ebook img

Origin of the Endangered Tetraploid Adonis ramosa (Ranunculaceae) Assessed with Chloroplast and Nuclear DNA Sequence Data PDF

2008·0.79 MB·English
by  KanekoShingo
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Origin of the Endangered Tetraploid Adonis ramosa (Ranunculaceae) Assessed with Chloroplast and Nuclear DNA Sequence Data

TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics ISSN 1346-756S Acta Phytotax .Geebot.59 (2):165-1 (724008) Originof the Endangered TetraploidAdonis ramosa (RanunculaceAasese)ssed Chloroplast NuclearDNA with and Sequence Data SHINGO KANEKOi', NOBUKAZU NAKAGOSHIiand YUJIISAGI2 ['Graduate Schoolfor lnternational Development and Cooperation, Ifiroshima Uitivensit )1L-5-1 Kbgamtyama, Higah'hi-Hiroshima 739-8529, .lapan ;2LahoratoT:v ofFore sBitology Division oflq?] anndBriomsatterials St'ience, GraduateSt]hooolj'Agricul1t<uyorteoC,lniversiKoiltashirakawaOiwake-cho.SkekJ.'o-1k<uv,oto606-8502,lapan Polyploidizati oins an impertan tevolutionary force in plant speciation, and elucidating the erigin and evolutionary histor yof a particular polyploid is important for understanding the evolution and distributi oofn plants .We investigat etdhe origin of the endangered tetraploid Adonis ramosa Franch. ,which is endemic to Japan .Tb clarify the origin and phylogeneti crelationships among A. ramosa and diploi dspecies, we conducted a phylogeneti canalysis of the species ofAdbnis in Japan and Korea using chloroplast trnL- trnF spacer and nuclear ribosomal interna ltranscribed spacer (ITS s)equences. The sequences of the ITS region of showed that the sequences ofA. ramosa were completely consistent with or quite similar to those ofA. amunensis Regel & Radde of Hokkaido, Japan ,and clearLy differe dfrom those ofA. amurensis in Korea and three diploi dspecies from Japan and Korea. The resuLts suggest the possibility that A. ramosa is an autotetraploid, and the diploi dprogenito ris A. amunensis from Hokkaido. The distributi poantter nof the ITS haplotyp eef A. ramosa also indicate rsange expansion ofA. ramosa from northern to southern Japan Ecological divergenc eand adaptation to new habitats after polyploidizati aorne likely to increase the survival of A. ramosa and enable it to widely colonize in new environments in Japan, Key words: Adonis ramosa, divergence F,ar East Asia,intern atlranscribed spacer (ITS), polyploid yt,rnL-trnF spacerecological Polyploidizatio nis an importan tevolutionary origin and evolutionary histor yof a particular fbrce in plant speciation (Solt &is Solti s1999). polyploid is importan tfbr understanding the evo- Polyploids often diffe frrom their diploi dprogeni- lutio nand distributi oofn the species, tors in morphological and ecological aspects, and Adonis rainosa Franch. is a tetraploid (2 n= neopolyploids may replace their diploi dprogeni- 32) endemic to Japan .It is distribut eacdross the tors and colonize ecological niches unsuitable island sof Hokkaido, Honshu, and Shikoku (Fig, for their diploi dprogenitors because of superior 1) and is the most common species ofAdonis fitnes s(Levi n2002). Therefore ,elucidating the in Japan, Although A. ramosa was believed to 'Present address: Laboratory of Forest Biology, Diyision of Forest and Biornateria lSseience ,Graduate School ofAgriculture, Kyoto UniversityK,itashirakawaOiwake-cho,Sakyo-ku,Kyoto 606-8502,Japan NII-Electronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics 166 Acta Phytotax ,Geobot. Nbl. S9 ts Hokkaido b 11 o 2 4g'N t ` v sis ts ts a v or;a sis FiG. 1, Distributio onf four species ofAdonis in Japan (modifi ferdom Kawano & Hayashi 2004). The numbers indicat csampling location sshown in Table 1 . be the only species of Adonis native to Japan kawa & KQji Ito (Nishika w19a89a) ,and