SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 13 Organometallic Chemistry of the Actinides Bytheendofthischapteryoushouldbeableto: (cid:1) recallthatthesecompoundsareveryair-andwater-sensitive; (cid:1) recall that the bonding has a significant polar character, especially in the +3 state, but that+4compounds,especiallythoseofuranium,havemorestability; (cid:1) recall that these compounds usually have small molecular structures with appropriate volatilityandsolubilityproperties; (cid:1) recallappropriatebondingmodesfortheorganicgroups; (cid:1) suggestsuitablesyntheticroutes; (cid:1) suggeststructuresforsuitableexamples; (cid:1) appreciatethecontributionoftheC Me ligandinuraniumchemistry; (cid:1) 5 5 recalltheuniquepropertiesofuranocene; (cid:1) appreciatetheunusualcompoundsthatcanbemadeusingimideandCOasligands. 13.1 Introduction Althoughlackingπ-bondedcompoundsinlowoxidationstatesthatcharacterizethed-block elements,theactinideshavearichorganometallicchemistry.Theircompoundsfrequently exhibit considerable thermal stability, but like the lanthanide compounds are usually in- tenselyair-andmoisture-sensitive.Theyareoftensolubleinaromatichydrocarbonssuch astolueneandinethers(e.g.,THF)butaregenerallydestroyedbywater.Sometimesthey arepyrophoriconexposuretoair.MostofthesyntheticworkhasbeencarriedoutwithTh andU;thisispartlyduetothereadyavailabilityofMCl (M=Th,U)andalsobecauseof 4 theprecautionsthathavetobetakeninhandlingcompoundsofothermetals,especiallyPu andNp. 13.2 Simpleσ-BondedOrganometallics DuringtheManhattanproject,awiderangeofcompoundswasscreenedinthesearchfor volatileuraniumcompoundsthatcouldbeusedforseparationofisotopesofuranium,since UF wasnotaneasycompoundtohandle.Theleadingorganometallicchemistoftheday, 6 HenryGilman,investigatedthesynthesisofsimplealkylsandaryls,concludingthatsuch compoundsdidnotexist,oratleastwereunstable.Eventoday,justoneneutralhomoleptic LanthanideandActinideChemistry S.Cotton (cid:1)C 2006 John Wiley & Sons, Ltd. ISBN: 0-470-01005-3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 210 OrganometallicChemistryoftheActinides alkyl of known structure exists, [U{CH(SiMe ) } ], made from an aryloxide by a route 3 2 3 ensuringnocontaminationwithlithiumhalide: 3LiCH(SiMe ) +U(O-2,6-ButC H ) →[U{CH(SiMe ) } ] 3 2 2 6 3 3 3 2 3 +3Li(O-2,6-ButC H ) 2 6 3 If LiCH(SiMe ) is treated directly with UCl (THF) in a salt-elimination reaction the 3 2 3 3 alkylatesalt[(THF) Li-Cl-U{CH(SiMe ) } ]isobtained. 