ebook img

Organometallic Chemistry of the Actinides PDF

16 Pages·2005·0.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Organometallic Chemistry of the Actinides

SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 13 Organometallic Chemistry of the Actinides Bytheendofthischapteryoushouldbeableto: (cid:1) recallthatthesecompoundsareveryair-andwater-sensitive; (cid:1) recall that the bonding has a significant polar character, especially in the +3 state, but that+4compounds,especiallythoseofuranium,havemorestability; (cid:1) recall that these compounds usually have small molecular structures with appropriate volatilityandsolubilityproperties; (cid:1) recallappropriatebondingmodesfortheorganicgroups; (cid:1) suggestsuitablesyntheticroutes; (cid:1) suggeststructuresforsuitableexamples; (cid:1) appreciatethecontributionoftheC Me ligandinuraniumchemistry; (cid:1) 5 5 recalltheuniquepropertiesofuranocene; (cid:1) appreciatetheunusualcompoundsthatcanbemadeusingimideandCOasligands. 13.1 Introduction Althoughlackingπ-bondedcompoundsinlowoxidationstatesthatcharacterizethed-block elements,theactinideshavearichorganometallicchemistry.Theircompoundsfrequently exhibit considerable thermal stability, but like the lanthanide compounds are usually in- tenselyair-andmoisture-sensitive.Theyareoftensolubleinaromatichydrocarbonssuch astolueneandinethers(e.g.,THF)butaregenerallydestroyedbywater.Sometimesthey arepyrophoriconexposuretoair.MostofthesyntheticworkhasbeencarriedoutwithTh andU;thisispartlyduetothereadyavailabilityofMCl (M=Th,U)andalsobecauseof 4 theprecautionsthathavetobetakeninhandlingcompoundsofothermetals,especiallyPu andNp. 13.2 Simpleσ-BondedOrganometallics DuringtheManhattanproject,awiderangeofcompoundswasscreenedinthesearchfor volatileuraniumcompoundsthatcouldbeusedforseparationofisotopesofuranium,since UF wasnotaneasycompoundtohandle.Theleadingorganometallicchemistoftheday, 6 HenryGilman,investigatedthesynthesisofsimplealkylsandaryls,concludingthatsuch compoundsdidnotexist,oratleastwereunstable.Eventoday,justoneneutralhomoleptic LanthanideandActinideChemistry S.Cotton (cid:1)C 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01005-3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 210 OrganometallicChemistryoftheActinides alkyl of known structure exists, [U{CH(SiMe ) } ], made from an aryloxide by a route 3 2 3 ensuringnocontaminationwithlithiumhalide: 3LiCH(SiMe ) +U(O-2,6-ButC H ) →[U{CH(SiMe ) } ] 3 2 2 6 3 3 3 2 3 +3Li(O-2,6-ButC H ) 2 6 3 If LiCH(SiMe ) is treated directly with UCl (THF) in a salt-elimination reaction the 3 2 3 3 alkylatesalt[(THF) Li-Cl-U{CH(SiMe ) } ]isobtained. 