A, shi- (Sata keet al. 1982, Ohwi & Kitagawa 1983), kokuensis Nishikawa & Koji Ito (Nishjka w&a Ito2001),Aclonis isfbundin recent morphological studies and chromosome amurensis northern analysis (Nishika w19a88, 1989a, b, Nishikawa and eastern Hokkaido, and is widely distributed & Ito 2001) have shown that Adonis in Japan around the Japanese Archipelago, for example in consists of four species: A. ramosa Franch., A, Far East Russia ,includin Sgakhali nand the Kurile amunensis Regel & Radde, A. muttijiora Nishi- islands ,northeastern China, and the Korean pen- NII-Electronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics JuLy 2008 KANEKO & AL.[ Origin of T bt r a pl o i Add o ni s r am os a 167 insula (Hoffman n1998) ,Adonis multtfibra occurs Gold (Appli eBdiosystems ,Foster City ,Califor- on Honshu and Kyushu in Japan and on Cheju nia, USA). The PCR amplification was perfbrmed Island in Korea (Kawan o& Hayashi 2004, Suh et in a thermal cycler (GeneAm pPCR System 2700, al. 2002) .Adbnis shikokuensis has been reported Applied Biosystems) under the fo11owin gcondi- from Shikoku and Kyushu in Japan (Nishika &wa tions: fbr the trnL-trnF region, initi adlenatur- Ito 2001). ation at 940C for 9 min was fo11owed by 30 cycles Four of five species ofAdbnis in Far East of denaturatio nat 940C fbr 1 min, annealing at Asia, includin Ag. amunensis. A, multijlora, A, shi- 600C fbr 1 min, and extension at 720C for 2 min, kokuensi sa,nd A. pseudoamurensis Wang (Wlingand fina lextension at 720C fbr 7 min; and for 1980) from China and Korea, are diploi d(2n = the ITS region, initi adlenaturat iato n940C fbr 9 16; Nishikawa 1988, Ahn et al. 1999, Nishikawa min was fbllowe dby 25 cycles of denaturation at & Ito 2001); Adonis ramosa is tetraploid (2n = 940C for1 min, annealing at 55eC for 30 s, and 32). Adonis ramosa is therefore likel yto have extension at 720C fbr 1 min, and fina lextension at oTiginated from one or two of the dipleid spe- 720C fbr 7 min. The PCR products were purified cies. Even though A, ramosa has been known fbr using a High Pure PCR Product Purificati oKnit several decades to be a tetrap)oi d(Nishika &wa (Roche Applied Science ,Penzberg, Germany), Ito 1978), litt lienformation about the origin of The purifie dproduct swere sequenced directly A, ramosa has been reported, and there has been with an ABI BigDye Tbrrninato rCycle Sequenc- insuflici eenvtidence to pinpoin tit sorigin. In this ing Kit ver, 3,1 (Appli eBidosysterns) on the ABI report, we presen tinfbrrnati oonn the origin ofA, PRISM 31OO Geneti cAna]yzer (Applie Bdiosys- ramosa using the trnL-trnF chleroplast spacer tems), Electropherogram swere assembled with and the interna ]transcribed spacer (ITS )of the Sequencher 3,1 software (GeneCode Asnn, Arbor, nuclear DNA sequence data ofAdonis in Japan, Michigan, USA), and sequences were aligned and publis hITS sequence data fbr the species of using CLUSTAL X (Thompso ent aL 1997). Atloni sin Korea. We determine dthe trnL-trnF and ITS haplo- types based on site change data and indels I.n the Materials and Methods trnL-trn]F' region, we compared results between haplotypes ofAdonis ramosa and three other spe- We collected leaf samples from 14 popula- cies ofAdonis (A .amurensis, A. multijlora, and tions of four species ofAdonis in Japan (TabteA, shikokuensis) from Japan. For the ITS region, 1). Plant materials were kept fresh on ice after the sequence data of three species ofAdonis (A, collection in the fiel dT.he samples were frozen amurensis, A. mblltij7bra, and A, pseudoamurensis to -300C in the laborator uyntil DNA extraction. Wang) from Korea and A, vernalis L, from Hun- Genomic DNA was extracted from leave susing a gary (DDBJ DNA data base accession numbers modified CTAB method (Milli g1a99n2). AF454924 