3 3 2 3 [U{CH(SiMe ) } ]hasatrigonalpyramidalstructure,likethecorrespondinglanthanide 3 2 3 alkyls (Section 6.2.1) and also like the isoelectronic amides [M{N(SiMe ) } ] (M = U, 3 2 3 lanthanides).TherearesomeagosticU....H–Cinteractions.SimilarNpandPucompounds [M{CH(SiMe ) } ]havebeenmade.AbinitioMOcalculationsforhypotheticalM(CH ) 3 2 3 3 3 (M = U, Np, Pu) molecules also predict pyramidal structures as a result of better 6d involvement(not5f)intheM–Cbondingorbitalsinpyramidalgeometries. Thebenzyl[Th(CH Ph) ]hasbeensynthesizedandthepaleyellowdimethylbenzylcom- 2 4 poundTh(1,3,5-CH C H Me ) hasalsobeenreported,buttheirstructuresarenotknown 2 6 3 2 4 (andmayhavemultihapto-coordinationofbenzyltothorium).Theheptamethylthoratean- ion[ThMe ]3− isfoundinthesalt[Li(tmeda)] [ThMe ](tmeda=Me NCH CH NMe ). 7 3 7 2 2 2 2 Thelattercontainsthoriuminmonocappedtrigonalprismaticcoordination;onemethylis terminal(Th–C2.571A˚)whilsttheothersixmethylgroupspairwisebridgethelithiumand thorium (Th–C 2.655–2.765 A˚). The methyl groups are, however, equivalent in solution (NMR). Certainsimplealkylsarestabilizedbythepresenceofeitherphosphineoramideligands, thus: UCl{N(SiMe ) } +CH Li→U(CH ){N(SiMe ) } +LiCl 3 2 3 3 3 3 2 3 2ThCl{N(SiMe ) } +Mg(CH ) →2Th(CH ){N(SiMe ) } +MgCl 3 2 3 3 2 3 3 2 3 2 Thesearepentane-soluble,volatiletetrahedralmolecules.Theyhaveanextensivechemistry involving metallacycles which will be dealt with later (Section 13.6). Although MMe 4 (M=Th,U)havenotbeenisolated,thisunitcanbestabilizedaseight-coordinatephosphine adducts,wheretheroleofphosphinesistosaturatethecoordinationsphere.Thecoordination ofa‘soft’phosphineligandtoa‘hard’metalionlikeuranium(IV)isnoteworthy. MCl (dmpe) +4CH Li→M(CH ) (dmpe) +4LiCl 4 2 3 3 4 2 Thesereactwithphenolformingphenoxides: Th(CH ) (dmpe) +4C H OH→Th(OC H ) (dmpe) +4CH 3 4 2 6 5 6 5 4 2 4 Similar compounds [M(CH Ph) (dmpe) ] (stable to 85 ◦C in the absence of air) and 2 4 2 [M(CH Ph) Me(dmpe) ] have been isolated; structures of [Th(CH Ph) (dmpe) ] and 2 3 2 2 4 2 [U(CH Ph) Me(dmpe) ]confirmtheiridentity,theyhaveshortM–Ccontacts.Compounds 2 3 2 of alkyl groups like CH CH that are capable of undergoing elimination have not been 2 3 isolated. Compounds containing one or more cyclopentadienyl-type ligands are much more robust. (Throughout this section, C H is abbreviated to Cp; C Me is abbreviated to 5 5 5 5 Cp*;C H .CH isMeCp.) 5 4 3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= Cyclopentadienyls 211 13.3 Cyclopentadienyls TheseareregardedasderivativesoftheC H − ligand;substitutedringsalsooccur.Some 5 5 ofthesewerethefirstorganoactinidecompoundstobereported,shortlyafterthediscovery offerrocene.Themostimportantcompoundsareinthe+4statebutthereisasignificant chemistryofU(+3)aswellasexamplesinoxidationstates(+5)and(+6).Onefactorthat shouldbenotedisthatreplacingoneormorehydrogensinthecyclopentadienylringcanhave asignificanteffectuponthestabilityandisolabilityofcomplexesmadefromthem,through both steric and electronic effects. Thus three or four Cp ligands can be accommodated arounduranium(IV),whereaswithCp*twoisthenorm.Inanotherexample,[UCp3]gives no sign of reacting with carbon monoxide; [U{C H (SiMe ) } ] forms a compound that 5 3 3 2 3 canbedetectedinsolution;and[U(C Me H) ]forms[U(C Me H) (CO)],whichcanbe 5 4 3 5 4 3 isolatedinthesolidstate. 