January19,2015 1:21 WSPCProceedings-9.75inx6.5in otqgp page1 1 Origin of Temperature of Quark-Gluon Plasma in Heavy Ion Collisions Xiao-MingXu∗ 5 Department of Physics, Shanghai University, 1 Baoshan, Shanghai 200444, China 0 ∗E-mail: [email protected] 2 n Initiallyproducedquark-gluonmatteratRHICandLHCdoesnothaveatemperature. A a J quark-gluonplasmahasahightemperature. Fromthisquark-gluonmattertothequark- gluon plasma is the early thermalization or the rapid creation of temperature. Elastic 6 three-partonscatteringplaysakeyroleintheprocess. Thetemperatureoriginatesfrom 1 thetwo-partonscattering,thethree-partonscattering,thefour-partonscatteringandso forthinquark-gluonmatter. ] h Keywords:Originoftemperature;Earlythermalization;Elasticthree-partonscattering; t - Transportequation,Quark-gluonmatter. l c Temperature is common in daily life, and people believe that temperature exists u n no matter how cold matter is. In gas and liquid temperature reflects the existence [ of thermal states where all particles randomly moveand obey isotropic momentum 1 distributions. The averagemomentum that a massless particle possesses is propor- v tional to temperature. When temperature equals zero, the average momentum is 0 zero,andvice versa. However,there is one systemwhere the averagemomentum is 7 9 large but particles do not obey isotropic momentum distributions, i.e., the system 3 doesnothavetemperature. Thesystemisquark-gluonmatterthatwasproducedin 0 initial gold-gold nuclear collisions performed at the Brookhaven National Labora- . 1 toryRelativisticHeavyIonCollider(RHIC)inthelastfourteenyears. Intheparton 0 system the parton distribution functions in the direction of the incoming nucleus 5 1 beam are much largerthan those in the direction perpendicular to the beam direc- : tion. The distributions areanisotropicin momentum space, anddo not correspond v i to a thermal state. Now we must wonder if this quark-gluon matter always has no X temperature. The answeris no, andthis matter is exactly a place for exploringthe r origin of temperature. a The reaction gg gg was considered by Shuryak1 to cause gluon matter to → thermalize. He assumed that every gluon suffers from scattering once in the same period of time. In order to guarantee validity of the assumption, the cross section for the gluon-gluon scattering must be very large (empirically be larger than 40 mb). This is not achievable! Eventhough a thermalization time of the order of 0.3 fm/c was obtained, the assumption makes the thermalization time unreliable. To explore the kinetic equilibration of gluon momenta, inelastic scattering gg ggg → was taken into account in Refs.2,3. gg gg and gg ggg lead to a gluon-matter → → thermalizationtimelargerthan1fm/c. Overpopulationisfoundtobeakeyfeature January19,2015 1:21 WSPCProceedings-9.75inx6.5in otqgp page2 2 of the Glasma (far-from-equilibrium gluon matter), and can strengthen the kinetic equilibration. But solutions of a transport equation with the elastic gg scattering show that the thermalization time of the Glasma is also larger than 1 fm/c4. However, the kinetic equilibration, i.e., the establishment of a thermal state takes a time less than 1 fm/c, as concluded from the elliptic flow data of hadrons produced in Au+Au collisionsat √sNN =130 GeV atRHIC5 andthe correspond- ingexplanationofhydrodynamiccalculationswhichassumeearlythermalizationof quark-gluonmatterandidealrelativisticfluidflowofthe quark-gluonplasma6,7. It was pointed out by Kolb et al. that