to AF454936, Suh et al. 2002) were The non-coding regions of the chloroplast also used for analysis. Based on the sequence DNA between the trnL(UAA) 3 'exon and the trnF data, phylogenetic analyses were performed (GAA) (Taber lete atl. 1991) and the interna tlran- using maximum parsimony methods. The mest scribed spacer (ITS )of nuclear ribosomal DNA parsimonious trees were obtained with PAUP 4.0 between ITS5 and ITS4 (Whit eet at. 1990) were (Swoffb r2d00i) using heuristi csearches with amplified by PCR and then sequenced. We ampli- 100 random taxon addition replicates and TBR fied the ITS and trnL-trnF regions with impliTaq swapping. Gaps were excluded and site changes NNIII-IE-leEcltreoncitcronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics 168 Acta Phytotax .Geobot. Vbl. 59 TABLE 1.ITS and cpDNA variation ofAdonis in Japan and Kerea. Haplotypea AccessionNo. Species ,No. and locality trnL-FITS trnL-F ITS Adonis ramosa 1 Urakawa,HoltkaidoPrefecture,japan AAAAAAAAAAAAAAAB AB361596 AB361610 2 Furano, Holclcai dPorefectur eJ,apan AB361597 AB361611 3 Hachinohe,Aomori Prefecture,Japan AB361598 AB361612 4 Fajisato,AkitaPrefecture,Japan AB361599 AB361613 5 Ybnczawa,YamagataPrefecture,Japan AB361600 AB361614 6 Tadami,FukushimaPrefecture,Japan AB361601 AB361615 7 Ina,NaganoPrefecture,Japan (IID)B(IID)B AB361602 AB361616 8 Asahi,GifuPrefecture,Japan AB361603 AB361617 9 Mt.Fuiiwara,MiePrefecture,Japan (IID) AB361604 AB361618 Adonis amurensis 1O Nemuro, Hokkaido Prefectur eJ,apan AA AAC AB361605 AB361619 11 Shari,HokkaidoPrefecture,Japan AB361606 AB361620 12 Mt. Jeoksang, Chonbuk Province, Korea (10NS 2,1D) AF454927 13 Mt.Chookryung,KyunggiProvince,Korea D(1ONS) AF454928 14 Daekwanryuung , Kyungwon Province ,KDrca C (1 ONS, 2ID) AF454929 Adonis multCt7bra 15 Kawai,GifuPrefecture,Japan B (2NS)I (15NS I,ID) AB361607 AB361621 16 Shoubara,HireshimaPrefecture,Japan B (2NS)I (15NS ,IID) AB361608 AB361622 17 Mt.Halla,ChejuIsland,Korea J(15NS) AF454924 18 Mt,Halla,ChejuIsland,Korea E (14NS) AF454925 19 Sangumbri, Cheju Island, Korea E (14NS) AF454926 Adonis shikokuensis 20 Ootoyo,KouchiPrefecture,Japan B (2NS)E(14NS) AB361609 AB361623 Adbnispseudoamunensis 21 Euyung,KyungamProvinee,Korea F(15NS) AF454930 22 Kwanchon,ChunbukProvince,Korea E(14NS) AF454931 23 Mt.Palgong,KyungbukProvince,Korea E(14NS) AF454932 24 Mt. Kyeryong, Choongnam Province ,Korea G ( 15NS) AF454933 25 Chollipo, Choongnam Province ,Korea G ( 15NS) AF454934 26 JangbongIsland,KyunggiProvince,Korea H(14NS) AF454935 Adonis vernalis (outgroup) 27 Mt.Cserhat,Hungary Out (20N S) AF454936 a The number ofvariable sites cempared to haplotype A is shown in parentheses ;NS, Nuclcotide substitution; ID, Insertienl Deletion. A dash ( -) lndicat tehsa tthe nucleotide sequence of the region has not determined. were weighted equally in the analysis. The phylo- Results geneti ctree was rooted by the outgroup compari- sen. A strict consensus tree was constmcted from In the trnL-trnF region (29 9bp), sequences the most parsimonjous trees ,and bootstra vpalues of Adonis ramosa were completely consistent were estimated with l,OOO replicates using the with those ofA. amurensis in Japan ,but difTered heurist isecarch option, from A, multijlora and A. shikokuensis (Tabl e1). In the ITS region (603bp )we, detected 36 variable NII-Electronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorPrl anPtlant SSyystsetmaetmicastics July 2008 KANEKO & AL.: Origin of ktruploid Adonis ramosa 169 ( TypeA(AA'.a.M."re,,",SSSpJNPN) TYpeB(A.ramosa JPN) TypeC <A, KOR) amuiensis TypeD (Aa,murensis KOR) T y p e E IUA:,pgse?uchlo"am iKuOrxRe X'ntsits6(IP,e,5i25pN TYpeF (Ap,seudoamurenKsOiRs) TYpeG (Ap.seudbamurensKiOsR) "fype H (A, KOR) pseudoamurensis TYpe1(Am,uttifiorJaPN> TYpeJ<A.muftifioraKOR) OUT(A, verr7alis) ( ti doIsland a Hon$hulsland n lsland o e .' 