3 3 2 3 [U{CH(SiMe ) } ]hasatrigonalpyramidalstructure,likethecorrespondinglanthanide 3 2 3 alkyls (Section 6.2.1) and also like the isoelectronic amides [M{N(SiMe ) } ] (M = U, 3 2 3 lanthanides).TherearesomeagosticU....H–Cinteractions.SimilarNpandPucompounds [M{CH(SiMe ) } ]havebeenmade.AbinitioMOcalculationsforhypotheticalM(CH ) 3 2 3 3 3 (M = U, Np, Pu) molecules also predict pyramidal structures as a result of better 6d involvement(not5f)intheM–Cbondingorbitalsinpyramidalgeometries. Thebenzyl[Th(CH Ph) ]hasbeensynthesizedandthepaleyellowdimethylbenzylcom- 2 4 poundTh(1,3,5-CH C H Me ) hasalsobeenreported,buttheirstructuresarenotknown 2 6 3 2 4 (andmayhavemultihapto-coordinationofbenzyltothorium).Theheptamethylthoratean- ion[ThMe ]3− isfoundinthesalt[Li(tmeda)] [ThMe ](tmeda=Me NCH CH NMe ). 7 3 7 2 2 2 2 Thelattercontainsthoriuminmonocappedtrigonalprismaticcoordination;onemethylis terminal(Th–C2.571A˚)whilsttheothersixmethylgroupspairwisebridgethelithiumand thorium (Th–C 2.655–2.765 A˚). The methyl groups are, however, equivalent in solution (NMR). Certainsimplealkylsarestabilizedbythepresenceofeitherphosphineoramideligands, thus: UCl{N(SiMe ) } +CH Li→U(CH ){N(SiMe ) } +LiCl 3 2 3 3 3 3 2 3 2ThCl{N(SiMe ) } +Mg(CH ) →2Th(CH ){N(SiMe ) } +MgCl 3 2 3 3 2 3 3 2 3 2 Thesearepentane-soluble,volatiletetrahedralmolecules.Theyhaveanextensivechemistry involving metallacycles which will be dealt with later (Section 13.6). Although MMe 4 (M=Th,U)havenotbeenisolated,thisunitcanbestabilizedaseight-coordinatephosphine adducts,wheretheroleofphosphinesistosaturatethecoordinationsphere.Thecoordination ofa‘soft’phosphineligandtoa‘hard’metalionlikeuranium(IV)isnoteworthy. MCl (dmpe) +4CH Li→M(CH ) (dmpe) +4LiCl 4 2 3 3 4 2 Thesereactwithphenolformingphenoxides: Th(CH ) (dmpe) +4C H OH→Th(OC H ) (dmpe) +4CH 3 4 2 6 5 6 5 4 2 4 Similar compounds [M(CH Ph) (dmpe) ] (stable to 85 ◦C in the absence of air) and 2 4 2 [M(CH Ph) Me(dmpe) ] have been isolated; structures of [Th(CH Ph) (dmpe) ] and 2 3 2 2 4 2 [U(CH Ph) Me(dmpe) ]confirmtheiridentity,theyhaveshortM–Ccontacts.Compounds 2 3 2 of alkyl groups like CH CH that are capable of undergoing elimination have not been 2 3 isolated. Compounds containing one or more cyclopentadienyl-type ligands are much more robust. (Throughout this section, C H is abbreviated to Cp; C Me is abbreviated to 5 5 5 5 Cp*;C H .CH isMeCp.) 5 4 3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= Cyclopentadienyls 211 13.3 Cyclopentadienyls TheseareregardedasderivativesoftheC H − ligand;substitutedringsalsooccur.Some 5 5 ofthesewerethefirstorganoactinidecompoundstobereported,shortlyafterthediscovery offerrocene.Themostimportantcompoundsareinthe+4statebutthereisasignificant chemistryofU(+3)aswellasexamplesinoxidationstates(+5)and(+6).Onefactorthat shouldbenotedisthatreplacingoneormorehydrogensinthecyclopentadienylringcanhave