13.3.1 OxidationState(VI) High oxidation states are not normally associated with organometallic chemistry, but a remarkableuranium(VI)imidehasbeenmade(Figure13.1): UCp∗(CH )Cl+Li[PhNN(H)Ph]→UCp∗(=NPh) +CH +LiCl. 2 3 2 2 4 Thereactionmaygoviaanintermediate[UCp* (η2-PhN–NPh)].Therearenof–ftransi- 2 tions in the visible spectrum, confirming its UVI-f0 character, whilst the structure of this remarkablecompoundshowstheexpectedpseudotetrahedralgeometry;theshortU–Nbond length(1.952A˚)confirmsitsmultiple-bondcharacterandtheU==N–Phlinkageisvirtually linear. NPh U NPh Figure13.1 Auranium(VI)imide. 13.3.2 OxidationState(V) RareorganoimidesU(MeCp) (=NR)havebeenmadebyoxidationofU(MeCp) (thf)with 3 3 RN (R=Me SiandPh).TheU–Nbondlengthof2.109A˚ isregardedashavingmultiple- 3 3 bondcharacter(cf.theU=Obondinuranylcompounds). U(MeCp) (THF)+RN →U(MeCp) (==NR)+THF+N 3 3 3 2 13.3.3 OxidationState(IV) There are three families of compounds whose structures can be regarded as derived from a tetrahedral UX molecule with one or more halogens replaced by one or more 4 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 212 OrganometallicChemistryoftheActinides cyclopentadienyl rings; [Cp An], [Cp AnX]; [CpAnX ] (X = halogen, most usually 4 3 3 Cl). Since halogens have less steric influence than a cyclopentadienyl group, a CpAnX 3 molecule would be coordinatively unsaturated, so CpAnX actually exist as solvates like 3 CpAnX (THF) .Cp AnX areunknownforX=halogen,attemptstopreparethemresulting 3 2 2 2 inmixturesof[Cp AnX]and[CpAnX ],buttheyareknownforX=NEt andBH . 3 3 2 4 Syntheses UCl +4KCp→[UCp ]+4KCl (C H ) 4 4 6 6 UCl +3TlCp→[UCp Cl]+3TlCl (1,2-dimethoxyethane) 4 3 UCl +TlCp→[UCpCl (THF) ]+TlCl (THF) 4 3 2 Somesimilarcompoundscanbemadewithotheractinides,namely[MCp ](M=Th,Pa, 4 Np),[MCp Cl](M=Th,Np),and[ThCpCl ]. 3 3 Sometimesotherstartingmaterialsareused: U(NEt ) +3CpH→[UCp (NEt )]+3HNEt 2 4 3 2 2 Cl O M Cl M U O Cl Cl Figure13.2 StructuresofMCp ,MCp ClandMCpCl (THF) . 4 3 3 2 Structures [MCp ] have regular tetrahedral structures whilst [MCp Cl] are analogous (Figure 13.2) 4 3 with the halogen occupying a position corresponding to the centroid of a fourth ring and [UCpCl (thf) ]hasapseudo-octahedralstructure. 3 2 [MCp Cl]arethemostusefulofthesecompoundsasthehalogencanbereplacedbya 3 numberofgroups(e.g.,NCS,BH ,acac,Me,Ph)(Fig.13.3). 4 Cp3UMe Cp3U(OMe) Cp3U(BH4) MeLi NaOMe NaBH4 NaCp UCl4 Cp3UCl Cp3U(SCN) MSCN (M = K, Na) KNO3(aq) LiPPh2 [Cp3U(OH2)2]+ NO3− NaRuCp(CO)2 Cp3U(PPh2) Cp3URuCp(CO)2 Figure13.3 SynthesisandreactionsofCp UCl. 3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= Cyclopentadienyls 213 Thereisevidenceforasignificantcovalentcontributiontothebondinginsomeofthese actinide(IV) compounds; UCp3Cl does not react with FeCl2 forming ferrocene, whereas MCp do(M,e.g.,Ln,U).Itappearstoundergoionizationinaqueoussolutionasastable 3 green[UCp (OH ) ]+(n∼2)cation.ThereisalsosomeevidencefromMo¨ssbauerspectra 3 2 n ofneptunium-(III)and-(IV)cyclopentadienylcompoundsthatinaNpIVcompoundsuchas NpCp (butnotNpIIIcompounds)thereisagreatershieldingofthe6sshellthaninanionic 4 compound like NpCl , leading to enhanced covalence in the bond. Bonds are reasonably 4 strong;themeanbonddissociationenergyinUCp hasbeendeterminedtobe247kJmol−1, 4 comparedwithavalueof297kJmol−1forFeCp . 2 Themostinteresting[MCp X]compoundsarethealkylsandaryls,[MCp R]beingmade 3 3 byreactionwitheitherorganolithiumcompoundsorGrignardreagents. [MCp Cl]+RLi→[MCp R]+LiCl;[MCp Cl]+RMgX→[MCp R]+MgXCl 3 3 3 3 (M=Th,U; R,e.g.,CH ,Prn,Pri,Bun,But,C H ,C F ,C≡CPh,CH Ph,etc.) 3 6 5 6 5 2 Theywereindependentlysynthesizedbythreeindependentresearchgroupsatthestartof the1970sandrepresentthefirstcompoundstohavewell-definedactinide-carbonσ bonds (structuresforM=U;R,e.g.,Bu,CH C H CH ,etc).(See,e.g.,thepapersbyT.J.Marks 2 6 4 3 group in J. Am. Chem. Soc., 1973, 95, 5529; 1976, 98, 703.) Thermally stable in vacuo, theyreactwithmethanol,formingMCp (OMe)andRH.Alow-temperatureNMRstudyof 3 [UCp Pri]indicatesrestrictedrotationabouttheU–Cσ bondatlowtemperatures. 3 Bonddisruptionenergiesof315–375kJ/molfortheTh–Cbondsin[ThCp R](R,e.g., 3 CH ,CH Ph)indicatethethermodynamicstabilityofthesecompounds,comparablewith 3 2 transitionmetalalkyls(thebondenergiesare10–30kJ/mollessfortheuraniumcompounds). Decompositiondoesnotoccurbytheβ-eliminationroute;insteadintermolecularabstraction of a hydrogen from a Cp ligand occurs (Figure 13.4) forming RH. A stable compound [Cp Th(µ-C H ) ThCp ]istheotherproduct(Figure13.5). 2 5 4 2 2 Th Th H R R Figure13.4 DecompositionofThCp R. 3 ThesecompoundsalsoundergoinsertionreactionsofCO,CO ,andR(cid:7)NCintotheM–C 2 sigmabond,forming[Cp M(η2-COR)],[Cp M(η2-O CR)],and[Cp M(η2-C(R)NR(cid:7)],re- 3 3 2 3 spectively(Figure13.6). Th Th Figure13.5 Structureof[Cp Th(µ-C H ) ThCp ]. 2 5 4 2 2 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 214 OrganometallicChemistryoftheActinides O Cp3M CO R O Cp3MR CO2 Cp3M R O R' R'NC N Cp3M R Figure13.6 InsertionreactionsofCp MR. 3 As already mentioned, there is no UCp Cl – attempts to make it giving mixtures of 2 2 [UCp Cl]and[UCpCl ],butsomeUCp X canbemadeforexample: 3 3 2 2 [U(NEt ) ]+2C H →UCp (NEt ) +2HNEt 2 4 5 6 2 2 2 2 UCl +2NaBH →UCl (BH ) +2NaCl followedby 4 4 2 4 2 UCl (BH ) +2TlCp→UCp (BH ) +2TlCl 2 4 2 2 4 2 UCp (NEt ) reactswithROH[R=bulkygroup, e.g., [(But) C;2,6-Me C H ]: 2 2 2 3 2 6 3 UCl (NEt ) +2ROH→UCp (OR) +2HNEt 2 2 2 2 2 2 13.3.4 OxidationState(III) A variety of syntheses are possible to these compounds, including the expected salt- eliminationroute: UCl +3NaCp→UCp +3NaCl(C H ) 3 3 6 6 Reductionwithsodiumnaphthalenideisoftenpossible: MCp Cl+Na→MCp +NaCl(in THF)(M=U,Th,Np) 3 3 Anunusualrouteusedforseveralofthetransuraniumelementsisamicroscalereactionof themetaltrichlorideswithmoltenBeCp at65◦C. 2 2MCl +3BeCp →2MCp +3BeCl (M=Pu,Am,Cm,Bk,Cf) 3 2 3 2 Thecyclopentadienylproductsweresublimedoutofthereactionmixtureandcharacterized bypowderdiffractiondata,showingtheywereisostructuralwiththecorrespondingLnCp 3 (Ln=Pr,Sm,Gd). Similarcompoundshavebeenmadewithsubstitutedcyclopentadienylgroups;theirprop- ertiesstronglyresemblethoseofthecorrespondingLnCp .TheunsolvatedU(C H SiMe ) 3 5 4 3 3 is known to have trigonal planar geometry, as is U(C Me H) (X-ray). Lewis bases, e.g. 5 4 3 THF,C H NC,py,formpseudotetrahedraladductsUCp .L{X-ray,e.g.for[UCp (THF)]} 6 11 3 3 inthesamewaythatlanthanidesdo.Someadductsareknownwithrathersoftbaseslike tertiaryphosphines,e.g[U(MeCp) (PMe )],thatmightnothavebeenexpectedforafairly 3 3 ‘hard’metalsuchasUIII. SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= CompoundsofthePentamethylcyclopentadienylLigand(C Me =Cp*) 215 5 5 Evidence from UV–visible spectra (Cm and Am compounds) and Mossbauer spectra (Npcompounds)indicatesthatthesecompoundshaveprobablyrathermorecovalentcon- tributionstotheirbondingthandothecorrespondinglanthanidecompounds,butarelargely ioniccomparedwithcyclopentadienylsinthe+4state. AnalogouscompoundsAnCp existforotheractinides,e.g.Th,Np(?),Pu,Am,Bk,Cf, 3 Cm. The thorium(III) compound is especially noteworthy, on account of the rarity of this oxidationstate;thestructureofthesimilarTh{C H (SiMe ) } isknowntohavetrigonal 5 3 3 2 3 planargeometryaroundthorium. 3Th{C H (SiMe ) } Cl +Na/K(alloy)→Th+2Th{C H (SiMe ) } +6Na/KCl 5 3 3 2 2 2 5 3 3 2 3 These ThIII compounds are EPR-active; spectra indicate a 6d1 ground state for Th{C H (SiMe ) } ,despitethefactthatthefreeTh3+ionhasa5f1configuration. 5 3 3 2 3 13.4 CompoundsofthePentamethylcyclopentadienylLigand(C Me =Cp*) 5 5 13.4.1 OxidationState(IV) Compounds of the type [MCp* X ] (M = Th, U) are rather important. They owe their 2 2 importancetothefactthatalthoughthreeCp*ringscanbeaccommodatedrounduranium in UCp* Cl,this compound cannot be made by direct synthesis (nor can MCp* ), partly 3 3 owingtothebulkoftheC Me ligands,andthe[MCp* X ]systemsareinpracticemore 5 5 2 2 readilyobtained. MCl +2Cp∗MgBr→MCp∗ Cl +2MgBrCl (M=Th,U)intoluene 4 2 2 Halides can be replaced by suitable ligands, thus reactions with NaOMe and LiNMe 2 affordproductslikeThCp* (OMe) ,ThCp* Cl(NMe ),andThCp* (NMe ) .Li S reacts 2 2 2 2 2 2 2 2 5 forming[ThCp* (S )].Importantly,thechloridecompoundscanbealkylatedandarylated. 2 5 Eitheroneortwochlorinescanbereplaced. MCp∗ Cl +LiR→MCp∗ (R)Cl+LiCl 2 2 2 MCp∗ (R)Cl+LiR→MCp∗ R +LiCl 2 2 2 (M=Th,U;R,e.g.,Me,Ph,CH CMe ,CH SiMe ) 2 3 2 3 Theyhavetheusualpseudotetrahedralcoordination;thestructureofCp* Th(CH CMe ) 2 2 3 2 reveals agostic Th....H–C interactions with the α-C–H bonds. The M–C σ bonds seem to have a significant ionic contribution; thus ThCp* Me reacts with acetone to afford a 2 2 tert-butoxycompound. Reactions with R(cid:7)OH, R(cid:7)SH, and R2 NH afford products such as ThCp* (R)(OR(cid:7)), 2 2 ThCp* (OR(cid:7)) ,ThCp* (SR(cid:7)) ,andThCp* (NR2 ) (R(cid:7),e.g.,Pr;R2,e.g.,Et). 2 2 2 2 2 2 2 ThecompoundsCp* Th(CH CMe ) andCp* Th(CH SiMe ) undergomostremark- 2 2 3 2 2 2 3 2 able elimination reactions to form metallacyclic complexes on heating to only 50 ◦C in toluenesolution: −−−−−−−−−−− | | Cp∗ Th(CH SiMe ) →Cp∗ Th(CH CMe -CH )+CMe 2 2 3 2 2 2 2 2 4 −−−−−−−−−−−− | | Cp∗ Th(CH SiMe ) →Cp∗ Th(CH SiMe −CH )+CMe 2 2 3 2 2 2 2 2 4 −−−−−−−−−−− | | ReactionsofCp* Th(CH CMe -CH )areshowninFigure13.7. 2 2 2 2 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 216 OrganometallicChemistryoftheActinides Cp* OR Cp* CH Th 3 Th Cp* CH2But Cp* CH2But CH ROH 4 Cp* CH2But 50°C Cp* H Cp* H Cp* Th CH2But heptane Cp* Th 2 Cp* Th H + CMe4 Cp* Th Cp* Figure13.7 |−−−−−−−−−−−−−| ReactionsofCp* Th(CH CMe -CH ). 2 2 2 2 Some mono(Cp*) complexes are known, reaction of MCl (M = U, Th) with 4 MeMgCl.THFyielding[Cp*MCl (thf) ],withstructuresanalogoustothe[CpLnCl (thf) ] 3 2 2 3 compounds.Thehalogenscanbereplacedwiththeisolationof[Cp*Th(CH Ph) ];thishas 2 3 a piano-stool structure with Th–C σ-bonds of 2.578–2.581 A˚. There is some interaction betweenThandthebenzenerings,sothisisnotaclassicalη1-alkyl. 13.4.2 CationicSpeciesandCatalysts Cationicalkylshavebeenstudiedwithprofit.Thus,inbenzenesolution, Cp∗ Th(CH ) +[HNBun ] +[B(C F ) ]− →[Cp∗ Th(CH )]+[B(C F ) ]− 2 3 2 3 3 6 5 4 2 3 6 5 4 +NBun +CH 3 4 [Cp* Th(CH )]+ [B(C F ) ]− infacthasaveryweaklyboundanion[Th–F2.757,2.675 2 3 6 5 4 A˚; Th–C (ring) 2.754 A˚, Th–CH 2.399 A˚], so that it is an active catalyst for ethene 3 polymerizationandhex-1-enehydrogenation(Figure13.8). IfthistypeofabstractionreactioniscarriedoutinTHF,[Cp* Th(CH )(THF) ]+[BPh ]− 2 3 2 4 isformed[Th–C(ring)2.801A˚ ,Th–CH 2.491A˚]. 3 + Cp* + Cp* Th+ CH +H2 Cp* + Cp* Th Cp* 3 −CH4 Cp* Th H − Cp* + H + H2 H Th Cp* Figure13.8 [Cp* ThCH ]+asacatalystforhydrogenation. 2 3 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= CompoundsofthePentamethylcyclopentadienylLigand(C Me =Cp*) 217 5 5 CH 3 Th dehydroxylated alumina CH 3 CH Th 3 CH 3 partly dehydroxylated alumina CH 3 Th O Al Figure13.9 Surfaceboundcationicthoriumalkyls. On alumina surfaces cationic alkyls exhibit catalytic activity, due to the formation of coordinativelyunsaturatedspecies(Figure13.9). 13.4.3 Hydrides Strikinghydridederivativesareformed,whichareefficientcatalystsforthehomogeneous hydrogenationofhex-1-ene(Figure13.10): 2ThCp∗ R +4H →Cp∗ Th(H)(µ-H) Th(H)Cp∗ +4RH R,e.g.,Me 2 2 2 2 2 2 Thisremarkablethoriumcompoundisstableto80◦C.Insolutionithasrapidhydrogen exchangewithdihydrogengas.Solution1HNMRshowsthebridgeandterminalhydrogens are equivalent even at −90◦C. In the solid state, Th–H is 2.03 A˚ (terminal) and 2.29 A˚ (bridge);aTh–Thdistanceof4.007A˚ indicatesminimalmetal–metalbonding.IntheIR, ν Th–H (terminal) vibrations occur at 1404 and 1336 cm−1; bridging vibrations occur at 1215,1114,844,and650cm−1.Cp* U(H)(µ-H) U(H)Cp* canbemadetoobuttendsto 2 2 2 H H Th Th H H Figure13.10 Structureof[Cp* Th(H)(µ-H) Th(H)Cp∗ ]. 2 2 2 SPH SPH JWBK057-13 JWBK057-Cotton December9,2005 17:52 CharCount= 218 OrganometallicChemistryoftheActinides decomposetoaUIII hydrideCp* U(H),whichcanbeisolatedandstabilizedasaDMPE 2 complex[Cp* U(H){Me P(CH ) PMe }]. 2 2 2 2 2 Attempted conversion of UCp*2RCl into a hydride gives the uranium (III) compound UCp* Cl(Section13.4.4). 2 Thehydridesarereactiveandreadilyreactwithhalogenocarbons,alcohols,andketones; alkenesaffordalkyls. 13.4.4 OxidationState(III) Hydrogenreductionof[UCp* ClR]givestrimericUCp* Cl(Figure13.11). 2 2 UCp∗ Cl(CH SiMe )+H →UCp∗ Cl+SiMe 2 2 3 2 2 4 U Cl Cl U U Cl Figure13.11 Thestructureoftrimeric[Cp* UCl] . 2 3 In the similar reaction with R = methyl, the organic product is CH . If the reaction is 4 carriedoutwiththeanalogousthoriumstartingmaterial,ThCp*2Cl(R)formsthethorium(IV) compound[Cp* Th(µ-H)Cl] . 2 2 Theuraniumcompoundhasacyclictrimericstructure.Eachuraniumisindividuallyin pseudotetrahedralcoordination.Itundergoesvariousreactions(Figure13.12). These may be classed as straightforward substitutions using a bulky anionic ligand; adduct formation with Lewis bases retaining pseudotetrahedral coordination; and redox. Thephotoelectronspectrumofthealkyl[UCp* (CH SiMe )]indicatesa5f3groundstate 2 2 3 butalsothatthe5f26d1stateisonlyslightlyhigherinenergy. [Cp*UCl] 2 2 C6H5Cl CH3Cl [Cp*2UCl2] a nd [Cp*2U(CH3)Cl] [Cp*UCl] L 2 3 [Cp*UCl(L)] L = py, EtO, THF, PMe 2 2 3 MR [Cp*UR] R = CH(SiMe ) ; N(SiMe) 2 32 32 Figure13.12 Reactionsof[Cp* UCl] . 2 3
Description: