ebook img

Origametry: Mathematical Methods in Paper Folding PDF

343 Pages·2020·11.841 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Origametry: Mathematical Methods in Paper Folding

Origametry Origami, the art of paper folding, has a rich mathematical theory. Early investiga- tionsgobacktoatleastthe1930s,butthetwenty-firstcenturyhasseenaremarkable blossoming of the mathematics of folding. Besides its use in describing origami and designing new models, it is also finding real-world applications from building nano-scalerobotstodeployinglargesolararraysinspace. Written by a world expert on the subject, Origametry is the first complete reference on the mathematics of origami. It brings together historical results, modern devel- opments, and future directions into a cohesive whole. Over 180 figures illustrate the material while numerous “diversions” provide jumping-off points for readers to deepen their understanding. This book is an essential reference for researchers of origamimathematicsanditsapplicationsinphysics,engineering,anddesign.Educa- tors,students,andenthusiastswillalsofindmuchtoenjoyinthisfascinatingaccount ofthemathematicsoffolding. Origametry Mathematical Methods in Paper Folding THOMASC.HULL WesternNewEnglandUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre,NewDelhi–110025,India 79AnsonRoad,#06–04/06,Singapore079906 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781108478724 DOI:10.1017/9781108778633 (cid:2)c CambridgeUniversityPress2021 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2021 PrintedintheUnitedKingdombyTJInternationalLtd,PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. LibraryofCongressCataloging-in-PublicationData Names:Hull,Thomas,1969–author. Title:Origametry:mathematicalmethodsinpaperfolding/ThomasHull. Description:NewYork:CambridgeUniversityPress,2020.|Includesindex. Identifiers:LCCN2020022971(print)|LCCN2020022972(ebook)| ISBN9781108478724(hardback)|ISBN9781108746113(ebook) Subjects:LCSH:Origami–Design.|Origami–Mathematics. Classification:LCCTT870.H852020(print)|LCCTT870(ebook)|DDC736/.982–dc23 LCrecordavailableathttps://lccn.loc.gov/2020022971 LCebookrecordavailableathttps://lccn.loc.gov/2020022972 ISBN978-1-108-47872-4Hardback ISBN978-1-108-74611-3Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. This book is dedicated to Paul Chapman, who introduced me to origami andgavememyfirstorigamibook. Contents Introduction page1 Part I Geometric Constructions 9 1 ExamplesandBasicFolds 11 1.1 ConstructinganEquilateralTriangle 11 1.2 DividingaSegmentinto1/nths 13 1.3 TrisectinganAngle 16 1.4 FoldingaRegularHeptagon 19 1.5 TheBasicOrigamiOperations 23 1.6 HistoricalRemarks 29 2 SolvingEquationsviaFolding 31 2.1 FoldingConics 31 2.2 SolvingSecondDegreeEquations 36 2.3 SolvingThirdDegreeEquations 38 2.4 CubicCurvesandBeloch’sFold 45 2.5 HistoricalRemarks 46 3 OrigamiAlgebra 48 3.1 DefinitionsandOrigamiArithmetic 48 3.2 TheFieldofOrigamiNumbers 50 3.3 OtherCharacterizationsofOrigamiNumbers 55 3.4 OtherWork:OrigamiRings 57 4 BeyondClassicOrigami 58 4.1 Multifolds 58 4.2 Lang’sAngleQuintisection 60 4.3 DescribingMultifoldOrigamiOperations 63 4.4 SolvingEquationswithMultifolds 66 4.5 ConstructionswithCurvedCreases 69 4.6 OpenProblems 71 viii Contents Part II The Combinatorial Geometry of Flat Origami 73 5 FlatVertexFolds:LocalProperties 75 5.1 DefinitionsandFlat-Foldability 75 5.2 Mountain-ValleyParity 81 5.3 NecessaryandSufficientConditions 85 5.4 ConeFolds 88 5.5 CountingValidMountain-ValleyAssignments 90 5.6 TheConfigurationSpaceofFlatVertexFolds 96 5.7 MatrixModelforFlatVertexFolds 104 5.8 OpenProblems 105 5.9 HistoricalRemarks 105 6 Multiple-VertexFlatFolds:GlobalProperties 107 6.1 ImpossibleCreasePatterns 107 6.2 GeneralizedKawasaki:NecessaryConditionsandtheFoldingMap 110 6.3 GeneralizedMaekawa 112 6.4 Justin’sTheoremandPaperwithHoles 114 6.5 GlobalFlat-Foldability 119 6.6 Flat-FoldabilityIsNP-Hard 127 6.7 OpenProblems 135 7 CountingFlatFolds 137 7.1 Two-ColorableCreasePatterns 137 7.2 PhantomFoldsoftheMiura-ori 139 7.3 TheStamp-FoldingProblem 145 7.4 TetheredMembraneLatticeFolding 152 7.5 OpenProblems 157 8 OtherFlat-FoldingProblems 159 8.1 HowManyTimesCanWeFoldaSheetofPaper? 159 8.2 CanAnyShapeBeFoldedandUnfolded? 161 8.3 OrigamiDesign 165 8.4 TheRumpledRuble,orMargoulisNapkinProblem 172 8.5 TheFold-and-CutProblem 174 Part III Algebra, Topology, and Analysis in Origami 179 9 OrigamiHomomorphisms 181 9.1 SymmetryGroupsofFlatOrigami 181 9.2 ExamplesofOrigamiHomomorphisms 184 9.3 ApplicationstoOrigamiTessellations 186 9.4 OpenProblems 189 Contents ix 10 FoldingManifolds 191 10.1 IsometricFoldings 191 10.2 TheLocalStructureoftheSingularSet 193 10.3 Robertson’sTheorem 199 10.4 TheAngleSumandRecoveryTheorems 203 10.5 MaekawaandKawasakiforIsometricFoldings 205 10.6 OpenProblems 215 10.7 HistoricalRemarks 215 11 AnAnalyticApproachtoIsometricFoldings 217 11.1 LipschitzContinuousandRigidMaps 217 11.2 ApplicationstoDirichletProblems 223 Part IV Non-flat Folding 229 12 RigidOrigami 231 12.1 MatrixModelandNecessaryConditions 232 12.2 TheGaussMap 239 12.3 TheGaussMapandRigidOrigami 246 12.4 AnotherGeneralizationofMaekawa 251 12.5 OpenProblems 254 12.6 HistoricalRemarks 255 13 RigidFoldings 256 13.1 InfinitesimalRigidFoldability 256 13.2 AngleRelationshipsforSingle-VertexRigidFoldability 271 13.3 AnIntrinsicConditionforRigidVertices 280 13.4 OpenProblems 288 13.5 HistoricalRemarks 289 14 RigidOrigamiTheory 290 14.1 ComplexityofRigidFoldabilitywithOptionalCreases 290 14.2 ConfigurationSpacesofRigidFoldings 296 14.3 Self-Foldability 304 14.4 OpenProblems 317 References 319 Index 330

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.