500km ' V ""D F[G. 2, (A) Thc strict conscnsus tree ofthe four most parsimonio utsrees arnong the ITS haplotype sof species ofAdonis using site changes, Numbers below branches are bootstra pvaLues in percentages based on 1,eOO replicates. Solid and open bars represent site changes and indels ,respectively, (B) Distribution ofhaplotypcs cornprising Clade I .Letter sindicat ehaplotypes (solid (open ofA. amurensis circle) andA. ramosa circle), NII-Electronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics l70 ActaPhytotax.Geobot. Nbl.59 sites includin g17 phylogenetically infbrmative polyploid origin based only on ITS sequence data, sites. In the phylogeny often haplotypes based on ITS sequence analysis in many allopolyploid ITS sequences of five species ofAdonis, we iden- taxa, however, have shown that both parental ITS tified two distinc tclades (Fi g2,A). Clade I was sequence or chimeric (mosai lcike) ITS repeat composed ofA. amurensis and A. ramosa; Clade types of parental motifs as overlapping double Il was composed ofA. multij7bra, A, shikokuensis, peaks (Kim & Jansen 1994, O'Kane et aL l996, and A. pseudbamurensis .ITS Sequences fbr the Franzke & Mummenhoff 1999, Vargas et at, nine populations ofA. ramosa were completely 1999, Gaut et al. 2000, Hughes et aL 2002, Wich- consistent or quit esimilar to those ofA. amunen- man et at, 2002, Koch et al. 2003, Lihova et aL sis in Japan ,but c]early differe fdrom those ofA. 2004, Marhold et ai. 2004, Rauscher et al. 2004, {nKorea (Tabl1e,Fig.2A).In Devos 2006).The lack intraindividual amurensis addi- et at. ef tion, intraindividu asilngle-site polyrnorphisms polymorphisms in the A. ramosa sequences there- as overlapping double peaks were not detecte din fbre suggests the pessibilit ythat A. raTnosa is an the ITS region for all A, ramosa samples. Adonis autotetraploid, and that the diploid progenito ris ramosa from Hokkaido and northern Honshu A. amurensis from Hokkaido. (Nos ,1-6) shewed identica lsequences with those Autopolyploi dplant swere once considered ofA. amurensis from Hokkaido (Typ eA), A. extremely rare in nature. They usually repro- from Honshu(Nos7,-9) duce by ramosa central showed a asexually, either vegetative propagation derivati vaend specific haplotyp e(rl} JB)p, ewhich or apomixis, because of difficult iiens meiosis was distinguish efdrom Type A haplotyp eby one (Futuym a1986). Recent studies from various inde l(Tabl e1, Fig, 2B) These results showed that angiosperm lineages ,however, have indicated A, amurensis is phylogenetical lthye closest dip- that autopolyploidy is much more common than loi dspecies toA. ramosa, and furthermor et,hat A. once considered (Solt eit saL 2004), and sexual amurensis from Hokkaido is closer to A. ramosa autotetraploidy has been reported in several taxa, than to A. amurensis from Korea with haplotypes includin gChamerion angustijblium (repor tased C and D. EPilobiu mangustijblium; Onagraceae; Husband & Schemske 1997),Asterkantoensis(Asteraceae; Discussion Inoue 1998), Ranunculus et al. cassubic4folius (RanunculaceHa6era;ndl & Greilhuber2002), In the trnL-trnF region of the chloroplast and Campanula americana (Campanulaceae; DNA, the sequences ofAdonis ramosa were Galloway et al. 2003), Adonis rcrmosa produces completely consistent with those ofA. amurensis ferti lseeeds. Hand-pollination experiments have in Japan, but differe dfrom A, multijiora and A. shown that seed-set is increase dby outcrossing shikokuensis, indicatin tghat the maternal parent (Kudo 1995). These observations indicat esexual (cytopla sdmoinocr) ofA. ramosa is A. amurensis. reproduction in A. ramosa, which is likel yto be a In the ITS region of the nuclear DNA, sequences sexual autotetraploid. ofA. ramosa were identic aolr quite similar to ITS sequences ofAdonis amurensis in Japan those ofA. amurensis in Japan .In the ITS region, and Korea showed high intraspeci fviarciability. examples of concerted evolution which has com- The ITS sequences ofA. amurensis from Hok- pletel yerased traces of other possibl eparents kaido were identic aorl quite similar to those ofA. were reported (Wende let al, 1995, Truyens et aL ramosa, suggesting that A. ramosa was derived 2005). It is therefore undesirable to determine from A. amurensis, now restricted to Hokkaido, NII-Electronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics July 2008 KANEKe & AL.: Origin of fetraploi Acdlonis ramosa 171 by autopolyploidization. The high similarity ofthe the result of ecological divergence after poly- ITS sequences amongA. ramosa andA. amurensis ploidization .For example, ecological differences in Japan suggests that speciation occurred recent- between Adonis ratnosa and A. atnurensis are ly .Although intraspeci fyairciability in A. ramosa eyident in their seed production and habitats. was low and showed only two ITS hapletypes, Because of the larger number of flowers on A. distribut ipoantterns of the haplotyp eare likel yto ramosa compared to A. amurensis (Nishikaw &a indicat erange expansion after polyploidization,Ito 2001), seed prQductio nin A, ramosa is greater The ITS sequences ofA. ramosa from Hokkaido than in A. amurensis (Nishika 1w9a88, Kaneko et and northern Honshu were consistent with those aL 2005), With regard to habitats ,A. amurensis inHokkaido (TypeA),butA, inbroadleaveddecid- ofA. amttrensis grows on grassy slopes and from Honshu derivative forest(sNishika&waKadota2006,Kaneko ramosa central showed a uous and specific haplotype ofA. ramosa ([IY pBe; Fig. pers .obs.). Adbnis ramosa also occurs in these 2B). It is therefbre likel ythat the range expansion habita tons Hoklcaido ,but on Honshu the char- ofA. ramosa was as fbllows A,donis ratnosa with acteristi¢ habitat osfA. ramosa are grassy banks the [[Yp eA haplotyp ecolonized southern Hokkai- of terrace fields m,eadows, and clearcut slopes de and northern Honshu firs tf,bllowed by a one around houses. Populations occurring in broad- indel mutation in the proces sof range expansion leaved deciduous fbrest sare uncommon (Kaneko int onorthern and central Honshu. Adonis ramosa pers .ebs.). It appears that adaptation te environ- with the Type B haplotyp ethen spread in central ments created by humans is a distin cfteatur oefA. Honshu. ramosa. Tetraploid Adonis ramosa clearly ranges The human impact of grassland manage- more widely than does it sdiploi dprogenitor A, ment in rural environments affects the survival of amurensis in Japan (Fig. 1L)ik.e many allotetra- Adonis ramosa, especially on Honshu. On Hon- ploids a,utopQlyploids are not always more vigor- shu, grassland management has been conducted ous than their progenito r(sRieseb e&r Egllstrand fbr at leas t10,OOO years (Yamano 1i996, Ogura 1993, Rieseberg l995, Solti s& Solti s1995, 20e2), and grassland smanaged by humans are Song et al. 1995). However, cornbined analysis likel yto provide habitat fbr A, ramosa. Changes in however,have of ecological niche modelling and molecular methods of agricultural, caused phylogeography fOr autotetraploid and diploid a massive reduction in traditionally managed Hordeum gussoneanum (Poacea esh)ows that grassland ssince the 1960s, In recent years, popu- autopolyploids dominate ecological niches that lation sofA. ramosa have declined through habitat are unsuitable for their diploi dprogenitors (Jakobloss because of the abandonment of traditionally et al. 2007). A similar differenc ien distributionmanaged grasslands .Acloni sramosa is now c]as- among