asignificanteffectuponthestabilityandisolabilityofcomplexesmadefromthem,through both steric and electronic effects. Thus three or four Cp ligands can be accommodated arounduranium(IV),whereaswithCp*twoisthenorm.Inanotherexample,[UCp3]gives no sign of reacting with carbon monoxide; [U{C H (SiMe ) } ] forms a compound that 5 3 3 2 3 canbedetectedinsolution;and[U(C Me H) ]forms[U(C Me H) (CO)],whichcanbe 5 4 3 5 4 3 isolatedinthesolidstate. 13.3.1 OxidationState(VI) High oxidation states are not normally associated with organometallic chemistry, but a remarkableuranium(VI)imidehasbeenmade(Figure13.1): UCp∗(CH )Cl+Li[PhNN(H)Ph]→UCp∗(=NPh) +CH +LiCl. 2 3 2 2 4 Thereactionmaygoviaanintermediate[UCp* (η2-PhN–NPh)].Therearenof–ftransi- 2 tions in the visible spectrum, confirming its UVI-f0 character, whilst the structure of this remarkablecompoundshowstheexpectedpseudotetrahedralgeometry;theshortU–Nbond length(1.952A˚)confirmsitsmultiple-bondcharacterandtheU==N–Phlinkageisvirtually linear. NPh U NPh Figure13.1 Auranium(VI)imide. 13.3.2 OxidationState(V) RareorganoimidesU(MeCp) (=NR)havebeenmadebyoxidationofU(MeCp) (thf)with 3 3 RN (R=Me SiandPh).TheU–Nbondlengthof2.109A˚ isregardedashavingmultiple- 3 3 bondcharacter(cf.theU=Obondinuranylcompounds). U(MeCp) (THF)+RN →U(MeCp) (==NR)+THF+N 3 3 3 2 13.3.3 OxidationState(IV) There are three families of compounds whose structures can be regarded as derived from a tetrahedral UX molecule with one or more halogens replaced by one or more 4 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 212 OrganometallicChemistryoftheActinides cyclopentadienyl rings; [Cp An], [Cp AnX]; [CpAnX ] (X = halogen, most usually 4 3 3 Cl). Since halogens have less steric influence than a cyclopentadienyl group, a CpAnX 3 molecule would be coordinatively unsaturated, so CpAnX actually exist as solvates like 3 CpAnX (THF) .Cp AnX areunknownforX=halogen,attemptstopreparethemresulting 3 2 2 2 inmixturesof[Cp AnX]and[CpAnX ],buttheyareknownforX=NEt andBH . 3 3 2 4 Syntheses UCl +4KCp→[UCp ]+4KCl (C H ) 4 4 6 6 UCl +3TlCp→[UCp Cl]+3TlCl (1,2-dimethoxyethane) 4 3 UCl +TlCp→[UCpCl (THF) ]+TlCl (THF) 4 3 2 Somesimilarcompoundscanbemadewithotheractinides,namely[MCp ](M=Th,Pa, 4 Np),[MCp Cl](M=Th,Np),and[ThCpCl ]. 3 3 Sometimesotherstartingmaterialsareused: U(NEt ) +3CpH→[UCp (NEt )]+3HNEt 2 4 3 2 2 Cl O M Cl M U O Cl Cl Figure13.2 StructuresofMCp ,MCp ClandMCpCl (THF) . 4 3 3 2 Structures [MCp ] have regular tetrahedral structures whilst [MCp Cl] are analogous (Figure 13.2) 4 3 with the halogen occupying a position corresponding to the centroid of a fourth ring and [UCpCl (thf) ]hasapseudo-octahedralstructure. 3 2 [MCp Cl]arethemostusefulofthesecompoundsasthehalogencanbereplacedbya 3 numberofgroups(e.g.,NCS,BH ,acac,Me,Ph)(Fig.13.3). 