ebook img

Organometallic Reactions and Polymerization PDF

307 Pages·2014·11.654 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Organometallic Reactions and Polymerization

Lecture Notes in Chemistry 85 Kohtaro Osakada Editor Organometallic Reactions and Polymerization Lecture Notes in Chemistry Volume 85 Series editors B. Carpenter, Cardiff, UK P. Ceroni, Bologna, Italy B. Kirchner, Leipzig, Germany K. Landfester, Mainz, Germany J. Leszczynski, Jackson, MS, USA T.-Y. Luh, Taipei, Taiwan C. Mahlke, Berlin, Germany N. C. Polfer, Gainesville, FL, USA R. Salzer, Dresden, Germany For furthervolumes: http://www.springer.com/series/632 The Lecture Notes in Chemistry The series Lecture Notes in Chemistry (LNC) reports new developments in chemistryandmolecularscience—quicklyandinformally,butwithahighquality and the explicit aim to summarize and communicate current knowledge for teaching and training purposes. Books published in this series are conceived as bridging material between advanced graduate textbooks and the forefront of research. They will serve the following purposes: • provide an accessible introduction to the field to postgraduate students and nonspecialist researchers from related areas, • provideasourceofadvancedteachingmaterialforspecializedseminars,courses and schools, and • be readily accessible in print and online. The series covers all established fields of chemistry such as analytical chemistry, organic chemistry, inorganic chemistry, physical chemistry including electro- chemistry, theoretical and computational chemistry, industrial chemistry, and catalysis. It is also a particularly suitable forum for volumes addressing the inter- faces of chemistry with other disciplines, such as biology, medicine, physics, engineering, materials science including polymer and nanoscience, or earth and environmental science. Both authored and edited volumes will be considered for publication. Edited volumes should however consist of a very limited number of contributions only. Proceedings will not be considered for LNC. The year 2010 marks the relaunch of LNC. Kohtaro Osakada Editor Organometallic Reactions and Polymerization 123 Editor Kohtaro Osakada Chemical Resources Laboratory TokyoInstituteof Technology Yokohama Japan ISSN 0342-4901 ISSN 2192-6603 (electronic) ISBN 978-3-662-43538-0 ISBN 978-3-662-43539-7 (eBook) DOI 10.1007/978-3-662-43539-7 Springer Heidelberg NewYork Dordrecht London LibraryofCongressControlNumber:2014944320 (cid:2)Springer-VerlagBerlinHeidelberg2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Olefinpolymerizationusingtransition-metalcatalystshasrevolutionizedmaterials science and petroleum industry, and created an affluent society worldwide. Thus, the discovery of ethylene polymerization under low pressure using Ziegler-Natta catalysts should be ranked among the most important discoveries of the past century. Research on a homogeneous version of olefin polymerization catalysts, represented by metallocene catalysts, took off in the 1980s, which resulted in additional progress in polymer science and technology as well as in related research fields. The catalysts composed of transition metal complexes have enabled controlled synthesis of a number of polyolefins and olefin copolymers with the proper choice of an auxiliary ligand for the molecular transition-metal complex.Thestructuresoftheabove-mentionedmolecularcatalystscanbeeasily modified, which improves the reactivity and selectivity of olefin polymerization. Anotherimportantachievementintheuseofmoleculartransitionmetalcomplexes ascatalysts istheelucidationofthereaction mechanism ofolefin polymerization. The exact reaction pathways and detailed account of the stereocontrol of such polymerization can be discussed on the basis of the catalyst structure and poly- merization results. Organotransition-metal chemistry has developed together with coordination polymerization because its fundamental reactions, including the migratory insertion and b-hydrogen elimination of olefins, play key roles in polymerization catalyzed by transition-metal complexes. Progress in research on coordination polymerization continues to generate new polymer materials from olefins that are economically and environmentally favorable. This issue of