GondwanaResearch40(2016)230–248 ContentslistsavailableatScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization Wen-yanHea,⁎,Xuan-xueMoa,⁎,Li-qiangYanga,Yan-luXingb,Guo-chenDonga,ZhenYanga, XueGaoa,Xin-shangBaoa aStateKeyLaboratoryofGeologicalProcessesandMineralResources,ChinaUniversityofGeosciences,Beijing100083,China bSchoolofEarth,AtmosphereandEnvironment,MonashUniversity,VIC3800,Australia a r t i c l e i n f o a b s t r a c t Articlehistory: TheoriginofmagmaswithhighH O,Sandmetalsthatarelinkedtoporphyryeconomicmineralizationin 2 Received25March2016 continentalcollisionalbeltsiscontroversial.Inthispaper,westudiedthehostporphyriesandassociated Receivedinrevisedform18September2016 microgranularenclaves(MMEs)includinggabbroicenclavesanddioriticenclavesfromthelargeBeiyaporphyry Accepted28September2016 AudepositinJinshajiang-Ailaoshanmineralizationbelt,whichprovidefirsthandevidenceofcrust–mantle Availableonline11October2016 hybridizationintheformationoffertilemagmaforporphyrydeposit.ZirconLA-ICPMSU–Pbagesindicatecoeval formationfortheMMEsandthefelsicporphyriesinEocenetime(~36Ma).TheMMEsshowspheroidalshapes, HandlingEditor:F.Pirajno acicularapatites,andoscillatoryzoningwithrepeatedresorptionsurfacesinplagioclases,whichsuggestthatthe Keywords: MMEsareglobulesofamoremaficmagmathatwasinjectedintoandmingledwiththehostfelsicmagma.One Maficmicrogranularenclaves gabbroicenclavesampleexhibitshighMgO(5.6wt.%),highTiO2(1.7wt.%),enrichedinlarge-ionlithophile Magmamixing element(LILE)anddepletedinhighfieldstrengthelement(HFSE),withnegativeNb,TaandTianomalies.This Porphyrydeposit indicatesthatthegabbroicenclaveissimilartothoseofthecoevalpotassicmaficrocksintheWesternYunnan, Beiya whichoriginatedfromtheenrichedmantlemetasomatizedbytheslab-derivedfluids.Thedioriticenclaveexhibit WesternYunnan bothpotassicandadakitic-likefeatures,andarecharacterizedbyhighcontentsofMgO(4.4–4.9wt.%),K O 2 (6.4–7.4wt.%),andcompatibletraceelements(e.g.Ni:115–142ppm;Cr:214–291ppm),aswellasby highSr/Yratios.Thedioriticenclavesamplesyieldε (t)values(−1.9to+3.6)similartothoseofthehost Hf porphyries.Petrographic,elemental,andisotopicevidencesuggeststhattheBeiyadioriticenclavewereformed bymixingbetweenpotassicmaficandadakitc-likemelts,derivedfrommetasomatizedlithosphericmantleand lowercrust,respectively.Incontrast,theBeiyahostporphyriesarecharacterizedbyhighSiO (66.9–71.9wt.%) 2 andAl O (13.8–15.9wt.%)contents,highSr/Yratios(35–79),lowcompatibleelementcontents(e.g.Ni= 2 3 0.9–7.2ppm;Cr=1.0–8.2ppm),lowMg#values(0.19–0.35),positiveLILEanomalies,markednegativehigh HFSEanomalies,negativeε (t)values(−6to−2),andhigh(87Sr/86Sr)values(0.7071–0.7081).Thesefeatures Nd i indicatethatthehostporphyriesweremainlyformedbypartialmeltingofsubduction-modifiedlowercrustwith acertainassimilationofmaficmeltsrepresentedbyMMEs.MMEshostedintheBeiyaporphyries,formedfrom ahydrous,maficmagmaalthoughtheyformedinanon-arcsetting.Highmagmaticwatercontentisprobably relatedtoanenrichedmantlemetasomatizedbyfluidsfromaProterozoicsubductedoceanicslab.HighCu (341–626ppm)andAucontentsoftheMMEssuggesttheycrystallizedfromametal-richmaficmelt.Complex assemblagesofpyrite–chalcopyrite–apatite–rutilewithhornblendeareobservedintheleastalteredMME.We suggestthatthemaficmeltprobablysuppliedpartofwater,andmetaltotheBeiyaporphyryAusystem. ©2016InternationalAssociationforGondwanaResearch.PublishedbyElsevierB.V.Allrightsreserved. 1.Introduction calc-alkalinetohigh-Kcalc-alkalinesilicicmagmas(Richards,2003; Cooke et al., 2005; Sillitoe, 2010), However, recent studies have Porphyry Cu (-Mo-Au) deposits are widely considered to be shownthatsuchdepositscanformincollisional/orogenicbelts,such productsofisland-andcontinental-arcsettingsinassociationwith as the Eastern Tethyan orogenic belt, including the classic Eocene Jinshajiang-AilaoshanporphyryCu-Mo-AubeltinSouthwesternChina (Houetal.,2003;Liangetal.,2006;Luetal.,2013a;Dengetal.,2014), ⁎ Correspondingauthorsat:StateKeyLaboratoryofGeologicalProcessesandMineral Oligo-MioceneGangdeseporphyryCu-MobeltinSouthernTibet(Hou Resources,andSchoolofEarthScienceandResources,ChinaUniversityofGeosciences, etal.,2004,2013,2015;Quetal.,2004;Yangetal.,2014;Wangetal., Beijing100083,China. E-mailaddresses:[email protected](W.He),[email protected](X.Mo). 2014a,b,c;2015;Lu.,2015),andtheEocenetoMioceneUrumieh- http://dx.doi.org/10.1016/j.gr.2016.09.004 1342-937X/©2016InternationalAssociationforGondwanaResearch.PublishedbyElsevierB.V.Allrightsreserved. W.Heetal./GondwanaResearch40(2016)230–248 231 DokhtarporphyryCu-MobeltintheCentralIran(Ahmadianetal.,2009; Asia collision at 45 Ma, as evidenced by a reduction in the rate of Haschkeetal.,2010;Richards,2013). Indo-Asian continental convergence (e.g. Chung et al., 2005). The Theunderlyingbasisofarcporphyry-Cusystemsisthoughttobethe straincausedbythishardcollisionwasaccommodatedbythelateral generationofcalc-alkalinebasalticarcmagmasthatarehot,hydrous, extrusionoftheSimaoBlockfromca.32Maonward;thisextrusion sulfur-rich,andhaverelativelyhighfO .Thesemagmasaregenerated wasassociatedwithconcomitantshearingthatpartlyoverlappedthe 2 in a mantle wedge that has been metasomatized by fluids from a Jinshajiang-Ailaoshansuture(HouandCook,2009). subductedslab,andthenrisebuoyantlytothebottomofthelower crust,wheretheyundergomelting,assimilation,storage,andhomogeni- 2.1.2.Collisionalmagmatismandmineralization zation(aMASHprocess),resultinginevolved,volatile-rich,metalliferous Continentalorogenesis-relatedpotassicmagmaticsuitesatca.40- intermediatetofelsicmagmas(Richards,2003).Forthecollisional-arc 30Maproducedaseriesofigneousrocksthataregenerallyconcentrated systems,magmasaremostlyderivedfrompartialmeltingofthelower acrosstheQiangtangTerraneandwesternYangtzeCraton,proximalto crustormantlelithosphereratherthanmantlewedge(Richards,2009; theAilaoshan-Jinshajiangsuture(Guoetal.,2005;Sunetal.,2009; Wangetal.,2015,Luetal.,2015).Therefore,thephysicochemicalcondi- Zhangetal.,2010;Fig.1b).Thepotassicrocksformsmallextrusive tionsoflithospheresuchaswatercontent,oxidationstate,sulfurcontent, andintrusivebodiesconsistingofmafictofelsicunits.Maficrocksare andmetalbudgetsarevitalforproductionoffertilemagmasandfurther dominatedbylamprophyredykes(Guoetal.,2005;Lietal.,2002) mineralization.Althoughalargeamountofmodelshavebeenproposed withminormaficlava(Huangetal.,2010;Xuetal.,2001a),whereas fortheoriginofcollisionalporphyrydeposits(Houetal.,2004;Richards, felsicrocksaremainlyporphyriticgranites,someofwhichhostCu 2009;Shafieietal.,2009;Wangetal.,2014a,b;Luetal.,2015;Pirajno (-Mo-Au)mineralization(Houetal.,2009;Luetal.,2013b).Thisbelt andZhou,2015;Yangetal.,2015),littleevidenceexiststoprovethecon- includestwosub-belts:theYulongporphyrysub-beltinthenorthand nectionoflithosphereandmantlewithporphyrydepositformation.In theAilaoshan-RedRiverporphyrysub-beltinthesouth(Dengetal., ordertobetterunderstandthisprocess,wechoosetheBeiyaporphyry 2010,2014;Houetal.,2003,2007;Xuetal.,2012).TheYulongporphyry Audepositasthestudycasebecauseofitswell-documentedmagmatic sub-beltwasassociatedwithasetofsecondaryNNW-directedstrike- system,occurrenceofmaficmicrogranularenclaves(MMEs),andcoeval slipfaultsandfoldstriggeredbytheJinshajiangright-lateralstrike- maficpotassicrocksderivedfromthemantle.TheBeiyadepositisalarge slipfaultsystem(Houetal.,2003,2007).Sofar,fiveporphyry-skarn porphyry Au deposit with 350 t gold, located in the center of the deposits, including Beiya, Machangqing, Habo, Tongchang and Jinshajiang-Ailaoshan magmatic belt (Deng et al., 2015; He et al., Chang’anchong,havebeendiscoveredintheAilaoshan-RedRiverore 2015). Felsic porphyries with MMEs are associated with the gold belt(Dengetal.,2014;Houetal.,2003;Zhuetal.,2010;Zhangetal., mineralization, and formed in a post-collisional environment (Hou 2013).Contemporarylamprophyredikesarealsospatiallyassociated etal.,2006;Heetal.,2013;Luetal.,2013a). with the potassic porphyritic magmatism in these deposits (Wang This work reports the geochronological sequence of magmatic etal.,2001;Wangetal.,2003;Guoetal.,2005). systemsintheBeiyaregion.BycombingournewdataofSr-Nd-Pb-Hf isotopic analyses on felsic porphyries and MMEs with published 2.2.Geologyofthedeposit lithogeochemicalwork,weshowthatthefertilelithosphericmantle playsamajorroleinformationofBeiyaasthelargestgolddepositin TheBeiyadepositcoversanareaof~800km2andislocatedalongthe southeasternChina. limbsoftheN-StrendingBeiyasyncline.Thedepositconsistsoftwo zones,withtheWandongshanandHongnitangzonesonthewestlimb 2.Geologicalsettingandsample oftheBeiyasyncline,andtheWeiganpoandBijiashanprospectson the east limb (Fig. 2). In addition, the Matouwan and Bailiancun 2.1.Regionalgeology prospectsoccuraroundtheperipheryofthedeposittotheeastandwest. 2.1.1.Tectonicframework 2.2.1.Lithology The Beiya gold-polymetallic deposit is located in the center of The rocks in the Beiya area include four major formations. The theJinshajiang-Ailaoshanmagmaticbelt,whichmarginsthewestern lowermostunitistheEmeishanfloodbasalts,whichcompriseslate Yangtze Craton (Fig. 1a). The Yangtze Craton contains an early mid-Permianbasalts.Theoverlyingunit,comprisingLowerTriassic Proterozoic metamorphic basement covered by Late Proterozoic to sandstonesandhornfels,istheQintianbaoFormationthatisoverlain MiddleTriassicsedimentarysequences. bytheBeiyaFormation.TheBeiyaFormationconsistsofwhiteorlight ThewesternmarginoftheYangtzeCratoncontainsNeoproterozoic grayargillaceouslimestoneanddolomiticlimestonethatischaracter- volcanicrocksandcoevalplutonsatca.840Mathathaveanarc-like izedby vermiformtexture.Thisformation isthemainhostforthe geochemicalaffinityandarethoughttohaveformedduringmagmatism skarnmineralizationoftheBeiyadeposit.ThePermianandTriassic associatedwiththePanxi-Hannanarc(Zhouetal.,2002,2006;Lietal., strataoccurinanN-Strendingbasinuponwhichissuperimposeda 2003;Fig.1a).ThewesternpartoftheCratonalsocontainsPermian broadN-Ssyncline.Eocene-Oligoceneintrusionsareabundant,and continentalfloodbasaltsassociatedwiththeEmeishanmantleplume theyaredominatedbymonzograniteporphyries,biotitemonzogranite (ChungandJahn,1995;Fig.1b). porphyries and lamprophyres. The felsic porphyries, controlled by The Yangtze Craton is separated from the Simao Block by the NNE-SWandNNW-SSE-trendingfaults,wereintrudedintotheBeiya Ailaoshansuture,whichconnectstothenorthwiththeJinshajiang Formationcarbonatesintheformofstocksanddikes.Thelamprophyre suture that marks the boundary of the East Qiangtang Block. The dykes are widely distributed in the Beiya mining area (Fig. 2) Jinshajiang-AilaoshansutureformedinthelatePermianasaresult and spatially associated with monzogranite porphyry. The largest of the closure of the Jiashajiang-Ailaoshan Ocean, a branch of the lamprophyreorientedwest-eastandhavealenticularcrosssection. Paleo-Tethys(Moetal.,1994;Metcalfe,2002,2013;Dengetal.,2012, 2014;CocksandTorsvik,2013). 2.2.2.Mineralization ThewesternmarginoftheYangtzeCratonwasalsoinvolvedin There are two types of mineral systems in the Beiya orefield: CenozoicorogenesisresultingfromtheIndo-Asiancontinentalcollision. porphyry–skarnmineralizationandsupergene-enrichedmineraliza- The55-50MaarrivaloftheIndiancontinentatthetrenchmarkedthe tion. The former contains porphyry Cu–Au mineralization mainly initiation of Indo-Asian continental collision (Dupont-Nivet et al., developed within theporphyry intrusions, skarn-typeFe–Au ±Cu 2010;Najmanetal.,2010).ThenorthwardindentationoftheIndian mineralization(themaintypeinthearea)alongthecontactsbetween continentcausedatransitionfromthesofttohardphasesofIndia- the porphyries and Triassic carbonates, and stratiform or vein-like 232 W.Heetal./GondwanaResearch40(2016)230–248 Fig.1.(a)DistributionofprincipalcontinentalblocksandsuturesofsEastTethyanbelt(modifiedfrom2013,Metcalfe).(b)TectonicframeworkoftheSanjiangregioninsouthwest Chinashowingthemajorterranes,suturezones,arcvolcanicbelts,Cenozoicigneousrocks,andlocationsoftheBeiyaAudepositandothermajorCenozoicporphyryCu-Au-Modeposits (modifiedfromDengetal.,2014,Wangetal.,2001;Heetal.,2015).TheagesofthezirconU–PbandmolybdeniteRe-Osfortheporphyry–skarnorebeltinwesternYunnanarefrom Xuetal.