4 Cp3UMe Cp3U(OMe) Cp3U(BH4) MeLi NaOMe NaBH4 NaCp UCl4 Cp3UCl Cp3U(SCN) MSCN (M = K, Na) KNO3(aq) LiPPh2 [Cp3U(OH2)2]+ NO3− NaRuCp(CO)2 Cp3U(PPh2) Cp3URuCp(CO)2 Figure13.3 SynthesisandreactionsofCp UCl. 3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= Cyclopentadienyls 213 Thereisevidenceforasignificantcovalentcontributiontothebondinginsomeofthese actinide(IV) compounds; UCp3Cl does not react with FeCl2 forming ferrocene, whereas MCp do(M,e.g.,Ln,U).Itappearstoundergoionizationinaqueoussolutionasastable 3 green[UCp (OH ) ]+(n∼2)cation.ThereisalsosomeevidencefromMo¨ssbauerspectra 3 2 n ofneptunium-(III)and-(IV)cyclopentadienylcompoundsthatinaNpIVcompoundsuchas NpCp (butnotNpIIIcompounds)thereisagreatershieldingofthe6sshellthaninanionic 4 compound like NpCl , leading to enhanced covalence in the bond. Bonds are reasonably 4 strong;themeanbonddissociationenergyinUCp hasbeendeterminedtobe247kJmol−1, 4 comparedwithavalueof297kJmol−1forFeCp . 2 Themostinteresting[MCp X]compoundsarethealkylsandaryls,[MCp R]beingmade 3 3 byreactionwitheitherorganolithiumcompoundsorGrignardreagents. [MCp Cl]+RLi→[MCp R]+LiCl;[MCp Cl]+RMgX→[MCp R]+MgXCl 3 3 3 3 (M=Th,U; R,e.g.,CH ,Prn,Pri,Bun,But,C H ,C F ,C≡CPh,CH Ph,etc.) 3 6 5 6 5 2 Theywereindependentlysynthesizedbythreeindependentresearchgroupsatthestartof the1970sandrepresentthefirstcompoundstohavewell-definedactinide-carbonσ bonds (structuresforM=U;R,e.g.,Bu,CH C H CH ,etc).(See,e.g.,thepapersbyT.J.Marks 2 6 4 3 group in J. Am. Chem. Soc., 1973, 95, 5529; 1976, 98, 703.) Thermally stable in vacuo, theyreactwithmethanol,formingMCp (OMe)andRH.Alow-temperatureNMRstudyof 3 [UCp Pri]indicatesrestrictedrotationabouttheU–Cσ bondatlowtemperatures. 3 Bonddisruptionenergiesof315–375kJ/molfortheTh–Cbondsin[ThCp R](R,e.g., 3 CH ,CH Ph)indicatethethermodynamicstabilityofthesecompounds,comparablewith 3 2 transitionmetalalkyls(thebondenergiesare10–30kJ/mollessfortheuraniumcompounds). Decompositiondoesnotoccurbytheβ-eliminationroute;insteadintermolecularabstraction of a hydrogen from a Cp ligand occurs (Figure 13.4) forming RH. A stable compound [Cp Th(µ-C H ) ThCp ]istheotherproduct(Figure13.5). 2 5 4 2 2 Th Th H R R Figure13.4 DecompositionofThCp R. 3 ThesecompoundsalsoundergoinsertionreactionsofCO,CO ,andR(cid:7)NCintotheM–C 2 sigmabond,forming[Cp M(η2-COR)],[Cp M(η2-O CR)],and[Cp M(η2-C(R)NR(cid:7)],re- 3 3 2 3 spectively(Figure13.6). Th Th Figure13.5 Structureof[Cp Th(µ-C H ) ThCp ]. 2 5 4 2 2 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 214 OrganometallicChemistryoftheActinides O Cp3M CO R O Cp3MR CO2 Cp3M R O R' R'NC N Cp3M R Figure13.6 InsertionreactionsofCp MR. 3 As already mentioned, there is no UCp Cl – attempts to make it giving mixtures of 2 2 [UCp Cl]and[UCpCl ],butsomeUCp X canbemadeforexample: 3 3 2 2 [U(NEt ) ]+2C H →UCp (NEt ) +2HNEt 2 4 5 6 2 2 2 2 UCl +2NaBH →UCl (BH ) +2NaCl followedby 4 4 2 4 2 UCl (BH ) +2TlCp→UCp (BH ) +2TlCl 2 4 2 2 4 2 UCp (NEt ) reactswithROH[R=bulkygroup, e.g., [(But) C;2,6-Me C H ]: 2 2 2 3 2 6 3 UCl (NEt ) +2ROH→UCp (OR) +2HNEt 2 2 2 2 2 2 13.3.4 OxidationState(III) A variety of syntheses are possible to these compounds, including the expected salt- eliminationroute: UCl +3NaCp→UCp +3NaCl(C H ) 3 3 6 6 Reductionwithsodiumnaphthalenideisoftenpossible: MCp Cl+Na→MCp +NaCl(in THF)(M=U,Th,Np) 3 3 Anunusualrouteusedforseveralofthetransuraniumelementsisamicroscalereactionof themetaltrichlorideswithmoltenBeCp at65◦C. 2 2MCl +3BeCp →2MCp +3BeCl (M=Pu,Am,Cm,Bk,Cf) 3 2 3 2 Thecyclopentadienylproductsweresublimedoutofthereactionmixtureandcharacterized bypowderdiffractiondata,showingtheywereisostructuralwiththecorrespondingLnCp 3 (Ln=Pr,Sm,Gd). Similarcompoundshavebeenmadewithsubstitutedcyclopentadienylgroups;theirprop- ertiesstronglyresemblethoseofthecorrespondingLnCp .TheunsolvatedU(C H SiMe ) 3 5 4 3 3 is known to have trigonal planar geometry, as is U(C Me H) (X-ray). Lewis bases, e.g. 5 4 3 THF,C H NC,py,formpseudotetrahedraladductsUCp .L{X-ray,e.g.for[UCp (THF)]} 6 11 3 3 inthesamewaythatlanthanidesdo.Someadductsareknownwithrathersoftbaseslike tertiaryphosphines,e.g[U(MeCp) (PMe )],thatmightnothavebeenexpectedforafairly 3 3 ‘hard’metalsuchasUIII. SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= CompoundsofthePentamethylcyclopentadienylLigand(C Me =Cp*) 215 5 5 Evidence from UV–visible spectra (Cm and Am compounds) and Mossbauer spectra (Npcompounds)indicatesthatthesecompoundshaveprobablyrathermorecovalentcon- tributionstotheirbondingthandothecorrespondinglanthanidecompounds,butarelargely ioniccomparedwithcyclopentadienylsinthe+4state. AnalogouscompoundsAnCp existforotheractinides,e.g.Th,Np(?),Pu,Am,Bk,Cf, 3 Cm. The thorium(III) compound is especially noteworthy, on account of the rarity of this oxidationstate;thestructureofthesimilarTh{C H (SiMe ) } isknowntohavetrigonal 5 3 3 2 3 planargeometryaroundthorium. 3Th{C H (SiMe ) } Cl +Na/K(alloy)→Th+2Th{C H (SiMe ) } +6Na/KCl 5 3 3 2 2 2 5 3 3 2 3 These ThIII compounds are EPR-active; spectra indicate a 6d1 ground state for Th{C H (SiMe ) } ,despitethefactthatthefreeTh3+ionhasa5f1configuration. 5 3 3 2 3 13.4 CompoundsofthePentamethylcyclopentadienylLigand(C Me =Cp*) 5 5 13.4.1 OxidationState(IV) Compounds of the type [MCp* X ] (M = Th, U) are rather important. They owe their 2 2 importancetothefactthatalthoughthreeCp*ringscanbeaccommodatedrounduranium in UCp* Cl,this compound cannot be made by direct synthesis (nor can MCp* ), partly 3 3 owingtothebulkoftheC Me ligands,andthe[MCp* X ]systemsareinpracticemore 5 5 2 2 readilyobtained. MCl +2Cp∗MgBr→MCp∗ Cl +2MgBrCl (M=Th,U)intoluene 4 2 2 Halides can be replaced by suitable ligands, thus reactions with NaOMe and LiNMe 2 affordproductslikeThCp* (OMe) ,ThCp* Cl(NMe ),andThCp* (NMe ) .Li S reacts 2 2 2 2 2 2 2 2 5 forming[ThCp* (S )].Importantly,thechloridecompoundscanbealkylatedandarylated. 2 5 Eitheroneortwochlorinescanbereplaced. MCp∗ Cl +LiR→MCp∗ (R)Cl+LiCl 2 2 2 MCp∗ (R)Cl+LiR→MCp∗ R +LiCl 2 2 2 (M=Th,U;R,e.g.,Me,Ph,CH CMe ,CH SiMe ) 2 3 2 3 Theyhavetheusualpseudotetrahedralcoordination;thestructureofCp* Th(CH CMe ) 2 2 3 2 reveals agostic Th....H–C interactions with the α-C–H bonds. The M–C σ bonds seem to have a significant ionic contribution; thus ThCp* Me reacts with acetone to afford a 2 2 tert-butoxycompound. Reactions with R(cid:7)OH, R(cid:7)SH, and R2 NH afford products such as ThCp* (R)(OR(cid:7)), 2 2 ThCp* (OR(cid:7)) ,ThCp* (SR(cid:7)) ,andThCp* (NR2 ) (R(cid:7),e.g.,Pr;R2,e.g.,Et). 2 2 2 2 2 2 2 ThecompoundsCp* Th(CH CMe ) andCp* Th(CH SiMe ) undergomostremark- 2 2 3 2 2 2 3 2 able elimination reactions to form metallacyclic complexes on heating to only 50 ◦C in toluenesolution: −−−−−−−−−−− | | Cp∗ Th(CH SiMe ) →Cp∗ Th(CH CMe -CH )+CMe 2 2 3 2 2 2 2 2 4 −−−−−−−−−−−− | | Cp∗ Th(CH SiMe ) →Cp∗ Th(CH SiMe −CH )+CMe 2 2 3 2 2 2 2 2 4 −−−−−−−−−−− | | ReactionsofCp* Th(CH CMe -CH )areshowninFigure13.7. 2 2 2 2 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 216 OrganometallicChemistryoftheActinides Cp* OR Cp* CH Th 3 Th Cp* CH2But Cp* CH2But CH ROH 4 Cp* CH2But 50°C Cp* H Cp* H Cp* Th CH2But heptane Cp* Th 2 Cp* Th H + CMe4 Cp* Th Cp* Figure13.7 |−−−−−−−−−−−−−| ReactionsofCp* Th(CH CMe -CH ). 2 2 2 2 Some mono(Cp*) complexes are known, reaction of MCl (M = U, Th) with 4 MeMgCl.THFyielding[Cp*MCl (thf) ],withstructuresanalogoustothe[CpLnCl (thf) ] 3 2 2 3 compounds.Thehalogenscanbereplacedwiththeisolationof[Cp*Th(CH Ph) ];thishas 2 3 a piano-stool structure with Th–C σ-bonds of 2.578–2.581 A˚. There is some interaction betweenThandthebenzenerings,sothisisnotaclassicalη1-alkyl. 13.4.2 CationicSpeciesandCatalysts Cationicalkylshavebeenstudiedwithprofit.Thus,inbenzenesolution, Cp∗ Th(CH ) +[HNBun ] +[B(C F ) ]− →[Cp∗ Th(CH )]+[B(C F ) ]− 2 3 2 3 3 6 5 4 2 3 6 5 4 +NBun +CH 3 4 [Cp* Th(CH )]+ [B(C F ) ]− infacthasaveryweaklyboundanion[Th–F2.757,2.675 2 3 6 5 4 A˚; Th–C (ring) 2.754 A˚, Th–CH 2.399 A˚], so that it is an active catalyst for ethene 3 polymerizationandhex-1-enehydrogenation(Figure13.8). IfthistypeofabstractionreactioniscarriedoutinTHF,[Cp* Th(CH )(THF) ]+[BPh ]− 2 3 2 4 isformed[Th–C(ring)2.801A˚ ,Th–CH 2.491A˚]. 3 + Cp* + Cp* Th+ CH +H2 Cp* + Cp* Th Cp* 3 −CH4 Cp* Th H − Cp* + H + H2 H Th Cp* Figure13.8 [Cp* ThCH ]+asacatalystforhydrogenation. 2 3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= CompoundsofthePentamethylcyclopentadienylLigand(C Me =Cp*) 217 5 5 CH 3 Th dehydroxylated alumina CH 3 CH Th 3 CH 3 partly dehydroxylated alumina CH 3 Th O Al Figure13.9 Surfaceboundcationicthoriumalkyls. On alumina surfaces cationic alkyls exhibit catalytic activity, due to the formation of coordinativelyunsaturatedspecies(Figure13.9). 13.4.3 Hydrides Strikinghydridederivativesareformed,whichareefficientcatalystsforthehomogeneous hydrogenationofhex-1-ene(Figure13.10): 2ThCp∗ R +4H →Cp∗ Th(H)(µ-H) Th(H)Cp∗ +4RH R,e.g.,Me 2 2 2 2 2 2 Thisremarkablethoriumcompoundisstableto80◦C.Insolutionithasrapidhydrogen exchangewithdihydrogengas.Solution1HNMRshowsthebridgeandterminalhydrogens are equivalent even at −90◦C. In the solid state, Th–H is 2.03 A˚ (terminal) and 2.29 A˚ (bridge);aTh–Thdistanceof4.007A˚ indicatesminimalmetal–metalbonding.IntheIR, ν Th–H (terminal) vibrations occur at 1404 and 1336 cm−1; bridging vibrations occur at 1215,1114,844,and650cm−1.Cp* U(H)(µ-H) U(H)Cp* canbemadetoobuttendsto 2 2 2 H H Th Th H H Figure13.10 Structureof[Cp* Th(H)(µ-H) Th(H)Cp∗ ]. 2 2 2 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 218 OrganometallicChemistryoftheActinides decomposetoaUIII hydrideCp* U(H),whichcanbeisolatedandstabilizedasaDMPE 2 complex[Cp* U(H){Me P(CH ) PMe }]. 2 2 2 2 2 Attempted conversion of UCp*2RCl into a hydride gives the uranium (III) compound UCp* Cl(Section13.4.4). 2 Thehydridesarereactiveandreadilyreactwithhalogenocarbons,alcohols,andketones; alkenesaffordalkyls. 13.4.4 OxidationState(III) Hydrogenreductionof[UCp* ClR]givestrimericUCp* Cl(Figure13.11). 2 2 UCp∗ Cl(CH SiMe )+H →UCp∗ Cl+SiMe 2 2 3 2 2 4 U Cl Cl U U Cl Figure13.11 Thestructureoftrimeric[Cp* UCl] . 2 3 In the similar reaction with R = methyl, the organic product is CH . If the reaction is 4 carriedoutwiththeanalogousthoriumstartingmaterial,ThCp*2Cl(R)formsthethorium(IV) compound[Cp* Th(µ-H)Cl] . 2 2 Theuraniumcompoundhasacyclictrimericstructure.Eachuraniumisindividuallyin pseudotetrahedralcoordination.Itundergoesvariousreactions(Figure13.12). These may be classed as straightforward substitutions using a bulky anionic ligand; adduct formation with Lewis bases retaining pseudotetrahedral coordination; and redox. Thephotoelectronspectrumofthealkyl[UCp* (CH SiMe )]indicatesa5f3groundstate 2 2 3 butalsothatthe5f26d1stateisonlyslightlyhigherinenergy. [Cp*UCl] 2 2 C6H5Cl CH3Cl [Cp*2UCl2] a nd [Cp*2U(CH3)Cl] [Cp*UCl] L 2 3 [Cp*UCl(L)] L = py, EtO, THF, PMe 2 2 3 MR [Cp*UR] R = CH(SiMe ) ; N(SiMe) 2 32 32 Figure13.12 Reactionsof[Cp* UCl] . 2 3

Description:
r suggest suitable synthetic routes; elements, the actinides have a rich organometallic chemistry. Lanthanide and Actinide Chemistry S. Cotton.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.