Lecture Note Series contains eight articles covering the poly- merization using various organotransition-metal catalysts, including early- and late-transition-metalcomplexes,newtrendsinolefinoligomerization,andrelated reactions.Alltheauthorshaveensuredthattheirarticleincludesthehistoricaland scientific backgrounds ofthe field, current researchprogress, andfurther scope of research. The whole book is designed to deliver eight independent lectures from the authors. Since the authors involved are well versed in organometallic chem- istry, the discussion in each chapter is based on a profound understanding of the reactionsandstructuresoforganotransition-metalcomplexes.Afewtopicsoverlap among the chapters so that the readers may choose to start reading particular chaptersinthebookfirst.Weincludedtwofinalchaptersonolefinmetathesisand cross-coupling polymerization. These two reactions are composed offundamental v vi Preface reactions of organotransition-metal complexes, similar to the coordination poly- merization, and at present have become crucial materials science and device technology. Theprojectofpublishingthisbookinitspresentformstartedwithaninvitation fromSpringerPublishingtocontributetotheseries‘‘LectureNotesinChemistry’’. We would like to acknowledge the initiative of Dr. Tien-Yau Luh, editor of the series of books, and the kind cooperation of Elizabeth Hawkins in bringing this book to fruition. Kohtaro Osakada Contents 1 Olefin Polymerization with Metallocene Catalysts. . . . . . . . . . . . . 1 Takeshi Shiono 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Elementary Processes of Olefin Polymerization. . . . . . . . . . . . . 3 1.2.1 Initiation and Propagation Reactions. . . . . . . . . . . . . . . 3 1.2.2 Chain Transfer and Termination Reaction . . . . . . . . . . . 3 1.2.3 Molecular Weight and Molecular Weight Distribution. . . 5 1.3 Structure of Vinyl Polymer and Stereospecific Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Stereoregularity of Vinyl Polymer. . . . . . . . . . . . . . . . . 8 1.3.2 Regiochemistry in Propylene Polymerization . . . . . . . . . 8 1.3.3 Origin of Stereospecificity. . . . . . . . . . . . . . . . . . . . . . 10 1.3.4 Polymerization Mechanism and Microtacticity . . . . . . . . 11 1.4 Copolymer and Copolymerization . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Structure of Copolymers . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Copolymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Characteristics of Metallocene Catalysts. . . . . . . . . . . . . . . . . . 27 1.5.1 Activation Process of Metallocene . . . . . . . . . . . . . . . . 27 1.5.2 Tacticity Control of Polypropylene . . . . . . . . . . . . . . . . 31 1.5.3 Control of Chain Transfer Reaction. . . . . . . . . . . . . . . . 39 1.5.4 Copolymerization of Olefins. . . . . . . . . . . . . . . . . . . . . 41 1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 Olefin Polymerization with Half-Metallocene Catalysts . . . . . . . . . 51 Kotohiro Nomura and Jingyu Liu 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.2 Modified Half-Titanocenes as Olefin Polymerization Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.2.1 Olefin Polymerization by Half-Titanocenes Containing Aryloxo Ligands. . . . . . . . . . . . . . . . . . . . . 54 2.2.2 Selected Examples in Olefin Polymerization by Half-Titanocenes Containing the Other Anionic Ancillary Donor Ligands . . . . . . . . . . . . . . . . . . . . . . . 56 vii viii Contents 2.2.3 Copolymerizations of Ethylene with Sterically Encumbered a-olefins . . . . . . . . . . . . . . . . . . . . . . . . . 59 2.2.4 Copolymerization with Cyclic Olefins. . . . . . . . . . . . . . 67 2.3 Syndiospecific Styrene Polymerization and Ethylene/Styrene Copolymerization Using Half-Titanocenes: Ligand Effects and Some New Mechanistic Aspects . . . . . . . . . . . . . . . . . . . . 70 2.3.1 Syndiospecific Styrene Polymerization Using Cp’TiX (Y)–MAO Catalyst Systems. . . . . . . . . . . . . . . 71 2 2.3.2 Ethylene/Styrene Copolymerization Using Half-Titanocenes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 2.3.3 Role of Anionic Donor Ligand in Ethylene/Styrene Copolymerization and Syndiospecific Styrene Polymerization: Mechanistic Considerations. . . . . . . . . . 79 2.4 Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3 Olefin Polymerization with Non-metallocene Catalysts (Early Transition Metals). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Kotohiro Nomura and Wenjuan Zhang 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 3.2 Design, Synthesis of Molecular Catalyst with Early Transition Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.2.1 Titanium, Zirconium, and Hafnium Complexes. . . . . . . . 90 3.2.2 Vanadium Complexes . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.2.3 Miscellaneous Early Transition Metal Complex Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 3.3 Summary and Outlook. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4 Olefin Polymerization with Non-metallocene Catalysts (Late Transition Metals). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Daisuke Takeuchi 4.1 Introduction: Brief History of Late Transition Metal Catalysts for Olefin Polymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.2 Polymerization of Olefins Catalyzed by Cationic Pd and Ni Complexes with Neutral Ligands . . . . . . . . . . . . . . . . . 121 4.2.1 Cationic Ni and Pd Catalysts with Diimine Ligands . . . . 122 4.2.2 Cationic Complexes with Other Bidentate Neutral Ligands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 4.2.3 Cationic Complexes with Monodentate and Tridentate Ligands . . . . . . . . . . . . . . . . . . . . . . . . 133 4.3 Polymerization of Olefins by Neutral Pd and Ni Complexes with Monoanionic Ligands. . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Contents ix 4.3.1 Neutral Complexes with Monoanionic N-O Ligands . . . . 134 4.3.2 Phosphinesulfonate Complexes of Pd . . . . . . . . . . . . . . 138 4.3.3 Neutral Complexes with Other Monoanionic Ligands . . . 140 4.4 Polymerization of Olefins by Fe and Co Complexes . . . . . . . . . 141 4.5 Polymerization of Olefins by Other Late Transition Metal Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.6 Multimetallic Catalysts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 4.7 Olefin Polymerization in Aqueous Media. . . . . . . . . . . . . . . . . 149 4.8 Cyclopolymerization of Non-conjugated Dienes . . . . . . . . . . . . 150 4.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5 Oligomerization of Olefins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Daisuke Takeuchi and Kohtaro Osakada 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 5.2 Oligomerization of Ethylene. . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.2.1 General Aspect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.2.2 Ethylene Oligomerization to Olefins with Schulz–Flory Distribution and Dimerization. . . . . . . . . . . . . . . . . . . . 171 5.2.3 Ethylene Oligomerization to a-Olefins with Poisson Distribution. . . . . . . . . . . . . . . . . . . . . . . 176 5.3 Selective Trimerization of Ethylene. . . . . . . . . . . . . . . . . . . . . 177 5.3.1 Chromium Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . 177 5.3.2 Titanium Catalyst . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 5.3.3 Tantalum Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 5.3.4 Ruthenium Catalyst. . . . . . . . . . . . . . . . . . . . . . . . . . . 193 5.4 Tetramerization of Ethylene . . . . . . . . . . . . . . . . . . . . . . . . . . 194 5.4.1 Effect of Ligand Structure . . . . . . . . . . . . . . . . . . . . . . 195 5.4.2 Effect of Cocatalysts and Additives. . . . . . . . . . . . . . . . 199 5.4.3 Mechanism of Cr-Catalyzed Ethylene Tetramerization. . . 200 5.5 Dimerization of a-Olefins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 5.6 Trimerization of a-Olefins . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 5.7 Cooligomerization of Ethylene and a-Olefins . . . . . . . . . . . . . . 205 5.8 Cooligomerization of Other Vinyl Monomers. . . . . . . . . . . . . . 206 5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6 Polymerization of Polar Monomers. . . . . . . . . . . . . . . . . . . . . . . . 217 Kyoko Nozaki 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.2 Coordination-Addition Polymerization of Polar Monomers. . . . . 218 6.3 Block Copolymerization of Polar Monomers and Non-polar Monomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.