicaldatafromthisstudyareillustratedon tureswithhighSr(435–648ppm)contents,lowY(8.2–12.7ppm) Fig.6,andlistedinSupplementaryTableS2.Thealteredmonzogranite andheavyREE(HREE;e.g.Yb=0.8–10ppm)concentrations,andele- porphyries and monzogranite porphyries have felsic signatures vatedSr/Y.However,comparedwithreportedadakite-likeintrusions (SiO =66.91–72.35wt.%),andhighalkalicontents(K O+Na O= inBeiya,thedioriticenclavehasrelatively lowSiO andhigh MgO 2 2 2 2 5.02–11.48wt.%),andmostplotinthefieldsofquartzmonzoniteand contents,andhighcompatibleelement(e.g.Ni=28–38ppm;Cr= thealkalineseriesonatotalalkalis-silica(TAS)diagram(Fig.6a).The 66–95ppm).Thesecharacteristicsclassifythelatterashigh-Mgdiorite porphyriesareK-rich,withhighK Ocontents(4.07–10.19wt.%)and accordingtoShireyandHanson(1984). 2 highK O/Na Oratios(0.86-51.92,average7.31),andtheyfallwithin 2 2 theshoshoniticseriesonaSiO -K Oplot(Fig.6b).Theseporphyriesare 4.2.3.Sr-Nd-Pbisotopes 2 2 metaluminous-peraluminouswithA/CNK(molarratioAl O /(CaO+ Sr-Nd-Pb isotope data for the Beiya intrusions are listed in 2 3 Na O+K O))valuesof0.85–1.55(Fig.6d).IntermsofREEandtrace Supplementary Table S3 and illustrated in Figure 10. The altered 2 2 elements,thealteredmonzograniteporphyryandmonzogranitepor- monzograniteandmonzograniteporphyrieshavethesimilarSr-Nd phyryhavesimilarREEpatterns,characterizedbylowerREEcontents isotopescharacterizedbytheintermediate(87Sr/86Sr) ratiosof0.7062 i thantheBeiyaMMEsand(La/Yb) of7.5to24.7,weakEuanomalies to0.7078andε (t)values-1.5to-6.0(TableS3;Fig.10a).Thetwo- N Nd (Eu/Eu*=0.82–0.94),andnegativeNb-Ta-P-Tianomalies(TableS2; stage Nd isotope-depleted mantle model ages (T ) is ca. 1.3 Ga. DM2 Fig.7aandb).Allthesesamplesareadakite-like,ascharacterizedby Thesesamplesshownarrowrangeof206Pb/204Pbratios(18.58–18.62) theirhighSr(763–1005ppm)andlowY(6.52–11.26ppm)andYb and radiogenic 207Pb/204Pb (15.56–15.62) and 208Pb/204Pb (38.56– (0.64–1.1ppm)concentrations.Allofthesamplesalsoplotwithinthe 38.86)ratios,plottingwellabovetheNorthernHemisphereReference adakiticfieldinaSr/Yvs.Ydiagram(Fig.9a). Line(NHRL;Hart,1984;Fig.10candd).TheBeiyafelsicintrusions Fig.7.HarkerdiagramsofselectedmajorelementsandMg#.Thefieldsofhigh-magnesianandesitesandnormalarcsarefromMccarronandSmellie(1998),andthefieldofmeltsfrom metaigneoussourcesisfromPatiñoDouce(1995,1999),WolfandWyllie(1994). W.Heetal./GondwanaResearch40(2016)230–248 239 Fig.8.Chondrite-normalizedrareearthelement(REE)patternsandprimitivemantlenormalizedmulti-elementdiagramsfortheBeiyaporphyriesandtheirMMEs.Shadedfieldsarefor coevalmaficvolcanicrocksinwesternYunnan(Lietal.,2002;Huangetal.,2010)andyellowfieldsaretypicalSouthTibetadakite-likerocksderivedbypartialmeltingofthickenedlower crust(Chungetal.,2003;Houetal.,2013;Wangetal.,2014a,b).ChondriteandprimitivemantlenormalizingvaluesarefromSunandMcDonough(1989). havesimilarSr-Nd-Pbisotopestolowercrustalamphibolitexenoliths Comparedwiththefelsicporphyriesthegabbroicenclavesample hostedbypotassicfelsicintrusionsinwesternYunnan(Fig.10;Deng haslow(87Sr/86Sr) ratios(0.7058)andhighε (t)values(-1.5)con- i Nd etal.,1998;Zhaoetal.,2004). tents.Thetwo-stageNdisotope-depletedmantlemodelages(T )is DM2 Fig.9.(a).PlotsofSr/Yvs.Y,(b).SiO2vs.MgO,(c).Nivs.Cr,and(d).SiO2vs.Th/CefortheBeiyaporphyriesandtheirMMEs.DottedfieldisofmaficlavasinwesternYunnan(Xuetal.,2001; Lietal.,2002;Huangetal.,2010).Shadedfieldisofadakitic-likerocksinwesternYunnan(Dengetal.,2014;Liuetal.,2015;Luetal.,2013a,b).Fieldsofadakiteandarcrocksareafter RichardsandKerrich(2007).Thetwodashedcurvesrepresentmeltingleavingarestiteof10%garnetamphiboliteandgarnet-freeamphibolite,basedonashoshoniticamphibolite xenolithfromLiuhe,westernYunnan,asthestartingcomposition(Luetal.,2013b).Fieldsofsubductedoceaniccrust-derivedadakites,thicklowercrust-derivedadakite-likerocks, delaminatedlowercrust-derivedadakite-likerocksandmetabasalticandeclogiteexperimentalmeltshybridizedwithperidotiteareafterWangetal.(2006).

Description:
microgranular enclaves (MMEs) including gabbroic enclaves and dioritic enclaves from the large Beiya porphyry Central Anatolian Massif, Turkey.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.