quark-gluon matter begins to have a temper- ature at 0.6 fm/c from the moment when quark-gluon matter is created in initial Au+Au collisions. The early thermalization thus became the first RHIC puzzle8. Even for Pb+Pb collisions at √sNN = 2.76 TeV at the Large Hadron Collider (LHC), a good explanation of the elliptic flow data of hadrons9 in hydrodynamic calculations requires that quark-gluon matter begins to have a temperature at 0.6 fm/c10. Therefore,the early thermalization, i.e., the rapid equilibration also exists at LHC. Toexplaintheearlythermalizationortofindtheoriginoftemperatureofquark- gluon plasma, we think about the prominent feature of initially produced quark- gluonmatter: thepartonnumberdensityisashighas32fm−3. Atsuchahighnum- ber density the occurrence probability of parton-parton-parton scattering is larger than0.211. Thefeatureleadstothatthethree-partonscatteringisimportantines- tablishingthermalstatesofquark-gluonmatter,i.e.,creatinganinitialtemperature of quark-gluonplasma12,13. For example, gluon-gluon-gluonscattering was discov- eredto dominatethe evolutionofgluonmatter towardsthermalequilibrium12. We draw the conclusions from transport equations which include the elastic parton- parton scattering14,15 and the elastic scattering of gluon-gluon-gluon12, gluon- gluon-quark, gluon-gluon-antiquark13, gluon-quark-quark, gluon-quark-antiquark, gluon-antiquark-antiquark16, quark-quark-quark17, quark-quark-antiquark,quark- antiquark-antiquark11,andantiquark-antiquark-antiquark. Thetransportequation for gluon matter is ∂f 1 d3p d3p d3p ∂tg1 +~v1·∇~~rfg1 =−2E1 Z (2π)322E2(2π)323E3(2π)324E4(2π)4 g δ4(p1+p2 p3 p4) G gg→gg 2 [fg1fg2(1+fg3)(1+fg4) × − − n 2 |M | fg3fg4(1+fg1)(1+fg2)]+gQ( gu→gu 2 + gd→gd 2 − |M | |M | +|Mgu¯→gu¯ |2 +|Mgd¯→gd¯ |2)[fg1fq2(1+fg3)(1−fq4) f f (1+f )(1 f )] g3 q4 g1 q2 − − } 1 d3p d3p d3p d3p d3p 2 3 4 5 6 −2E1 Z (2π)32E2(2π)32E3(2π)32E4(2π)32E5(2π)32E6 g2 (2π)4δ4(p1+p2+p3 p4 p5 p6) G ggg→ggg 2 [fg1fg2fg3 × − − − (cid:26)12 |M | January19,2015 1:21 WSPCProceedings-9.75inx6.5in otqgp page3 3 (1+f )(1+f )(1+f ) f f f (1+f )(1+f )(1+f )] g4 g5 g6 g4 g5 g6 g1 g2 g3 × − g g + G2Q(|Mggu→ggu |2 +|Mggd→ggd |2 +|Mggu¯→ggu¯ |2 +|Mggd¯→ggd¯ |2) [f f f (1+f )(1+f )(1 f ) f f f (1+f )(1+f ) g1 g2 q3 g4 g5 q6 g4 g5 q6 g1 g2 × − − 1 1 ×(1−fq3)]+gQ2[4 |Mguu→guu |2 +2(|Mgud→gud |2 +|Mgdu→gdu |2) 1 +4 |Mgdd→gdd |2 +|Mguu¯→guu¯ |2 +|Mgud¯→gud¯ |2 +|Mgdu¯→gdu¯ |2 1 1 +|Mgdd¯→gdd¯ |2 +4 |Mgu¯u¯→gu¯u¯ |2 +2(|Mgu¯d¯→gu¯d¯ |2 +|Mgd¯u¯→gd¯u¯ |2) 1 +4 |Mgd¯d¯→gd¯d¯ |2][fg1fq2fq3(1+fg4)(1−fq5)(1−fq6)−fg4fq5fq6 (1+f )(1 f )(1 f )] , g1 q2 q3 × − − } (1) and the transport equation for up-quark matter is ∂f 1 d3p d3p d3p ∂qt1 +~v1·∇~~rfq1 =−2E1 Z (2π)322E2(2π)323E3(2π)324E4(2π)4 δ4(p1+p2 p3 p4) gG ug→ug 2 [fq1fg2(1 fq3)(1+fg4) × − − |M | − (cid:8) 1 fq3fg4(1 fq1)(1+fg2)]+gQ( uu→uu 2 + ud→ud 2 − − 2 |M | |M | +|Muu¯→uu¯ |2 +|Mud¯→ud¯ |2)[fq1fq2(1−fq3)(1−fq4) f f (1 f )(1 f )] q3 q4 q1 q2 − − − } 1 d3p d3p d3p d3p d3p 2 3 4 5 6 −2E1 Z (2π)32E2(2π)32E3(2π)32E4(2π)32E5(2π)32E6 g2 (2π)4δ4(p1+p2+p3 p4 p5 p6) G ugg→ugg 2 × − − − (cid:26) 4 |M | [f f f (1 f )(1+f )(1+f ) f f f (1 f )(1+f ) q1 g2 g3 q4 g5 g6 q4 g5 g6 q1 g2 × − − − 1 (1+fg3)]+gQgG( uug→uug 2 + udg→udg 2 + uu¯g→uu¯g 2 × 2 |M | |M | |M | +|Mud¯g→ud¯g |2)[fq1fq2fg3(1−fq4)(1−fq5)(1+fg6)−fq4fq5fg6(1−fq1) 1 1 ×(1−fq2)(1+fg3)]+gQ2[12 |Muuu→uuu |2 +4(|Muud→uud |2 1 1 1 +|Mudu→udu |2)+ 4 |Mudd→udd |2 +2 |Muuu¯→uuu¯ |2 +2 |Muud¯→uud¯ |2 1 1 +|Mudu¯→udu¯ |2 +|Mudd¯→udd¯ |2 +4 |Muu¯u¯→uu¯u¯ |2 +2(|Muu¯d¯→uu¯d¯ |2 1 +|Mud¯u¯→ud¯u¯ |2)+ 4 |Mud¯d¯→ud¯d¯ |2][fq1fq2fq3(1−fq4)(1−fq5)(1−fq6) f f f (1 f )(1 f )(1 f )] , q4 q5 q6 q1 q2 q3 − − − − } (2) wheremasslesspartonshavethevelocityvector~v andthepositionvector~r;g and 1 G January19,2015 1:21 WSPCProceedings-9.75inx6.5in otqgp page4 4 g are the spin-color degeneracy factors for the gluon and the quark, respectively; Q the distributionfunctions forthe gluon,the upquark,thedownquark,theupanti- quark,andthedownantiquarkaredenotedbyfgi,fui,fdi,fu¯i,andfd¯i,respectively; fui = fdi = fu¯i = fd¯i = fqi. Mijk→ijk of which the subscript, i, j, or k, stands for a gluon, a quark, or an antiquark is the amplitude for the elastic parton-parton- parton scattering. Squared amplitudes were calculated in perturbative QCD with different number of Feynman diagrams for different types of scattering18. When the squared four-momenta of gluon and/or quark propagators approach zero, the divergences of the squared amplitudes for the elastic two-parton scattering and the elastic three-parton scattering are encountered. The divergences are removed while the propagators are regularized by a screening mass which is evaluated from the distribution functions by a formula in Refs.19–21. It can be proved from the transport equations that quark-gluonmatter in thermal nonequilibrium eventually arrives at thermal equilibrium22. The larger the squared amplitudes, the shorter the thermalization time of quark-gluonmatter23. Every time the elastic two-parton scattering occurs, the two partons’ momenta change but the scattering is limited to a plane. Due to the energy-momentumcon- servation only two of the six momentum components of the two final partons are free, i.e., angular distributions of the outgoing partons can be defined. The proba- bility of producing two partons in an incoming parton direction is larger than the oneinthedirectionperpendiculartotheincomingpartondirection. Ininitiallypro- duced quark-gluonmatter more partons are in the gold-beamdirection than in the directionperpendiculartothebeamdirection. Onthe onehandthecollisionoftwo partons in the beam direction reduces partons in the beam direction and increases partonsinthedirectionperpendiculartothebeamdirection,ontheotherhandthe collisionoftwopartonsinthedirectionperpendiculartothebeamdirectionreduces partons in the direction perpendicular to the beam direction and increases partons in the beam direction. Since more partons are in the beam direction, the scatter- ing reduces parton number in the beam direction and increases parton number in the directionperpendiculartothebeamdirection. Partonmomentumdistributions gradually become isotropic in such a manner via the elastic two-partonscattering. In the elastic three-parton scattering the three initial partons are generally not in a plane, so are the three final partons. Every time the elastic three-parton scat- tering occurs, the three partons’ momenta change. Even restricted by the energy- momentum conservation,five of the nine momentum components of the three final partonsarefree. Thatthepartonmomentumdistributionsbecomeisotropicisthus expected to be easy via the elastic three-parton scattering. Feynman diagrams ex- hibit the following processes: a virtual parton breaks into three final partons, two final partons, or one final parton and a virtual parton; a virtual parton combines withaninitialpartontoformafinalparton;avirtualpartonscatterswithaninitial parton to produce three final partons, two final partons, or one final parton and a virtual parton; a virtual parton coming from the scattering of two initial partons January19,2015 1:21 WSPCProceedings-9.75inx6.5in otqgp page5 5 does not stay in the plane of the two initial partons. Due to these processes the three final partons are generally not in a plane. Eventually, isotropic parton momentum distributions are established by the three-partonscatteringandthetwo-partonscattering. Withanisotropicmomentum distributions of partons in quark-gluonmatter created in central Au+Au collisions at √sNN = 200 GeV at t = 0.2 fm/c24, the transport equations yield isotropic momentum distributions of gluons first at t = 0.52 fm/c and of quarks first at t=0.86fm/c. Thethermalizationtimesofgluonmatterandquarkmatterare0.32 fm/c and 0.66 fm/c, respectively. The temperature acquired is not close to zero, and is much higher than the QCD critical temperature 0.175 GeV. Therefore, the early thermalization is a consequence of the two-parton scattering and the three- parton scattering. Since the four-parton scattering, the five-parton scattering, etc. have certain occurrence probabilities11, they also contribute to the early thermal- ization. The temperature of the quark-gluon plasma comes from the elastic and inelastic two-parton scattering, the three-parton scattering, and the scattering of more partons. Acknowledgments I thankX.-J.Qiuforfruitful discussions. This workwassupportedbythe National Natural Science Foundation of China under Grant No. 11175111. References 1. E. Shuryak, Phys. Rev. Lett. 68, 3270 (1992). 2. G. R. Shin and B. Mu¨ller, J. Phys. G 29, 2485 (2003). 3. Z. Xu and C. Greiner, Phys. Rev. C 71, 064901 (2005). 4. J.-P. Blaizot, F. Gelis, J. Liao, L. McLerran and R. Venugopalan, arXiv:1210.6838. 5. K. H. Ackermann et. al., STAR Collaboration, nucl-ex/0009011; Phys. Rev. Lett. 86, 402 (2001). 6. P. F. Kolb, P. Huovinen, U. Heinz and H. Heiselberg, hep-ph/0012137; Phys. Lett. B 500, 232 (2001). 7. D. Teaney, J. Lauret and E. Shuryak, nucl-th/0110037. 8. U. Heinz and P. F. Kolb, in Proceedings of the 18th Winter Workshop on Nu- clear Dynamics, ed. R.Bellwied, J.HarrisandW. Bauer (EPSystema, Debre- cen, Hungary, 2002). 9. F. Noferini, for the ALICE Collaboration, arXiv:1212.1292. 10. U. Heinz, C. Shen and H. Song, AIP Conf. Proc., 1441, 766 (2012). 11. X.-M. Xu, C.-C. Ma, A.-Q. Chen and H. J. Weber, Phys. Lett. B 645, 146 (2007). 12. X.-M. Xu, Y. Sun, A.-Q. Chen and L. Zheng, Nucl. Phys. A 744, 347 (2004). 13. X.-M.Xu,Z.-Y.Shen,Z.-C.YeandW.-J.Xu, Phys. Rev. C87,054904(2013). January19,2015 1:21 WSPCProceedings-9.75inx6.5in otqgp page6 6 14. R. Cutler and D. Sivers, Phys. Rev. D 17, 196 (1978). 15. B. L. Combridge, J. Kripfganz and J. Ranft, Phys. Lett. B 70, 234 (1977). 16. X.-M. Xu and L.-S. Xu, J. Phys. G 37, 115003 (2010). 17. X.-M. Xu, R. Peng and H. J. Weber, Phys. Lett. B 629, 68 (2005). 18. X.-M. Xu, J. Phys. Conf. Ser. 458, 012021 (2013). 19. T. S. Bir´o, B. Mu¨ller and X.-N. Wang, Phys. Lett. B 283, 171 (1992). 20. S. A. Bass, B. Mu¨ller and D. K. Srivastava, Phys. Lett. B 551, 277 (2003). 21. O.K.KalashnikovandV. V.Klimov, Sov. J. Nucl. Phys. 31,699(1980); Yad. Fiz. 31, 1357 (1980); V. V. Klimov, Sov. Phys. - JETP 55, 199 (1982); Zh. Eksp. Teor. Fiz. 82, 336 (1982). 22. X.-M. Xu, High Energy Phys. Nucl. Phys. 31, 880 (2007). 23. X.-M. Xu, J. Phys. G 34, S859 (2007). 24. X.-N. Wang andM. Gyulassy, Phys. Rev. D 44, 3501(1991);M. Gyulassy and X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994).