(2012). hydrothermalPb-Zn-AgmineralizationalongfracturesintheTriassic porphyries from Wandongshan, Hongnitang, Bijiashan, Bailiancun, carbonatesoralongtheinterfacesbetweendifferentlithologies.The MatouwanandNadapin;TheMMEssamplesarefoundinmonzogranite porphyry-skarn is thoughttobe associatedwiththemonzogranite porphyryfromWandongshanpluton(Figs3a,bandc).Asummaryof porphyries.IntheWandongshanandHongnitangskarndepositoccur thepetrographicalfeaturesisgiveninTable1,andthephotomicro- alongthecontactsbetweentheporphyriesandlimestones,butinthe graphsareshowninFig.3. BijiashanandWeiganpoprospectsthemineralizationoccursatthe Thehostporphyries(Fig.3e)consistofplagioclase(Pl),K-feldspar marginsoftheporphyries.TheMatouwandepositisdominatedby (Kfs),quartz(Q),andbiotite(Bi).Thealteredmonzograniteporphyries skarn-typeFe–Cu±AuwithminorheterogeneousCuinhornfels,and arecharacterizedbythecrystalfacesoftheK-feldsparphenocrysts atBailiancunthemineralizationoccursasvein-likehydrothermalPb– generallyappearasalmostregularhexagonsorrectangles,although Zndepositsinthenorthernpartofthearea,Au-bearinglimonitein somecrystalsexhibitresidualmetasomaticstructuresduetoargillic thecentralpart,anddisseminatedCuinthesouthernpart. alteration(Fig.3d).TheMMEs(Fig.3aandc),whicharemicrogranular andrichinmaficminerals,arerandomlydistributedinthehostporphyry 2.3.Samplesandpetrography (Fig.3fandi).Thegabbroicenclaves(Fig.3fandg)arecharacterized bythepresenceofpyroxene(Px).LargexenocrystsofK-feldsparcan Thecollectedsamplesincludethealteredmonzograniteporphyries becommonlyobservedinthedioriticenclaves(Fig.3h),andaccessory fromWandongshan,Hongnitang;therelativelyfreshmonzogranite apatiteisabundantandgenerallyacicular(Fig.3gandi). W.Heetal./GondwanaResearch40(2016)230–248 233 Fig.2.SimplifiedgeologicalmapoftheBeiyaAuorefield,westernYunnan,China.ModifiedafterHeetal.(2015). 3.Analyticalmethods 0.24(Blacketal.,2003),indicatingthatthedataqualityisreliable. CorrectionforcommonPbwasmadefollowingAndersen(2002).Errors 3.1.ZirconU-Pbdating onindividualanalysesbyLA-ICP-MSarequotedatthe1σlevel,whereas errorsonpooledagesarequotedatthe95%(2σ)confidencelevel. Zirconswereseparatedfromtherocksamplesusingconventional heavy liquid and magnetic techniques, and were purified by 3.2.Majorandtraceelements handpickingunderabinocularmicroscopeattheLangfangRegional Geological Survey, Hebei Province, China. The handpicked zircons Fresh rock samples were selected andcleaned of surfaces, then wereexaminedundertransmittedandreflected-lightwithanoptical powderedinanagatemilltoagrainsizeofb200mesh.Majorelement microscope.Cathodoluminescence(CL)imageswereobtainedusinga compositionsofwholerockswereanalyzedusingaRegaku3080E1 JEOLscanningelectronmicroscope,housedattheInstituteofGeology X-rayfluorescencespectrometer(XRF)atHubeiGeologicalResearch and Geophysics, Chinese Academy of Sciences (IGGCAS). Based on Laboratory.FeOcontentsweremeasuredbyconventionalwetchemical theirCLimages,distinctdomainswithinthezircongrainswereselected titrationmethods.Rareearthelement(REE)andTraceelementcon- foranalysis.Agilent7500aICP-MSequippedwitha193nmlaseratthe tentsweredeterminedbyICP-AESandICP-MSatthesamelaboratory. StateKeyLaboratoryofGeologicalProcessesandMineralResources, Analyticaluncertaintiesaregenerallylessthan2%formajorelements ChinaUniversityofGeosciences(Wuhan),wasusedtomeasurethe except H O+ (b5%), 4% for REE and Y, and 6% for trace elements. 2 U-Pbageofzircons.TEMORAwasusedasanexternalstandardforage Detailedanalyticalproceduresforthemajorandtraceelementswere calibration,andtheNISTSRM610silicateglasswasappliedforthe describedbyGaoetal.(2003). instrumentoptimization.Thecraterdiameterwas32μmduringthe analyses.Theinstrumentsettingsanddetailproceduresfollowthose 3.3.ZirconHfisotopeanalyses describedbyLiuetal.(2008).TheICPMSDataCal8.3wasusedtoprocess theoriginaltestdatawasforisotoperatiosandthecontentoftrace In-situzirconHfanalyseswerecarriedoutonthedatedspotsusing elements (Liu et al., 2008, 2010); Isoplot 3.23 (Ludwig, 2003) was Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany), usedtocalculatetheU–Pbageandsinglespotdataerroris1σ,weighted equippedwithaGeolas2005excimerArFlaserablationsystem(Lambda average206Pb/238Uageis2σ.Theobtainedmeanweighted206Pb/238U Physik,Göttingen,Germany),attheStateKeyLaboratoryofGeological age416±5.5Ma(2σ,MSWD=0.5)fromalltheTEMORAzirconswas ProcessesandMineralResources,ChinaUniversityofGeosciencesin obtained,whichisconsistentwiththerecommendedvalues416.75± Wuhan.Duringanalyses,spotsizeof44μm,andlaserrepetitionof 234 W.Heetal./GondwanaResearch40(2016)230–248 Fig.3.RepresentativefieldandphotomicrographsoftheBeiyaporphyry.a.MMEshostedwithinthemonzograniteporphyry;b.Aquenchedmarginsurroundedbyfine-grainedblack mineralassemblagesinMME;c.MMEwithanirregularshape;d.AlteredmonzograniteporphyriesfromWangdonshan.Inthissample,theplagioclasephenocrystswithsericite alterationarerimmedbyfreshK-feldspar(plane-polarisedlight).e.MonzograniteporphyryfromWangdongshan,thisphotomicrographsshowthemajorrock-formingminerals oftheporphyries(cross-polarisedlight).f.GabbroicenclavefromWangdongshan,thisphotomicrographsshowthemajorrock-formingmineralsoftheenclave(cross-polarised light).g-i.DioriticenclavesformWangdongshan(cross–polarisedlight).Abbreviations:Amp=amphibole;Ap=Apatite;Bi=biotite;Kfs=K-feldspar;Pl=plagioclase;Px= pyroxene;Qtz=quartzSer=sericite. 8Hzwithenergydensityof5.3J/cm2wereused.Detailedoperating yieldedaweighted176Hf/177Hfratioof0.282673±5(2σ,n=50), conditionsforthelaserablationsystemandtheMC-ICP-MSinstrument identicaltotherecommendedvaluewithinerror(Blichert-Toft,2008). andanalyticalmethodsarethesameasthosedescribedbyHuetal. Adecayconstantfor176Luof1.865×10-11year-1(Schereretal., (2012).Standardzircon91500wasusedforexternalcorrection.During 2001)wasadoptedinthiswork.Initial176Hf/177Hfratio,denotedas analytical sessions, the obtained 176Hf/177Hf value of 91500 was ε (t),iscalculatedusingthemeasuredU-Pbagesandwithreference Hf 0.282533±16(2σ),whichwasadjustedto0.282308(correctionof tothechondriticreservoirpresent-day176Hf/177Hfratio=0.282772 0.000006),astandardvaluerecommendedfor91500(Blichert-Toft, and176Lu/177Hf=0.0332(Blichert-ToftandAlbarede,1997).Single- 2008).Duringdataacquisition,analysesofTEMORA-2asanunknown stage Hf model ages (T ) are calculated relative to the depleted DM1 Table1 Summaryofgeneralpetrographicalfeatures. Sample Lithology Texture Mineralassemblage Accessory Alteration minerals WDS11–40,WDS13–2,WDS13–4,WDS13–5, Alteredmonzogranite Porphyritictexture Kfs(35–45%),Qtz(5–10%),Pl(b5%) Ap,Mt.,Zrc,Ti Altered HNT11–4,BLC11–1 porphyry Groundmass:Kfs,Qtz WDS10–4,WDS11–2,WDS11–31,WDS11–47, Monzogranite Porphyritictexture Kfs(30–35%),Pl(20–25%),Qtz(10%); Ap,Mt.,Zrc,Ti Unalteredor 55ZK31–1,MTW10–1,NDP10–1,HNT10–1 porphyry Groundmass:Qtz,Kfs Minoralteration WDS14–1 Gabbroenclave Micro-tofine-grained Pl(50–60%),Hb(15–20%),Bi(10–15%), Ti,Ap,Zrc,Ep Unaltered hypidiomorphic-granular Kfs(5%),andPx(b5%) WDS14–7,WDS14–8,WDS14–9 Dioriticenclave Fine-grained Pl(50–60%),Qtz(10–20%); Ti,Ap,Zrc,Ep Unaltered hypidiomorphic-granular Hb(5–10%)andPl(3–8%) Ap=Apatite,Bi=biotite,Hb=hornblende,Kfs=K-feldspar,Mt.=magnetite,Pl=plagioclase,Px=pyroxene,Qtz=quartz,Ti=titanite,Zrc=zircon. W.Heetal./GondwanaResearch40(2016)230–248 235 mantlepresent-dayvalueof176Hf/177Hf=0.283250and176Lu/177Hf= 4.Results 0.0384(Griffinetal.,2000a,b).Two-stageHfmodelages(T )arecal- DM2 culatedbyassumingamean176Lu/177Hfvalueof0.015fortheaverage 4.1.ZirconU–Pbresults continentalcrust(Griffinetal.,2002). 4.1.1.Felsicporphyry 3.4.Sr-Nd-Pbisotopesanalyses EightintrusiverocksfromtheBeiyaareawereselectedforzircon U-Pbdating.AlargenumberofU-PbzircondatesexistforCenozoic SeparationandpurificationofSrandNdwerecompletedattheKey rocksfromtheBeiyaareaHowever,mostofthesesampleswerecollected LaboratoryofOrogenicBeltsandCrustalEvolution,PekingUniversity. fromWandongshanandHongnitangandwereoutcropsamples.Inthis About150mgpowderofeachsamplewasdissolvedinTeflonbeakers study,wesupplementnewdataofdrillcoresfromWangdongshanand withamixtureacid(HClO +HNO +HF)at150°Cfor7days.Srand HongnitangandanalyzetheagesfromMatouwan,Nandapingandnew 4 3 Nd elements were obtained throughconventional cation-exchange discoveredMMEs.Mostofzircongrainsareeuhedral,colorlessand techniqueandtheirisotoperatioswerethenmeasuredonaThermo- exhibitoscillatoryzoningintheirCLimages,indicatingamagmatic FinniganTritonT1thermalionizationmassspectrometer(TIMS)at origin. TianjinInstituteofGeologyandMineralResource(TIGMR),following Twoalteredmonzograniteporphyrysamples(WDS11-40,WDS13-2, thesimilarmethoddescribedbyLietal.(2012).Measured87Sr/86Sr TableS1)werecollectedfromsurfaceoutcropattheWandongshanopen and 143Nd/144Nd values are normalized to 86Sr/88Sr = 0.1194 and pit.Thesamplesaregenerallyprismaticorbrokenprisms,colorless, 146Nd/144Nd=0.7129formassfractionation.Long-termmeanvalues transparent,andeuhedral,upto~100μminlength,withlengthto oftheSrandNdstandardsNBSstandard987andJNdi-1ofthelabora- widthratiosofabout1:1–2:1.TheyarecharacterizedbypatchyCLim- toryare87Sr/86Sr=0.710249±5and143Nd/144Nd=0.512112±4, ages(Fig.4);afewgrainsshowbroadeuhedralconcentriczoning.Ucon- respectively. tentsrangefrom226to3230ppm,andThfrom307to471ppm.Th/U Pb was separated by anion exchange resins (Bio-rad AG 1×8). ratiosrangefrom0.1to2.1.Allthemeasuredspotsfromthealtered Sample preparation procedure and chemical separation followed monzograniteporphyriessamplesfallontheconcordantlinewithinan- thosedescribedinHeetal.(2005).ThePbisotopicratioswerecorrected alyticalerrors(Fig.5).Indetail,theweightedmean206Pb/238Uagesfor forinstrumentalfractionationusingaveragemeasuredvaluesofthe WDS11-40andWDS13-2intrusionsare36.7±0.3Ma(MSWD=2.4) NBS981standard.ThemeasuredisotopicratiosoftheNBS981showed and36.7±0.2Ma(MSWD=2.2;Fig.5aandb),respectively.Zircon massfractionationaround0.1%relativetotherecommendedvalues. datingresultsandCLimagesdidnotrevealanyinheritedzirconsin Total blank levels were less than 1ng. The results measured for anyofthetwointrusions. NBS981are(±2σ)0.059135(±0.021%)for204Pb/206Pb,0.914174 Fourmonzograniteporphyrysamples(WDS11-1,55ZK31-1,MTW10- (±0.010%)for207Pb/206Pb,and2.161430(±0.016%)for208Pb/206Pb. 1,NDP10-1)werecollectedfromsurfaceoutcropanddrillcoreatthe Fig.4.Cathodoluminescence(CL)images.WhiteandyellowdashedcirclesindicatethelocationsofLA-ICP-MSU–PbanalysesandHf-isotopeanalyses,respectively.ZirconU–Pbagesand εHf(t)valuesaregivenforeachanalyses. 236 W.Heetal./GondwanaResearch40(2016)230–248 Fig.5.ZirconU–PbconcordiaplotsoftheBeiyaporphyriesandtheirMMEs. W.Heetal./GondwanaResearch40(2016)230–248 237 Wandongshan,Hongnitang,MatouwanandNadapin.Zirconfromthese ZircongrainsfromtheWDS14-9dioriticenclavesampleyieldvarying samples are relatively short columnar, colorless, transparent and 206Pb/238U ages of 35–38Ma with aweighted meanage of 36.2 ± euhedral,mostly~100μminlength,withaspectratioofabout1:1–2:1. 0.7Ma(MSWD=2.5;Fig.5h). Euhedralconcentriczoningiscommon(Fig.4).ConcentrationsofU rangefrom527to1162ppm,andThfrom321to725ppm.Th/Uratios 4.2.Geochemicalandisotopicresults range from 0.3 to1.4.Noinherited corewasobserved,but several xenocrysticzirconswerefound,witheuhedralconcentriczoningand 4.2.1.Alterationeffects Th/U ratios from 0.3 to 1.8. The weighted mean 206Pb/238U age of Compared with the Beiya monzogranite porphyry, the altered WDS11-1, 55ZK31-11, MTW10-1, and NDP10-1 are 36.3±0.1 Ma monzograniteporphyryhassimilarcompositionofSiO ,Fe O ,and 2 2 3 (MSWD = 1.0), 36.6 ± 0.4 Ma (MSWD = 2.3), 36.4 ± 0.6 Ma MgO,butshowshigherconcentrationsofK O(7.63–10.95wt.%),Rb 2 (MSWD=2.2)and36.0±0.5Ma(MSWD=2.2),respectively.Several (218–461 ppm) and Pb (16–899 ppm) and lower contents of CaO inheritedzirconsfromWDS11-1,55ZK31-1sampleswerefoundwith (0.01–0.21 wt. %), Na O (0.38–0.91 wt. %) and Sr (303–525 ppm). 2 concordantagesrangingfrom771to268Ma(Fig.5cande). (TableS2;Fig.6).Thesefeaturesmayindicatemonzograniteporphyry wasoverprintedwithstrongpotassicalteration,especiallytheporphyry 4.1.2.MME atWandongshan.Inaddition,thepotassicalterationisalsoproved Zircongrainsfromthemaficenclavesamplescollectedfromthe by the K-feldspar staining of the altered monzogranite porphyry, Wandongshanplutonaremostlylongprismaticorstubbysubhedral whichshowsthattheirsamplesarepervasivelyalteredtoK-feldspar crystalswithaspectratiosrangingfrom2:1–5:1.UnderCL,themajority (Luetal.,2013a).Heetal.(2014)analyzedK-feldsparphenocrysts ofthezirconsexhibitoscillatoryorplanarzoningwithnoresorptionor fromtheBeiyafelsicintrusions,whichhavehighK O(9to13wt.%), 2 inheritedcores(Fig.4gandh).The28analysesfromtwosamplesindi- low Na O (0.8 to 1.0 wt. %) and CaO (b0.1 wt. %) concentrations. 2 catevaryingthorium(166–766ppm)anduranium(694–2433ppm) These values are similar to the whole-rock values for the altered abundanceswithTh/Uratiosof0.3to1.1(TableS1).Thesefeatures monzograniteporphyries(seeabove;TableS2),whichalsosuggests are typical of zircon grains crystallized from mafic to intermediate potassicalteration.PotassicalterationcanalsoexplainthehigherRb, magmas.The18analyzedzirconspotsfromtheWDS14-6gabbroic Pb,andlowerSrcontentsinthealteredmonzograniteporphyriesthan enclavesampleyield206Pb/238Uagesintherangeof34Mato38Ma intherelativelyfreshmonzograniteporphyries,giventhatRbandPb withaweightedmeanageof35.9±0.4Ma(MSWD=2.7;Fig.5g). arehighlycompatiblewithK-feldspar(D =1.75;D =2.47)but Rb Pb Fig.6.GeochemicalclassificationofintrusionsatBeiya.(a).Totalalkaline-silicadiagram(Middlemost,1994);thedashedlineseparatingalkalineseriesfromsubalkalineseriesisfrom IrvineandBaragar(1971).(b).K2Ovs.SiO2diagram(modifiedfromand,PeccerilloandTaylor,1976).TheshadedfieldsrepresentexperimentalmeltsoflowKamphiboliteat0.6to 3.2GPaand795°to1150°C,ofmediumKandhighKamphiboliteat0.7to3.2GPaand825°to1150°C,andofshoshoniteat1.5to2.5GPaand1050°to1075°C(Rappetal.,1991; and,WolfandWyllie,1994;RappandWatson,1995;Winther,1996;Sissonetal.,2005;Xiongetal.,2005;XiaoandClemens,2007;Luetal.,2013a),respectively.(c).K2Ovs.Na2O plot.(d).A/CNK[molarratioAl2O3/(CaO+Na2O+K2O)]vs.SiO2plot(KempandHawkesworth,2003). 238 W.Heetal./GondwanaResearch40(2016)230–248 incompatiblewithplagioclase(D =0.1,D =0.97).Incontrast,Sris The MMEs range in composition from hornblende gabbros to Rb Pb lesscompatibleinK-feldspar(D =5.4)thaninplagioclase(D = diorites(Fig.6a)withanSiO contentof51–59wt.%.Theserockscan Sr Sr 2 15.6;Rollison,1993).Thepotassicalterationisapparentas(1)some beclassifiedintotwogroupsonthebasisofmineralassociationand oftheplagioclasephenocrystswithsericitealterationarerimmedby geochemicaldata. freshK-feldspar(Fig.3),and(2)manyfreshK-feldsparphenocrysts TheWDS14-6gabbroicenclavesample(SiO =51wt.%)ischarac- 2 canbeobservedinathinsection,wherethequartzphenocrystsare terizedbyhighAl O (14.79wt.%)(Fig.7a),highMgO(5.58wt.%),and 2 3 resorbedtoembayment-likeshapes,andtheplagioclasephenocrysts Mg#(78).Itisshoshoniticseries(Fig.6b)withK O=7.33wt.%and 2 arealteredtoK-feldspar(Fig.3). K O/Na O = 6.85. This sample has high TiO (1.70 wt. %; Fig. 7c), 2 2 2 Despite the effects of potassic alteration, the strongly altered andP O (0.27wt.%).ItexhibitsLREEenrichment([La/Yb] =8.14) 2 5 N monzograniteporphyryandweaklyalteredmonzograniteporphyries withamoderateEuanomaly(Eu/Eu*=0.27)(Fig.8a),andanegative at Beiya share similar textures (Fig. 3), SiO range (Fig. 6), REE Nb-Ta-Tianomaly(Fig.8b). 2 and trace element patterns (Fig. 8), whole-rock Sr-Nd-Pb isotopes Three dioritic enclave samples have SiO (54.34–56.19 wt. %) 2 (TableS3),andzirconHfisotopecompositions(Figs.10,11),which contentswithhighMgO(4.36–4.88wt.%),TiO (0.75–1.32wt.%)and 2 suggeststhatalteredmonzograniteporphyryareprobablythepotassic- CaO(3.36–3.42wt.%)contents(TableS2).TheMMEshavevariably alteredequivalentofthemonzograniteporphyries. highK O(4.01–6.04wt.