autopolyploids and diploi dprogenitors sified as "vulnerable" in the Japanese Red Data foundin diploids Bis- Book (EnvironmeAgnetncy 2000), was autotetraploids and of ofJapan cuteUa laevigat a(Brassicace aien )the western Our analysis using molecular matkers shows Alps (Tremetsbe r20g0e2)r, and the autotetraploid that Adonis ramosa is derived from one lineage 7lrraxacu mvenustum (Asterace aaend) diploi dZ of A. amurensis, now distribut eodn Hokkaido, platycai:pum subsp. hondoense in Far East Asia by autopolyploidization, Ecological divergence (Mori t1a976, Akhter et aL 1993). and adaptation to new habitat asfter polyploidiza- These difference sin distributi obnetween tion likely increased the survival ofA. ramosa in polyploid sand their djploi dprogenitors may be japan and enabled it to colonize rural enyiron- NNIII-IE-leEcltreoncitcronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics 172 Acta Phytotax, Geobot. Vbl. 59 ments. Rapid environmental change and habitat geneti cdivcrsit aymong mernbers of the filestuca- alteration in recent years may have endangered Lolium complcx (Poacea bea)scd on ITS sequence data.PlantSyst,EvoJ.224:33-53. A. ramosa. The present finding sare importan tfbr Hoffman,H. M. 1998.Ecogeographicaldifferentiation understanding the evolutionary history ofAdonis, patt crn sin Adoni s sect, Consilig o (Ranuncula- basicknowledge long-terrn and provide on eco- ceae), Pl .Syst .and Evol. 2ll: 85-100, logica clonservation ofA, ramosa. H6randl, E, & J .Greilhube r2.002. Diploid and autotet- raploid sexuals and their relationships to apomicts We thank S. Gotq H. Ida ,K. Ishida, and A, Uchida for in the Ranunculus cassubicus group: insight fsrom their support of this research, This study was partly DNA content and isozyme variation, Pl. Syst. supported by a Grant-in-Ai dfbr scientific research from Evol, 234: 85-100. the Ministr yof Education ,Culture ,Sports ,Science and Hughes, C. E., C. D. Bailey & S. A. Harris .2002. Technology ofJapan, the Ministry ofAgriculture, For- Divergent and reticulate species reLationships estry and Fisherie osf Japan ,and the 2 1 S` Century Center in Leucaena (Fabaceae i)nferre dfrem multiple data insightisnto ofExcel]ence Program at Hiroshima University. sources: polyploidy origins and nrDNA polymorphism. Arner ,J. Bot. 89i 1057- 1073, References Husband, B. C. & D, W. Schemske. 1997. The effect of inbreedin gin diploi dand tetraploid population sof Ahn,Y-H.,S-H,Yeau, N.-S.Lee & S.Lee.1999.Stud- lvilobiu mangerstijblium (Onagracea ier)n:plica- ies on characteristics ofAdonis amurensis Reger tions fbr the geneti cbasis of inbreeding depres- and Radde native to South Korea. Kor, J. Environ. sion. Evolution 51: 737-746. Ecol. 13: 203-208. Inoue,K., M. Masuda & M. Maki. 1998.Inbreeding Akhter,S.,T,Morita& Y Ybshida.1993.Clonaldiver- depressio nand outcrossing rate in the endangered sity in the agamospermous polyploid sof 7laraxa- autotetraploid plan tAster kantoensi (sAstcraceae), cum honcloens ein northern Honsyu, Japan ,J ,Pl. J ,Hered. 89: 559-562. Res. 106: 167-179. Jakob, S.S.,A, Ih]ow & F,R. BLattner.2007.Com- Devos, N,, O. Raspe, S,H. Oh, D. Tyteca& A. L. bined ecological niche modelling and molecular J(aOcrqucehmiadrta .c20e 0aa6lle.o t)Tethraep loeivcloluti oncomp loefx: Dac tyInlsoirghhitzsa phyHlobgredoegurmaphy revealed(P tohae ceveolauteion)ar-ynidc ihhfieisteorreyn- of marinum from PCR-RFLP nrDNA sequence and cpDNA tiatien ,loss of geneti cdiversit yan,d speciation in data.Mol.PhylogenetE.vol.38:767-778. Mediterranean Quaterna rrefyugia, Molec. Ecol, Environment Agency of Japan, 2000. Threatened 16:1713-1727. wildlife of Japan Red Data Book, vol. 8, Vlaiscular Kaneko, S., Y. Isagi & N. Nakagoshi, 2005. A new plants. Japan Wildlife Research Center, Tekyo. (in locali tfybr Adbnis multijrora Nishikawa and Ko. Japanese) Ito (Ranunculacea ei)n Hiroshima Prefecture. Franzke,A.& K. Mummenhoffl 1999.Recent hybr{d ActaPhytotax,Geobot.56:261-263, speciation in Cardamine (Brassicaceae)-convKaewra-no, S & K. Hayashi. 2004. Adonis ramosa sion of nuclear ribosomal ITS sequences in statu Franch, (Ranunculacea ei)n:. Kawano, S. (ed.), nascendi. Theor .Appl. Genet. 98: 831-834. Life History Monographs ofJapanese Plants ,Nbl. F ut u ySmian,a uDe.r AJs. s1o9c8i6a,t eEsv ,Ionlcu.t ,iSounnadr yeBrilolaong dyM,,a s2snadc heud.- ISIa ,pSpporrion. g (Pil anJnatpsa ,n1e-s8e . wHitohkk Eanigdloi sUhn aibsvterarcts)i Ptryess, setts. Kim. K.-J. & R. K. Jansen. 1994. Comparisons of phy- Galloway,L.F.,J.R.Etterson& J.L.Hamrick.2003. Iogeneti chypotheses arnong djffere ndtata sets in Outcrossin grate and inbreedin gdepressio nin the dwarfdandelions(1(i'iAgsitear,aceae): additional herbaceou sautotetraploid, Campanula americana. information from interna ltranscribed spacer Heredity 90: 308-3 15, sequences of nuclear ribosomal DNA. Pl. Syst. Gaut, B, S.,L. P,Tredway, C.Kubik, R. L,Gaut & EvoL 190:157-185. W. Meyer. 2000. Phylogeneti crelationships and Koch, M. A.,C. Dobes & T.Mitche]1-Olds,2003.Mul- NII-Electronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics July 2008 KANEKO & AL.: Origin of Tbtraploi dAdonis ramosa 173 tiple hybrid formation in Natural Populations: con- summary) certed evolution of the interna tlranscribed spacer Ohwi, J, & M. Kitagawa. 1983, Flora of Japan. Shi- of nuclear ribosomal DNA (ITS )in North Ameri- bundo, Tbkyo. (i nJapanese) can Arabis divaricacpa (Brassicace Maoel)ec.. O'Kane, Jr .S. L., B. A. Shaal & I. A. Al-Shehbaz. 1996. Biol ,Eyol, 20: 338-3SO. The erigine ofArabidopsis suecica as indicate bdy Kudo, G, 1995. Ecologica ]significance of flower heli- nuclear rDNA sequences. Syst .Bot. 21: 599-566. otropism in the spring ephemeral Adoni sramosa Rausche rJ,. T. ,J. J. Doyle & A. H. D. Brewn. 2004. (Ranunculac eOaikeo)s ,72: 1420. Multiple origins and nrDNA intern atrlanscribed Lcvin D. A. 2002. The role of chromosomal change spacer homologue evo]ution in the Glycine in plant evolution. Oxford University Press, New tomentelta (Legurnino sala]oepo)lyploid complex, York, USA, Genetic s166: 987-998. Lihova, J, ,J .E Aguilar ,K, Marhold & G. N. Feliner. Rieseberg ,L. H, 1995. The ro]e of hybridizatio nin 2004. 0rigin of the disiunc ttetraploid Cambmine evolution: old wine in new skins. Amer. J .Bot. 82: amporitana (Brassicac aesaseess)ed with nuclear 944-53. and chloroplast DNA sequence data. Amer. J. Bot. Rieseberg, L, H, & N, C, El]strand. 1993. What can 91: 1231-1242, melecular and morphological markers tel lus about Marhold. K., J. Lihova, M. Perny & W. Bleeker .2004. plant hybridization C?rit .Rev. Pl. Sci. 12: 213- Comparative ITS and AFLP Analysis of Diploid 241. Ckepzlami n(eBrassicace Ialee)t xfarom closely relat- Satake ,YL, J, Ohwi, S. Kitamura, S. Watari & T. Tomi- ed Polyploi dComplexes. Ann. Bot. 93: 507-520, nari, 1982. Wild flower sof Japan: herbaceous Milligan ,B. 1992, Plant DNA isolatio ni.n: Hoelzel, plants II ,Heibonsha ,Tokyo. (i nJapanese) A. R. (ed. M)e,lecular Genetic Analysis of Popu- Solti sD,. E. & P. S. Solti s1.995, The dynamic nature lation sa: Practical Approach, 59-88. IRL Press, of polyploid ygenomes, Commentary. Proc. Natl, Oxford. Acad.Sci.U.S.A.92:8089-8091. Morita, T, 1976. Geographical distributi oonf diploid Solti sD,. E. & P. S, Solti s1.999. Polyploidyi recurrent and polyploi d7lrruracu,n in Japan. Buli ,Nat. Sci, formation and genome evolution, Trends Ecol, Mus., Ser .B. 2: 23-38 (i nJapanese with English Evol. 14: 348-352. summary). Soltis ,D. E., P. S. Soltis & J. A, Tate. 2004. Advances Nishikawa, T, 1988. Botanical studies on Adonis amu- in the study of polyploid ysince plant speciation. rensis Regel and Radde in Japan (Pa r1t). J. Hok- New Phytol. 161: 173-l91. rlhng kaidoUniv.Ed.(SecItIB) 39(1):1-35. Song,K.,P,Lu,K. & T.C.Osborn.1995.Rapid Nishikawa ,T. 1989a .A ncw species ofAdenis in Japan. genomc change in synthetic polyploidy of Bras- J. Jap, Bot, 64: 50-52, sica and it simpticatio nfsor polyploidy evolution. Nishikawa, T. 1989b. Botanical studies on Acloni samu- Proc. Natl. Acad. Sci ,U.S.A, 92: 771 9-7723, rensis Regel and Radde in Japan (Pa r2t). J. Hok- Suh, Y., J. Lee, S, Lee, C. Lee, S.-H. Yeau & N.-S. Lec, kaido Univ. Ed. (Sec Itl B) 39: 1-25, 2002. Molecular evidence for the taxonomic iden- Nishikawa ,T, & K. Ito .1978. New chromosome num- tity of Korean Adonis (Ranunculac eJa. Pel) .R,es. bers ofAdonis amurensis Regel et Radde ofHok- 115i 217-223. kaido. J. Jap ,Bot. 53: 33-43. Swoffbrd, D, L. 2001, PAUP", Phylogeneti canalysis Nishikawa, T. & K. Ito ,2001. ANew species ofAclonis using parsimeny ("an dother method). Vk rsion 4, (Ranunculacca ef)rom Shikoku, Western Japan, Sinauer, Sunderland, Massachusctts, USA, Bull ,Nat, Sci .Mus., Ser .B. 27: 79-83. Taberle tP. ,L. Giell yG,, Pautou & J. Bouvet.1991 .Uni- Nishikawa, T. & Yl Kadota. 2006. Adonis. in: Iwatsuki, versal primers fbr amplification ef three non cod- K., D. E. Bouffbrd & H, Ohba. (eds .F)lora of ing rcgions of chloroplast DNA. Pl .Molec.Biol. Japan2a:278-288,Kodansha,.Tokyo, 17:1105-1109. Ogura, J. 2002. A study of rnicroscopic charcoal par- Thompsen, J. D., T. J. Gibson, F. Plewniak, F. Jean- ticles include din the samples used for the pollen mougin & D. G. Higgins. 1997. The CLUSTAL-X analysis of Midoroga-ike Pond. J, Kyoto Seika windows interfac ef:lexibl setrategies fbr multiple Univ. 21: 268-288. (i nJapanese with English sequence alignment aided by qualit yanalysis NNIII-IE-leEcltreoncitcronic Library Service TThhee JJaapapnaesneSeosciee tySociety ffoorr PPllanatnt SSyystsetmaetmicastics 174 Acta Phytotax .Geobot. Vbl. 59 tools. Nucl. Acids Res. 25: 4876-4882. rectional interlocu csoncerted evolution flowing TremetsbergerK,.,C,K6nig,R.Samuel,W. Pinsker& in (Gossypium). allopolyploid speeiation cotton T. E Stuessy .2002. Infraspecif giecneti cvariation Proc. Natl .Acad. Sci .USA. 92: 280-284. in Biscutell laaevigat a(Brassicac eneawe )f:bcus White, T. J. ,T. Brun, S. Lee & J .Taylor .1990, Ampli- on Irene Manton's hypothes iPsl.. Syst .Evol. 233: ficati aonnd direc stequencing of funga lribosomal 163-181, RNA genes fbr phylogenetics, in: Innes, M,, D, Truyens,S.,M. M. Arbo & J.S.Shore.2005.Phylo- Gelfand,J.Sninsky& T.White(eds.P)CR, Proto- geneti crelationships chrornosorne and breeding cols: A Guide to Methods and Application s3,15- system evolution in 7itrner a(Turnerace ianef)er:- 322, Academic Press ,San Diego. ences from ITS sequence data ,Amer, J, Bet, 92: Wichman, S, R., S, D, Wright, E. K. Cameron, D. J. 1749-1758. Keeling & R. C. Gardner .2002. Elevated genetic Vargas. P., H. A. McAllister, C. Morton, S. L. Jury & heterogeneity and Pleistocene climatic instability: M. J. Wikinson. 1999. Polyploid speciation in inference sfrom nrDNA in New Zealand Copros- Hedera (Araliacea ep)h:ylogeneti cand biogeo- ma (Rubiacea eJ). B.iogeogr, 29: 943-954. graphic insight bsased on chromosome counts and Yamanoi, T. 1996. Geologica linvestigati oenn the ori- ITS sequences. Pl .Syst ,Evol. 219: 165-179. gin of the back soil, distribut eidn Japan .J. Geol. Wang,W. T.1980.AclonisL.Fl.Reipubl.PopularisSin. Soc.Japan102:526-544.(inJapanese Eng- with 28: 352. lis hsummary) WendeL J.F.,A. Schnabel& T. Seelanan.1995. Bidi- Received Nbvember 7, 2007; accepted Mco, 31. 2008 NII-Electronic Library Service

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.