ebook img

Organic reaction mechanisms 2013: an annual survey covering the literature dated January to December 2013 PDF

713 Pages·2016·19.2 MB·English
by  KnipeA. C
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Organic reaction mechanisms 2013: an annual survey covering the literature dated January to December 2013

⋅ ORGANIC REACTION MECHANISMS 2013 ORGANIC REACTION ⋅ MECHANISMS 2013 An annual survey covering the literature dated January to December 2013 Editedby A.C.Knipe University ofUlster Northern Ireland Thiseditionfirstpublished2017 ©2017JohnWiley&Sons,Ltd Registeredoffice JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UnitedKingdom Fordetailsofourglobaleditorialoffices,forcustomerservicesandforinformationabouthowtoapply forpermissiontoreusethecopyrightmaterialinthisbookpleaseseeourwebsiteatwww.wiley.com. Therightoftheauthortobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewiththe Copyright,DesignsandPatentsAct1988. Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbytheUKCopyright,DesignsandPatentsAct1988,withoutthepriorpermissionof thepublisher. Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay notbeavailableinelectronicbooks. Designationsusedbycompaniestodistinguishtheirproductsareoftenclaimedastrademarks.Allbrand namesandproductnamesusedinthisbookaretradenames,servicemarks,trademarksorregistered trademarksoftheirrespectiveowners.Thepublisherisnotassociatedwithanyproductorvendor mentionedinthisbook. LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Itissoldontheunderstandingthatthepublisherisnot engagedinrenderingprofessionalservicesandneitherthepublishernortheauthorshallbeliablefor damagesarisingherefrom.Ifprofessionaladviceorotherexpertassistanceisrequired,theservicesofa competentprofessionalshouldbesought. Theadviceandstrategiescontainedhereinmaynotbesuitableforeverysituation.Inviewofongoing research,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedto reviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceof equipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusage andforaddedwarningsandprecautions.ThefactthatanorganizationorWebsiteisreferredtointhiswork asacitationand/orapotentialsourceoffurtherinformationdoesnotmeanthattheauthororthepublisher endorsestheinformationtheorganizationorWebsitemayprovideorrecommendationsitmaymake. Further,readersshouldbeawarethatInternetWebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Nowarrantymaybecreatedorextendedbyany promotionalstatementsforthiswork.Neitherthepublishernortheauthorshallbeliableforanydamages arisingherefrom. LibraryofCongressCatalogCardNumber66-23143 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary PrintISBN:978-1-118-70786-9 Typesetin10/12ptTimesbySPiGlobal,Chennai,India. 10987654321 Contributors C.T.BEDFORD DepartmentofChemistry,UniversityCollegeLondon, 20GordonStreet,London,WC1H0AJ,UK M.L.BIRSA FacultyofChemistry,“Al.I.Cuza”UniversityofIasi, Bd.CarolI,11,Iasi700506,Romania S.CHASSAING CentreNationaldelaRechercheScientifique,Université deToulouse,Toulouse,France CentrePierrePotier,ITAV,UniversitédeToulouse, F-31106Toulouse,France INSA,F-31400Toulouse,France J.M.COXON DepartmentofChemistry,UniversityofCanterbury, Christchurch,NewZealand M.R.CRAMPTON DepartmentofChemistry,UniversityofDurham,South Road,Durham,DH13LE,UK N.DENNIS 3CamphorlaurelCourt,Stretton,Brisbane,Queensland 4116,Australia E.GRAS LaboratoiredeChimiedeCoordination,CentreNational delaRechercheScientifique,205RoutedeNarbonne 31077,ToulouseCedex4,France D.A.KLUMPP DepartmentofChemistry,NorthernIllinoisUniversity, DeKalb,IL60115,USA A.C.KNIPE FacultyofLifeandHealthSciences,UniversityofUlster, Coleraine,NorthernIreland P.KOCˇOVSKY´ DepartmentofOrganicChemistry,ArrheniusLaboratory, StockholmUniversity,StockholmSE10691,Sweden DepartmentofOrganicChemistry,CharlesUniversity, 12843Prague2,CzechRepublic R.N.MEHROTRA DepartmentofChemistry,JaiNarainVyasUniversity, A-85SaraswatiNagar,Jodhpur342005,India B.A.MURRAY DepartmentofScience,InstituteofTechnology,Tallaght (ITTDublin),DublinD24FKT9,Ireland K.C.WESTAWAY DepartmentofChemistryandBiochemistry,Laurentian University,Sudbury,OntarioP3E2C6,Canada v Preface Thepresentvolume,theforty-ninthintheseries,surveysresearchonorganicreaction mechanismsdescribedintheavailableliteraturedated2013.Inordertolimitthesizeof thevolume,itisnecessarytoexcludeorrestrictoverlapwithotherpublicationswhich reviewspecialistareas(e.g.photochemicalreactions,biosynthesis,enzymology,electro- chemistry,organometallicchemistry,surfacechemistryandheterogeneouscatalysis).In ordertominimizeduplication,whileensuringacomprehensivecoverage,theeditorcon- ductsasurveyofallrelevantliteratureandallocatespublicationstoappropriatechapters. Whileaparticularreferencemaybeallocatedtomorethanonechapter,itisassumedthat readerswillbeawareofthealternativechapterstowhichaborderlinetopicofinterest mayhavebeenpreferentiallyassigned. In view of the considerable interest in application of stereoselective reactions to organicsynthesis,wenowprovideindication,inthemargin,ofreactionswhichoccur withsignificantdiastereomericorenantiomericexcess(deoree). WewelcomeProfDougKlumppasauthorofthecarbocationchapter.HereplacesProf BobMcClellandwhohasprovidedexpertreviewsofthisareasinceORM2000andnow deservessomewell-earnedrespite.Wearenaturallypleasedtohaveretainedmembers ofourcurrentteamofexperiencedauthorsforallotherchaptersofORM2013. Although every effort has again been made to reduce the delay between title year and publication date, circumstances beyond the editor’s control resulted in late arrival of a substantial chapter which made it impossible to regain our optimum production schedule. I wish to thank the staff of John Wiley & Sons and our expert contributors for their effortstoensurethatthereviewstandardsofthisseriesaresustained.Weareawareof demands of informatic evolution which require periodic adjustment of our procedures andarenotalwayshelpful! A.C.K. vii Contents 1. ReactionsofAldehydesandKetonesandTheirDerivatives byB.A.Murray....................................................... 1 2. Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and Their DerivativesbyC.T.Bedford........................................... 67 3. OxidationandReductionbyR.N.Mehrotra............................ 91 4. CarbenesandNitrenesbyE.GrasandS.Chassaing..................... 177 5. AromaticSubstitutionbyM.R.Crampton.............................. 217 6. CarbocationsbyD.A.Klumpp........................................ 273 7. NucleophilicAliphaticSubstitutionbyK.C.Westaway.................. 321 8. CarbanionsandElectrophilicAliphaticSubstitutionbyM.L.Birsa..... 361 9. EliminationReactionsbyM.L.Birsa.................................. 383 10. AdditionReactions:PolarAdditionbyP.Kocˇovsky´..................... 393 11. AdditionReactions:CycloadditionbyN.Dennis ....................... 483 12. MolecularRearrangementsbyJ.M.Coxon............................ 519 AuthorIndex......................................................... 609 SubjectIndex........................................................ 651 ix CHAPTER1 Reactions of Aldehydes and Ketones and Their Derivatives B.A.Murray DepartmentofScience,InstituteofTechnology,Tallaght(ITTDublin), Dublin,Ireland FormationandReactionsofAcetalsandRelatedSpecies . . . . . . . . . . . . . . 2 ReactionsofGlucosides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ReactionsofKetenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 FormationandReactionsofNitrogenDerivatives. . . . . . . . . . . . . . . . . . . 7 Imines:Synthesis,andGeneralandIminiumChemistry . . . . . . . . . . . . . 7 Mannich,Mannich-typeandNitro-MannichReactions. . . . . . . . . . . . . . 8 Other‘Name’ReactionsofImines . . . . . . . . . . . . . . . . . . . . . . . . 11 SynthesisofAzacyclopropanesfromImines . . . . . . . . . . . . . . . . . . . 13 AlkylationsandAdditionsofOtherC-NucleophilestoImines . . . . . . . . . . 13 Arylations,AlkenylationsandAllylationsofImines . . . . . . . . . . . . . . . 14 MiscellaneousAdditionstoImines . . . . . . . . . . . . . . . . . . . . . . . . 15 ReductionofImines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 OtherReactionsofImines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Oximes,HydrazonesandRelatedSpecies . . . . . . . . . . . . . . . . . . . . 19 C–CBondFormationandFission:AldolandRelatedReactions . . . . . . . . . . 23 ReviewsofAldolsandGeneralReviewsofAsymmetricCatalysis . . . . . . . 23 AsymmetricAldolsCatalysedbyProlineandItsDerivatives . . . . . . . . . . 24 AsymmetricAldolsCatalysedbyOtherOrganocatalysts . . . . . . . . . . . . . 24 TheMukaiyamaAldol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 OtherAsymmetricAldols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TheHenry(Nitroaldol)Reaction . . . . . . . . . . . . . . . . . . . . . . . . . 28 TheBaylis–HillmanReactionandItsMorita-variant. . . . . . . . . . . . . . . 29 OtherAldolandAldol-typeReactions . . . . . . . . . . . . . . . . . . . . . . 29 AllylationandRelatedReactions . . . . . . . . . . . . . . . . . . . . . . . . . 30 TheHorner–Wadsworth–EmmonsReactionandRelatedOlefinations. . . . . . 32 Alkynylations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 StetterReaction,BenzoinCondensationandPinacolCoupling . . . . . . . . . 34 MichaelAdditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 MiscellaneousCondensations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 OtherAdditionReactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 AdditionofOrganozincs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Arylations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 AdditionofOtherOrganometallics . . . . . . . . . . . . . . . . . . . . . . . . 45 TheWittigReaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 OrganicReactionMechanisms2013,FirstEdition.EditedbyA.C.Knipe. ©2017JohnWiley&Sons,Ltd.Published2017byJohnWiley&Sons,Ltd. 1 2 OrganicReactionMechanisms2013 Hydrocyanation,CyanosilylationandRelatedAdditions . . . . . . . . . . . . . 47 𝛼-AminationsandRelatedReactions . . . . . . . . . . . . . . . . . . . . . . . 48 MiscellaneousAdditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Enolization,ReactionsofEnolatesandRelatedReactions . . . . . . . . . . . . . . 50 𝛼-Halogenation,𝛼-AlkylationandOther𝛼-Substitutions. . . . . . . . . . . . . 51 OxidationandReductionofCarbonylCompounds . . . . . . . . . . . . . . . . . . 51 OxidationofAldehydestoAcids . . . . . . . . . . . . . . . . . . . . . . . . . 51 OxidationofAldehydestoAmides,EstersandRelatedFunctionalGroups . . . 51 Baeyer–VilligerandOtherOxidationReactionsofKetones . . . . . . . . . . . 53 MiscellaneousOxidativeProcesses . . . . . . . . . . . . . . . . . . . . . . . . 53 ReductionReactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 StereoselectiveReductionReactions . . . . . . . . . . . . . . . . . . . . . . . 55 OtherReactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 FormationandReactionsofAcetalsandRelatedSpecies Equilibriafortheformationofhemiacetalsfromeightisomerichexanalshavebeenmea- sured in methanol, and compared with the steric environment around the aldehyde.1 Kineticstudieshavealsobeencarriedout,andthesesuggestanearlyTS. Catalytic asymmetric acetalization of aldehydes has been demonstrated, using large chiralBINOL-derivedphosphoricacidcatalysts:theseareproposedtogenerateconfined (cid:2) chiralmicroenvironments.2 ee A new enantioselective arylation of enecarbamates (1) has been developed, using a quinone imine acetal (2) as a functionalized surrogate aromatic, and an axially chiral BINAP-dicarboxylic acid catalyst.3 The useful 𝛼-amino-𝛽-aryl ether products (3) are (cid:2)ee formedinupto99%ee,anddesoften>90%,andarefurthertransformableintochiral (cid:2) de 𝛽-aryl amines and 𝛼-aryl esters. Mechanistically revealing observations include: (i) trans-enecarbamate switches the sense of asymmetric induction; (ii) the NH in (1) is critical, presumably for hydrogen bonding to catalyst: the NMe starter fails; and (iii)crossoverexperimentsfail,implicatinganintramolecularroute.Theproposedfirst step is a highly stereoselective C–C bond formation followed by aromatization (with eliminationofR3-OH),thenre-additionofR3-OHtothesidechain. NR2 NHR2 NHBoc + NHBoc R1 ∗∗ ∗∗ OR3 R3O OR3 OR3 R1 (1) (2) (3) A stable N,N′-diamidocarbene has been used to activate molecules with X–X homonuclear single bonds (where X=Br, O, S, C).4 Br yields a substituted tetrahy- (cid:2) 2 de dropyrimidinium salt, benzoyl peroxide yields diamidoacetal product, and various 1ReactionsofAldehydesandKetonesandTheirDerivatives 3 sulfides give the corresponding diamidothioacetals. For X=C, insertion into the (O)C–C(O) bond of diones was observed, and for cyclopropenone, insertion into the (O)–C–Cbondoccurred. meta- and para-Substituted benzaldehyde acetals, X-C H –CH(OBu) , have been 6 4 2 oxidized by N-bromosuccinimide in acetonitrile, to give the corresponding esters (and alkyl bromide).5 Rates have been measured by the iodometric method, over a range of temperature. A primary kinetic isotope effect, k /k , is observed, indicating H D rate-determining C–H cleavage; a Hammett 𝜎 value of 1⋅4 and activation parameters aregiven. KineticsoftheoxidationofarangeofaromaticacetalsbyN-chloronicotinamidehave beenmeasuredinacetonitrile.6 Thecombinationoftriethylsilyltriflatewitheither2,6-dimethylpyridine(2,6-lutidine) or 2,4,6-trimethylpyridine (2,4,6-collidine) effectively deprotects acetals of aldehydes undermild,neutralconditions,whileleavingthoseofketonesunaffected.7Pyridinium- typesaltintermediatesareproposed. ThePrinsreactionhasbeenmodelledusingDFT(densityfunctionaltheory),usingan alkene(RCH=CH ,R=MeorPh),aformaldehydedimer,andaproton-watercluster, 2 H O+(H O) .Bothalkenesfeatureaconcertedpathtogivethe1,3-diols.Anunprece- 3 2 13 dentedhemiacetalintermediate,HO–CH –O–CH(R)–CH CH –OH,wasthenidenti- 2 2 2 fied:itundergoesringclosuretothe1,3-dioxaneproduct.8 Gas-phasePrinsreactionof formaldehyde dimer with alkene has been studied computationally: it proceeds via a 𝜋-complex(withoutformationofanyintermediate𝜎-complex).9 DFTcalculationshavebeenusedtostudythekineticandthermodynamicparameters of the oligomerization of formaldehyde in neutral aqueous solution: linear and cyclic oligomers up to tetramer were examined, and implications for enolization and aldol reactionswerealsoexamined.10 A series of new naphtha[1,3]oxazino[2,3-𝛼]isoquinolines (4, R1=H, Me, Ph, Ar; R2=H, OMe) have been prepared from 1-aminomethyl-2-naphthols and 3,4-dihydro- isoquinolines.11 The predominant diastereomer is trans- (at the 7a- and 15-positions), (cid:2) de but a surprising inversion at nitrogen can be observed by NMR (nuclear magnetic resonance). Computations support ring-opening at the C(7a)-oxygen bond, giving an iminium-phenolateintermediate. R2 R1 15 N 7a R2 O (4) Forotherreportsofacetals,seethesectiontitled‘MiscellaneousOxidativeProcesses’ later. 4 OrganicReactionMechanisms2013 ReactionsofGlucosides ProtonaffinitiesandpK shavebeencalculatedforvarioustautomersofd-glucoseandd- a fructose,andcomparefavourablywithexperimentalmeasurementsofthepH’sofsugar solutionsinwater.12 A review surveys the catalysts and mechanistic approaches to alter the reactivity of hydroxylgroupsincarbohydrates,thusfacilitatingregioselectivemanipulation.13 (cid:2) de exo-Glycals[e.g.,(Z)-5and(E)-5]areglycosideswithanexocyclicenolethernextto theoxygenofthering,areusefulsynthons,andsomehavebiochemicalapplicationsin theirownright.However,the(E)-isomershavebeeninaccessibletodate.Inatreatment ∘ ofthe(Z)-specieswithstrongbase(aimedatfurtherfunctionalization),t-BuLiat−78 C surprisingly gave 34% conversion to the (E)-exo-glycal [(E)-5] with no by-products. A vinyl anionic intermediate was confirmed. Optimum isomerization employed 3mol ∘ LiHDMSatambienttemperaturefor10min(todeprotonate),followedby−100 Cfor 2h,whichfavoursthe(E)-isomer.14 OBn O OBn P TBSOO TBSOO Base O TBSO P TBSO OBn BnO TBSO TBSO (Z-5) (E-5) Several formic acid derivatives of a protected glucose have been prepared: O-perbenzoylated C-(𝛽-d-glucopyranosyl)-formimidate [6, R=C(=NH)OEt], -form- amidine [R=C(=NH)–NH ], -formamidrazone [R=C(=NH–NHX)–NH , X=H or 2 2 Ts]and-formylchloride(R=COCl).15Designedtoleadto1,2,4-triazolederivativesof the sugar, they unexpectedly also gave 1,3,4-oxadiazole derivatives. DFT calculations havebeenusedtoinvestigatethealternativering-formingpathways. OBz O BzO BzO R OBz (6) Chemo-andregio-selectivefunctionalizationofnon-protectedcarbohydrateshasbeen developed,allowingselectivethiocarbonylation,acylationandsulfonylationofapartic- ular carbohydrate in the presence of structurally similar carbohydrates, for example, anomers.16 For example, sugar anomers (7) can be functionalized in the 6-position in upto99%yieldand99%𝛽-selectivity,usingMe SnCl ascatalyst.Justswitchingthe 2 2 catalysttoBu SnCl givescomparableyieldsand𝛼-selectivitiesinthe2-position.The 2 2 mechanismsarediscussedintermsofthestericapproachesofthecatalystsatthe1,2- versus4,6-sites.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.