%;TableS2),plotintheshoshoniticseries 2 fieldintheK OversusSiO figure(Fig.6b).Comparedwiththefelsic 2 2 4.2.2.Majorandtraceelements porphyries,thedioriticenclavesamplealsoshowsadakite-likesigna- Whole-rockgeochemicaldatafromthisstudyareillustratedon tureswithhighSr(435–648ppm)contents,lowY(8.2–12.7ppm) Fig.6,andlistedinSupplementaryTableS2.Thealteredmonzogranite andheavyREE(HREE;e.g.Yb=0.8–10ppm)concentrations,andele- porphyries and monzogranite porphyries have felsic signatures vatedSr/Y.However,comparedwithreportedadakite-likeintrusions (SiO =66.91–72.35wt.%),andhighalkalicontents(K O+Na O= inBeiya,thedioriticenclavehasrelatively lowSiO andhigh MgO 2 2 2 2 5.02–11.48wt.%),andmostplotinthefieldsofquartzmonzoniteand contents,andhighcompatibleelement(e.g.Ni=28–38ppm;Cr= thealkalineseriesonatotalalkalis-silica(TAS)diagram(Fig.6a).The 66–95ppm).Thesecharacteristicsclassifythelatterashigh-Mgdiorite porphyriesareK-rich,withhighK Ocontents(4.07–10.19wt.%)and accordingtoShireyandHanson(1984). 2 highK O/Na Oratios(0.86-51.92,average7.31),andtheyfallwithin 2 2 theshoshoniticseriesonaSiO -K Oplot(Fig.6b).Theseporphyriesare 4.2.3.Sr-Nd-Pbisotopes 2 2 metaluminous-peraluminouswithA/CNK(molarratioAl O /(CaO+ Sr-Nd-Pb isotope data for the Beiya intrusions are listed in 2 3 Na O+K O))valuesof0.85–1.55(Fig.6d).IntermsofREEandtrace Supplementary Table S3 and illustrated in Figure 10. The altered 2 2 elements,thealteredmonzograniteporphyryandmonzogranitepor- monzograniteandmonzograniteporphyrieshavethesimilarSr-Nd phyryhavesimilarREEpatterns,characterizedbylowerREEcontents isotopescharacterizedbytheintermediate(87Sr/86Sr) ratiosof0.7062 i thantheBeiyaMMEsand(La/Yb) of7.5to24.7,weakEuanomalies to0.7078andε (t)values-1.5to-6.0(TableS3;Fig.10a).Thetwo- N Nd (Eu/Eu*=0.82–0.94),andnegativeNb-Ta-P-Tianomalies(TableS2; stage Nd isotope-depleted mantle model ages (T ) is ca. 1.3 Ga. DM2 Fig.7aandb).Allthesesamplesareadakite-like,ascharacterizedby Thesesamplesshownarrowrangeof206Pb/204Pbratios(18.58–18.62) theirhighSr(763–1005ppm)andlowY(6.52–11.26ppm)andYb and radiogenic 207Pb/204Pb (15.56–15.62) and 208Pb/204Pb (38.56– (0.64–1.1ppm)concentrations.Allofthesamplesalsoplotwithinthe 38.86)ratios,plottingwellabovetheNorthernHemisphereReference adakiticfieldinaSr/Yvs.Ydiagram(Fig.9a). Line(NHRL;Hart,1984;Fig.10candd).TheBeiyafelsicintrusions Fig.7.HarkerdiagramsofselectedmajorelementsandMg#.Thefieldsofhigh-magnesianandesitesandnormalarcsarefromMccarronandSmellie(1998),andthefieldofmeltsfrom metaigneoussourcesisfromPatiñoDouce(1995,1999),WolfandWyllie(1994). W.Heetal./GondwanaResearch40(2016)230–248 239 Fig.8.Chondrite-normalizedrareearthelement(REE)patternsandprimitivemantlenormalizedmulti-elementdiagramsfortheBeiyaporphyriesandtheirMMEs.Shadedfieldsarefor coevalmaficvolcanicrocksinwesternYunnan(Lietal.,2002;Huangetal.,2010)andyellowfieldsaretypicalSouthTibetadakite-likerocksderivedbypartialmeltingofthickenedlower crust(Chungetal.,2003;Houetal.,2013;Wangetal.,2014a,b).ChondriteandprimitivemantlenormalizingvaluesarefromSunandMcDonough(1989). havesimilarSr-Nd-Pbisotopestolowercrustalamphibolitexenoliths Comparedwiththefelsicporphyriesthegabbroicenclavesample hostedbypotassicfelsicintrusionsinwesternYunnan(Fig.10;Deng haslow(87Sr/86Sr) ratios(0.7058)andhighε (t)values(-1.5)con- i Nd etal.,1998;Zhaoetal.,2004). tents.Thetwo-stageNdisotope-depletedmantlemodelages(T )is DM2 Fig.9.(a).PlotsofSr/Yvs.Y,(b).SiO2vs.MgO,(c).Nivs.Cr,and(d).SiO2vs.Th/CefortheBeiyaporphyriesandtheirMMEs.DottedfieldisofmaficlavasinwesternYunnan(Xuetal.,2001; Lietal.,2002;Huangetal.,2010).Shadedfieldisofadakitic-likerocksinwesternYunnan(Dengetal.,2014;Liuetal.,2015;Luetal.,2013a,b).Fieldsofadakiteandarcrocksareafter RichardsandKerrich(2007).Thetwodashedcurvesrepresentmeltingleavingarestiteof10%garnetamphiboliteandgarnet-freeamphibolite,basedonashoshoniticamphibolite xenolithfromLiuhe,westernYunnan,asthestartingcomposition(Luetal.,2013b).Fieldsofsubductedoceaniccrust-derivedadakites,thicklowercrust-derivedadakite-likerocks, delaminatedlowercrust-derivedadakite-likerocksandmetabasalticandeclogiteexperimentalmeltshybridizedwithperidotiteareafterWangetal.(2006).
Description: