Published by John Wiley & Sons, Inc., Hoboken, New Jersey Copyright & 2007 by Organic Reactions, Inc. All rights reserved. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests for permission need to be made jointly to both the publisher, John Wiley & Sons, Inc., and the copyright holder. Organic Reactions, Inc. Requests to John Wiley & Sons. Inc., for permissions should be addressed to die Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at hltp:/Avww.wiley.coni/go/pennission. Requests to Organic Reaciions, Inc., for permissions should be addressed to Dr. Jeffery Press, 22 Bear Berry Lane, Brewster, NY 10509, E-Mail: [email protected]. Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other conunercial damages, including but not limited to special, incidental, consequential, or other damages. For general information on our other products and services or for technical support, please contact our Customer Care Department within die United States at (800) 762-2974, outside die United States at (317) 572-3993 or fax (317) 572-4002. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com. Wiley Bicentennial Logo: Richard J. Pacifico Library of Congress Catalog Card Number: 42-20265 ISBN 978-0-470-22397-0 Printed in the United States of America 10 9 8 76 5 43 2 1 CONTENTS CHAPTER PAGE 1. DIOXIRANE OXIDATIONSOF COMPOUNDSOTHERTHAN ALKENES Waldemar Adam, Cong-Gui Zhao, and Kavitha Jakka . . . . . . . . . . 1 2. ELECTROPHILIC FLUORINATIONWITH N–F REAGENTS Je´roˆmeBaudoux and Dominique Cahard . . . . . . . . . . . . . . . . . . 347 CUMULATIVE CHAPTER TITLESBY VOLUME . . . . . . . . . . . . . . . . . . . . . . . 673 AUTHOR INDEX, VOLUMES 1–69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687 CHAPTERAND TOPIC INDEX, VOLUMES 1–69 . . . . . . . . . . . . . . . . . . . . . . 693 vii CHAPTER 1 DIOXIRANE OXIDATIONS OF COMPOUNDS OTHER THAN ALKENES WALDEMAR ADAM Institute for Organic Chemistry, Wu¨rzburg University, D-97074 Wu¨rzburg, Germany and Department of Chemistry, University of Puerto Rico, Rio Piedras, Puerto Rico 00931 CONG-GUI ZHAO and KAVITHA JAKKA Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249 CONTENTS PAGE ACKNOWLEDGMENTS . . . . . . . . . . . . . 3 INTRODUCTION . . . . . . . . . . . . . . 4 MECHANISM . . . . . . . . . . . . . . 5 Allenes,Alkynes,andArenes . . . . . . . . . . 5 HeteroatomSubstrates . . . . . . . . . . . . 5 AlkanesandSilanes . . . . . . . . . . . . 7 SCOPEANDLIMITATIONS . . . . . . . . . . . . 8 Allenes,Alkynes,andArenes . . . . . . . . . . 9 HeteroatomSubstrates . . . . . . . . . . . . 15 Nitrogen . . . . . . . . . . . . . . 16 SulfurandSelenium . . . . . . . . . . . . 20 Phosphorus . . . . . . . . . . . . . 26 Oxygen . . . . . . . . . . . . . . 27 Halogens . . . . . . . . . . . . . . 29 AlkanesandSilanes . . . . . . . . . . . . 30 Alkanes . . . . . . . . . . . . . . 30 Silanes . . . . . . . . . . . . . . 36 OrganometallicCompounds . . . . . . . . . . . 37 COMPARISONWITHOTHERMETHODS . . . . . . . . . . 41 Allenes,Acetylenes,andArenes . . . . . . . . . . 41 [email protected] OrganicReactions,Vol.69,EditedbyLarryE.Overmanetal. 2007OrganicReactions,Inc.PublishedbyJohnWiley&Sons,Inc. 1 2 ORGANICREACTIONS HeteroatomSubstrates . . . . . . . . . . . . 42 AlkanesandSilanes . . . . . . . . . . . . 43 EXPERIMENTALCONDITIONS . . . . . . . . . . . 44 EXPERIMENTALPROCEDURES . . . . . . . . . . . 44 2-Hydroxy-2-methylpropanoic Acid[OxidationofanAlkynewithDMD(isol.)] 44 cis-Bicyclo[5.3.0]decan-2-one[OxidationofanAlkynewithTFD(isol.)] . . 45 6-Hydroxy-2,2-dimethyl-3-oxacyclohexanone [OxidationofanAllenewithDMD (isol.)] . . . . . . . . . . . . . . 45 6-Hydroxy-5,5-dimethyl-3-oxacyclohexanone [OxidationofanAllenewithDMD (isol.)] . . . . . . . . . . . . . . 46 2,5-Hexamethylene-1,4-dioxaspiro[2.2]pentane [DiepoxidationofaCyclicAllene withDMD(isol.)] . . . . . . . . . . . . 46 2,3-Epoxy-2,3-dihydro-2,3-dimethylbenzo[b]furan [EpoxidationofaBenzofuran withDMD-d (isol.)] . . . . . . . . . . . 46 6 1,2-Epoxyacenaphthene [EpoxidationofanArenewithDMD(isol.)] . . . 47 Bisbenzo[3(cid:1),4(cid:1)]cyclobuta[1(cid:1),2(cid:1):1,2:1(cid:1)(cid:1),2(cid:1)(cid:1):3,4]biphenyleno[1,8b-b:2,3-b(cid:1):4,4 a-b(cid:1)(cid:1)]trisoxirene[EpoxidationofanArenewithDMD(insitu)] . . . . 47 MethylBoc-β-(2,3-dihydro-2-oxo-indol-3-yl)alaninate [OxidationofanIndole withDMD(isol.)] . . . . . . . . . . . . 48 1-Nitrobutane[OxidationofaPrimaryAliphaticAminewithDMD(isol.)] . 48 1,3,5-Trinitrobenzene[OxidationofaPrimaryAromaticAminewithDMD(isol.)] 49 o-Nitroanisole[OxidationofaPrimaryAromaticAminewithDMD(insitu)] . 49 1-Oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine [OxidationofaHindered SecondaryAminewithDMD(isol.)] . . . . . . . . 49 PyridineN-Oxide,MethodA[OxidationofPyridinewithDMD(insitu)] . . 50 PyridineN-Oxide,MethodB[OxidationofPyridinewithDMD(isol.)] . . 50 Thiophene1,1-Dioxide[OxidationofThiophenewithDMD(isol.)] . . . 50 S-Ethyl-S-methyl-N-(acetyl)sulfoximine[OxidationofaSulfiliminewith . DMD(isol.)] . . . . . . . . . . . . . 51 MethylPhenylSulfoxide[OxidationofaThioetherwithDMD(isol.)] . . 51 Diethyl4-Nitrophenylphosphate [OxidationofaThiophosphatewithDMD(isol.)] 51 Tetraphenylselenophene1-Oxide[OxidationofaSelenophenewithDMD(isol.)] 52 1,6-Di-tert-butyl-2,2,5,5-tetramethyl-7,8-diselenabicyclo[4.1.1]octane 7-endo, 8-endo-Dioxide[OxidationofaSelenoetherwithDMD(isol.)] . . . . 52 Triphenylphosphine Oxide[OxidationofaPhosphinewithDMD(isol.)] . . 53 Singlet-OxygenGenerationbyOxidationofN,N-DimethylanilineN-Oxidewith DMD(isol.) . . . . . . . . . . . . . 53 [(2S,4S,5S)-5-Acetylamino-4-benzoyloxy-2-methoxycarbonyltetrahydropyran-2-yl] Propen-2-ylN-Acetyl-2(cid:1),3(cid:1)-di-O-acetyl-5(cid:1)-cytidylate[OxidationofaPhosphitetoa PhosphatewithDMD(isol.)] . . . . . . . . . . 53 1-[(Trifluoromethyl)sulfonyl]methylcyclohexene [OxidationofanIodo-alkanewith DMD(isol.)] . . . . . . . . . . . . . 54 trans-2-Iodocyclohexanol [OxidationofIodocyclohexanewithDMD(isol.)] . 54 (S)-4-Cyano-2,2-dimethyl-1,3-dioxalane [ConversionofaHydrazoneintoaNitrile withDMD(isol.)] . . . . . . . . . . . . 54 2-(2-Chloro-4-hydroxyphenyl)-2-phenylpropionitrile [TandemNuleophilic Addition/Conversion ofaNitrobenzeneintoaPhenolwithDMD(isol.)] . . 55 Methyl3-Phenyl-2,2-dihydroxy-3-oxopropionate [OxidationofaPhosphoranetoa KetoneHydratewithDMD(isol.)] . . . . . . . . . 55 Benzoin.MethodA[OxidationofaBenzylAlcoholtoanArylKetonewithDMD (isol.)] . . . . . . . . . . . . . . 56 (R)-Benzoin.MethodB[CatalyticAsymmetricOxidationofHydrobenzoin] . 56 2,3,22,23-Tetra-O-acetyl-25-hydroxybrassinolide [HydroxylationofaTertiary CarbonCenterwithTFD(isol.)] . . . . . . . . . 57 DIOXIRANEOXIDATIONSOFCOMPOUNDSOTHERTHANALKENES 3 1,3-Dihydroxyadamantane[DihydroxylationofAdamantanewithTFD(isol.)] . 57 Cycloheptanone[OxidationofaSecondaryAlcoholtoaKetoneunderInSitu CatalyticConditions] . . . . . . . . . . . 58 Methyl(S∗,S∗)-6-Ethyl-2-hydroxytetrahydropyran-2-carboxylate [Hydroxylation ofaSecondaryCarbonCenterunderInSituCatalyticConditions] . . . 58 (R)-Methylphenyl(1-naphthyl)silanol [HydroxylationofaSilanewithTFD(isol.)] 59 (η5-Pentamethylcyclopentadienyl)trioxorhenium [OxidationofaRheniumComplex withDMD(isol.)] . . . . . . . . . . . . 59 EthylPhenylpropiolate[OxidationofaFischerCarbeneComplexwithDMD (isol.)] . . . . . . . . . . . . . . 59 [Dicarbonyl(η5-pentamethylcyclopentadienyl)ferrio]-1,1-dihydroxydisilane [HydroxylationofanIron-ComplexedSilanewithDMD(isol.)] . . . 60 TABULARSURVEY . . . . . . . . . . . . . 60 Table1A.OxidationofAllenesandAlkynesbyIsolatedDioxiranes . . . 62 Table1B.OxidationofAllenesandAlkynesbyInSituGeneratedDioxiranes . 88 Table2A.OxidationofArenesandHeteroarenesbyIsolatedDioxiranes . . 91 Table2B.OxidationofArenesandHeteroarenesbyInSituGeneratedDioxiranes . 122 Table3A.NitrogenOxidationbyIsolatedDioxiranes . . . . . . 124 Table3B.SulfurandSeleniumOxidationbyIsolatedDioxiranes . . . . 157 Table3C.PhosphorusOxidationbyIsolatedDioxiranes . . . . . 186 Table3D.OxygenOxidationbyIsolatedDioxiranes . . . . . . 188 Table3E.HalogenOxidationbyIsolatedDioxiranes . . . . . . 192 Table3F.NitrogenOxidationbyInSituGeneratedDioxiranes . . . . 196 Table3G.SulfurOxidationbyInSituGeneratedDioxiranes . . . . . 203 Table3H.OxidationofOtherHeteroatomsbyInSituGeneratedDioxiranes . . 209 Table4A.C=YOxidationbyIsolatedDioxiranes . . . . . . . 210 Table4B.C=YOxidationbyInSituGeneratedDioxiranes . . . . . 229 Table5A.C–HOxidationbyIsolatedDioxiranes . . . . . . . 231 Table5B.RegioselectiveC–HOxidationbyIsolatedDioxiranes . . . . 294 Table5C.C–HOxidationbyInSituGeneratedDioxiranes . . . . . 301 Table5D.AsymmetricC–HOxidationbyInSituGeneratedOpticallyActive . Dioxiranes . . . . . . . . . . . . . . 311 Table5E.Si–HOxidationbyIsolatedDioxiranes . . . . . . . 313 Table6.OxidationofOrganometallicsbyIsolatedDioxiranes . . . . 315 Table7.MiscellaneousOxidationsbyIsolatedDioxiranes . . . . . 333 REFERENCES . . . . . . . . . . . . . . 335 ACKNOWLEDGMENTS Generous financial support from the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm “Peroxidchemie: Mechanistische und Pra¨parative AspektedesSauerstofftransfers” and Sonderforschungsbereich SFB 347 “Selek- tiveReaktionenMetall-aktivierterMoleku¨le”), the Fonds derChemischenIndus- trie, the NIH-MBRS Program (Grant S06 GM 08194), the Welch Foundation (Grant AX-1593), and the DAAD (Deutscher Akademischer Austauschdienst) is gratefully appreciated. The authors also thank Dr. Chantu R. Saha-Mo¨ller and Mrs. Ana-Maria Krause for their help in preparing the tabular and graphical material. 4 ORGANICREACTIONS INTRODUCTION Epoxidations, heteroatom oxidations, and Y–H insertions constitute the best investigated oxidations by dioxiranes. An overview of these transformations is displayed in the rosette of Scheme 1. These preparatively useful oxidations have been extensively reviewed during the last decade.1–14 In a previous chapter,15 we presented the epoxidation of double bonds [π bonds in simple alkenes and those functionalized with electron donors (ED), electron acceptors (EA), and with both ED and EA substituents; case 1 in the rosette] with either isolated or in situ generated dioxiranes. The recent developments in the dioxirane-mediated asymmetric epoxidation have also been extensively covered there.15 The present chapter concerns the remaining oxidations in the rosette of Scheme 1, that is, epoxidation of the double bonds in the cumulenes, such as allenes (transforma- tion2),acetylenes(transformation3),andarenes(transformation4);theoxidation of heteroatom functionalities, mainly lone pairs on sulfur (transformation 5), on nitrogen (transformations 6 and 7), and on oxygen as the deoxygenation of N-oxides (transformation 8); the oxidation of C=Y functionalities (e.g., trans- formation 9), Y–H insertions (σ bonds) such as C–H in alkanes (transformation 10) and Si–H in silanes (transformation 11); and the oxidation of organometallic substrates including metal (transformation 12) and ligand-sphere oxidation. Np O MnV (salen) Ph O Si OH Me 12 11 1 O Ph Np MnIII OH 10 PhSi H(salen) 2 O Ph Me H (cid:127) O O N2 O 9 3 Ph Ph Ph Ph O O HO OH N+ 8 O– NMe 4 3 SAr 1O2 + O O NH N 7 2 5 6 Me Me O N Me S(O)Ar or SO2Ar NO 2 Scheme 1. An overview of dioxiraneoxidations(Np=1-naphthyl). DIOXIRANEOXIDATIONSOFCOMPOUNDSOTHERTHANALKENES 5 MECHANISM Allenes, Alkynes, and Arenes Although the products of the dioxirane oxidation of allenes, alkynes, and arenes are usually more complex than those of the epoxidation of simple C=C double bonds, the initial step of the oxidation is usually epoxidation. Therefore, thesamemechanismthathasbeenextensivelydiscussedinthepreviouschapter15 also applies in these reactions. The oxygen transfer proceeds with complete retention of the initial olefin configuration through the concerted spiro transi- tion state.15 An example is shown in Eq. 1, in which the oxidation of the chiral alleneproceedsinnearlyquantitativeyield(95%)withpreservationofthestarting allene configuration in the spiro-bisepoxide.16 O H O O H (cid:127) (95%) (Eq. 1) H acetone, K2CO3, H O rt, 20 min Since the initial epoxidation products of the allenes, alkynes, and arenes are usually labile substances, they may undergo subsequent reactions, which include further oxidation by dioxirane other than epoxidation. For example, in the dimethyldioxirane (DMD) oxidation of the phenanthrene derivative in Scheme 2,17 the second oxidation by DMD involves C–H insertion instead of epoxidation. O O O (77%) acetone OH O epoxidation C-H insertion OH rearrangement O (100%) OH O Scheme 2. DMD oxidationof 9-hydroxyphenanthrene. Heteroatom Substrates Throughadetailedstudyofthecompetitiveoxidationofthesulfideversussulf- oxide functionalities in thianthrene 5-oxide (SSO),18 a pronounced electrophilic character has been demonstrated for DMD and methyl(trifluoromethyl)dioxirane (TFD).19,20 Thus,dioxiranesprefertooxidizethesulfideoverthesulfoxidefunc- tionality, a typical behavior of an electrophilic oxidant (Scheme 3). Also, the 6 ORGANICREACTIONS OS OO CCHH33 (CF3) OS + O S O S S S O SSO (major) (minor) Scheme 3. Competitive oxidationof the sulfide vs. sulfoxide functionalitiesin thianth- rene-5-oxide (SSO) by the dioxiranesDMDand TFD. kinetic data6 for the oxidation of sulfides and sulfoxides have revealed the elec- trophilic character of dioxiranes. Thus, the heteroatom oxidations by dioxirane aregenerallyexplained in termsof aS 2-typeattackof theheteroatom lonepair N on the dioxirane peroxide σ∗-orbital.21,22 A possible single-electron-transfer (SET) mechanism in N-oxidations23,24 has been discounted21 on the basis of kinetic experiments by comparing the relative rates of oxygen transfer by DMD with those of alkylation by methyl iodide. For the latter, an S 2 mechanism unequivocally applies. Similar reactivities (linear N correlationofrates)forN-oxidationalsoestablishtheS 2pathwayfordioxirane N oxidations.ThisconclusionissupportedbyakineticstudyoftheDMDoxidation of substituted N,N-dimethylanilines.25 The heterolytic mechanism is presumably also valid for a variety of oxygen- type nucleophiles, e.g., amine N-oxides, ClO−, HO−, HOO−, RO−, ROO−, RC(O)OO−, and −OS(O) OO−, which all catalyze the decomposition of dioxi- 2 ranes with the evolution of molecular oxygen.26,27 A typical case is illustrated with 4-dimethylaminopyridine N-oxide in Scheme 4.26 The chemiluminescence emitted by the generated singlet oxygen confirms the heterolytic nature of the dioxiranedecomposition.26 Furthersupportforthismechanismhasbeenprovided by theoretical work, from which it was concluded that the oxidation of primary amines by DMD does not proceed by a radical process.28 O O S 2 N NMe 2 NMe 2 S 2 Me2N N O– + O O N N 1O2 + O O N O O 3O 2 hν (1268 nm) Scheme 4. S 2 Mechanismfor the N-oxide-induceddecompositionof DMD. N DIOXIRANEOXIDATIONSOFCOMPOUNDSOTHERTHANALKENES 7 Alkanes and Silanes Two mechanisms have been suggested for the insertion of an oxygen atom into the Y–H bond of alkanes and silanes. Abundant evidence, which includes kinetics,29 kineticisotopeeffects,30 andstereoselectivity,31 allunequivocallysup- port a concerted oxenoid-type mechanism (Figure 1). Nonetheless, radical reactivity has been observed recently and interpreted in terms of the dioxirane diradical as the active oxidant, in particular, the so- called“molecule-inducedhomolysis.”32–35Ithasalsobeenproposed36thatalkane hydroxylationmayproceedbyarate-determiningoxygeninsertionintothealkane C–Hbondtogenerateacagedradicalpair,followedbyveryfastcollapse(oxygen rebound) to hydroxylated products (Scheme 5). That hydroxylation of (R)-2-phenylbutane proceeds with 100% retention to furnish (S)-2-phenylbutan-2-ol for both DMD37 and TFD31 sheds serious doubt on the involvement of out-of-cage radical intermediates in such C–H oxidations (Eq. 2). O O k Et H + slow Ph (R) =/ H H k = 1011s–1 H rot O O O O O O Et Et Ph Ph Ph Et (S) radical pair (R) radical pair k k > 1011s–1 conc reb fast k diff Et OH radical chain Et OH + HO Et Ph Ph Ph (S) (S) (R) Scheme 5. Concerted oxenoid-type (k ) vs. oxygen-rebound (k ) mechanisms for conc reb C–H insertionby DMD. H DMD or TFD HO (>90%) Ph Et Ph Et (Eq. 2) (R) 70.9% ee (S) 71.0% ee R R R δ+ H O O CH3(CF3) δ– Figure 1. Concerted oxenoid-typetransitionstate for C–H insertion.
Description: