ebook img

Organic matter turnover along a nutrient gradient in the Everglades PDF

183 Pages·1996·6.5 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Organic matter turnover along a nutrient gradient in the Everglades

ORGANICMATTERTURNOVERALONGANUTRIENTGRADIENT INTHEEVERGLADES By WILLIAMF.DEBUSK ADISSERTATIONPRESENTEDTOTHEGRADUATESCHOOL OFTHEUNIVERSITYOFFLORIDAINPARTIALFULFILLMENT OFTHEREQUIREMENTSFORTHEDEGREEOF DOCTOROFPHILOSOPHY UNIVERSITYOFFLORIDA 1996 UNIVERSITYOFFLORIDALIBRARIES ACKNOWLEDGEMENTS ThisresearchwassupportedinpartbytheU.S.DepartmentofAgriculture NationalResearchInitiativeCompetitiveGrantsprogram(GrantNo.92-37102-7542).The grantwasawardedtoLouisianaStateUniversityandUniversityofFlorida.Graduate FellowshipswerefundedinpartbytheUSDANationalNeedsFellowshipProgramfor studiesinthefieldofwaterscience.Ithankthosewhoselectedmeasarecipientofthis award.Thanksalsogotoallwhodonatedtheirassistance,supportandexpertise, especiallyDr.K.R.ReddyandMs.YuWang.Mostimportantly,thanksgotomywife Pattyforhermoral(and,ofcourse,financial)support. ii TABLEOFCONTENTS page ACKNOWLEDGEMENTS ii ABSTRACT v CHAPTERS 1 INTRODUCTION 1 Background 1 WetlandCarbonCycle 2 MicrobialEcology 8 FactorsAffectingDecompositionRate 9 ModelingDecompositionofHeterogeneousSubstrates 13 EcosystemModels 17 EvergladesStudySite 19 ObjectivesandScopeofResearch 21 2 ORGANICCMINERALIZATIONASAFUNCTIONOF NUTRIENTENRICHMENTANDHYDROLOGY 23 Introduction 23 MaterialsandMethods 26 Results 35 Discussion 51 SummaryandConclusions 61 3 TURNOVEROFORGANICCARBONPOOLSALONG THEWCA-2ANUTRIENTGRADIENT 62 Introduction 62 MaterialsandMethods 67 Results 74 Discussion 88 SummaryandConclusions 98 4 REGULATORSOFORGANICMATTERDECOMPOSITION ALONGTHEWCA-2ANUTRIENTGRADIENT 101 Introduction 101 MaterialsandMethods 105 Results 112 Discussion 134 SummaryandConclusions 141 iii 5 DETRTTALCARBONMODEL 143 Introduction 143 MaterialsandMethods 143 ResultsandDiscussion 155 Conclusions 161 6 SUMMARYANDCONCLUSIONS 163 LISTOFREFERENCES 167 BIOGRAPHICALSKETCH 176 iv AbstractofDissertationPresentedtotheGraduateSchool oftheUniversityofFloridainPartialFulfillmentofthe RequirementsfortheDegreeofDoctorofPhilosophy ORGANICMATTERTURNOVERALONGANUTRIENTGRADIENT INTHEEVERGLADES By WilliamF.DeBusk August,1996 Chairman: Dr.K.R.Reddy Co-chairman:Dr.J.W.Jones MajorDepartment: SoilandWaterScience Organicmatteraccumulationinwetlandsrepresentsapotentiallong-termsinkand sourcefororganiccarbon(C)andassociatednutrientsandcontaminants.Turnoverof organicCwasmeasuredinanutrient-impactedsawgrassandcattailmarshinEverglades WaterConservationArea2A(WCA-2A).Controlledlaboratoryincubationsanda microcosmstudywereconductedtodeterminepotentialratesofCmineralizationinplant litterandpeatalongagradientofphosphorus(P)enrichment.Fieldincubationsat10sites alongthenutrientgradientmeasuredinsituorganicmatterdecompositionratethroughout thefloodwater,litterandpeatprofile. OrganicCmineralizationinwetlandmicrocosmswassignificantlyenhancedby. interactiveeffectsofincreasedPavailabilityanddecreasingwatertable.Approximately 90%ofthevariabilityinpotentialorganicCmineralizationinpeatandplantlitter,measured underaerobicandanaerobicconditions,wasexplainedbytotalPandlignocellulosecontent oftheorganicsubstrate.Anaerobicmineralizationrateswere32%oftheratesmeasured underaerobicconditions.Insituorganicmatterdecompositionratewashigherinnutrient- enrichedareasofWCA-2Athaninthelow-nutrientinteriormarsh.Decompositionrate typicallywasatamaximuminthefloodwaterandlitterlayeranddecreasedwithdepthin thepeatprofile.Fieldstudiesprovidedevidencethatmicrobialdecomposersobtain nutrients,especiallyP,fromthesurroundingfloodwaterandsoilporewateraswellasfrom theorganicsubstrate. ResultsoflaboratoryandfieldstudiesindicatethatorganicCturnoverinWCA-2A isstronglyaffectedbyPavailability,although02availabilityisthemajorcontrollingfactor. AvailabilityofC(substratequality)andnitrogen(N)maylimitturnoverrateunderP- enrichedconditions. Experimentalfindingsfromthesestudiesprovideinsightintothe effectsofacceleratednutrientloadingonCcyclingandnetaccumulationoforganicmatter andnutrientsinwetlands. vi CHAPTER1 INTRODUCTION Background Organiccarbon(C)accumulationinwetlandsisthemassbalancebetweennet primaryproduction(Cfixation)andheterotrophicmetabolism(Cmineralization).Organic Cinplantlitter,peatorsoilorganicmatter(SOM)servesasthesourceofenergytodrive thedetritalfoodchaininwetlands.Mostoftheorganicmatterproducedinwetlandsis depositeddirectlyinthedetritalpool(Moranetal.,1989;Wetzel,1992),thusmicrobial decomposersplaythemajorroleinCcyclingandenergyflowinwetlands. Burialoforganicmatteraspeatprovidesameansforlong-termstorageofelements associatedwithorganicC,suchasnutrientsandheavymetals(Clymo,1983). Allochthonouscompoundsmaybeincorporatedintopeatandsoilorganicmatterthrough plantuptakeandsenescence,immobilizationwithinthesoilorganicmatrixby physical/chemicalprocessessuchasadsorption,occlusionandprecipitation,orthrough uptakebymicrobialdecomposers,withstorageeitherwithinlivingcellsormetabolicby- products.Onamuchbroaderscale,storageoforganicCinwetlandsoilisanimportant componentoftheglobalcarboncycleandthusmayimpactlarge-scale processessuchas globalwarmingandozonedepletion(HappellandChanton,1993;Whiting,1994). Underfavorableconditionsfororganicmatterdecomposition,storednutrientsor contaminantsmaybereleasedthroughmineralizationandthenrecycledintheecosystemor exportedfromthesystem(Ponnamperuma,1972;ReddyandD'Angelo,1994).Therateof netorganicmatteraccumulationisacriticaldeterminantofhowawetlandfunctionsasan ecologicalunitwithinthelandscape.Thestoragefunctionisequallyimportantfornatural 1 2 wetlands,especiallythosewhichrepresentanecotonebetweenterrestrialandaquatic ecosystems,andcreatedwetlands,whichmaybeusedfortreatmentofwastewateror runoff(Howard-Williams,1985). WetlandCarbonCycle FromaconceptualstandpointthecontinuumoforganicCtransformationsand flowswhichconstitutethewetlandCcyclemayberepresentedasacollectionofdiscrete storageunits,orcompartments,withsimultaneoustransferofmassamongthe compartments(Figure1-1).Thevegetationcomponent(includingmacrophyticandalgal species)representstransformersofinorganicC(C02)toorganicC(primaryproduction) throughtheprocessofphotosynthesis.Theheterotrophicmicrofaunarepresent transformersoforganicCbacktoinorganicCthroughcellularrespiration.OrganicCis storedinthesysteminliving(vegetationandmicrobialbiomass)andnon-living(deadplant tissue,plantlitter,peatorSOM)components.Non-livingstorageoforganicCis proportionallylargeinwetlandsinrelationtootherecosystems;thisstorageprovidesa substantialenergyreservetotheecosystemwhichisslowlyreleasedthroughthedetrital foodweb(Wetzel,1992). Peat Peatistheresultofbiological,chemicalandphysicalchangesimposedonplant remainsoveranextendedtimeperiod.Extentofdecomposition,orhumification,is qualitativelyassessedbytheextenttowhichplantstructureispreserved(Givenand Dickinson,1975;Clymo,1983).Numerousorganicconstituentshavebeenisolatedfrom peat,andmanyhavebeenusedinassessingthedegreeofdecomposition,althoughthese aregenerallyclassesandsubclassesoforganiccompoundsratherthandiscretecompounds. Forexample,peatmaterialsolubleinnon-polarsolventsisoftentermed"wax,"but includesnumerouscompoundsotherthanwaxes(estersoffattyacidswithalcoholsother 3 Figure1-1. Conceptualdiagramoftheorganiccarboncycleinawetlandecosystem. 4 thanglycerol)(Clymo.1983).Althoughasmallportionoftotalpeatmass,thisfractionis ofinterestwhendeterminingoriginsofpeat,sincefattyacidsoflipidscanbetraceddirectly orindirectlytotheoriginalplanttype(GivenandDickinson,1975;Borgaetal.,1994). Varioustypesofacidoralkalihydrolysisprocedureshavebeenusedtoisolatefractions roughlyequivalenttocellulose,hemicelluloseandlignin.Proportionsofcelluloseand hemicelluloseinplantlitterandpeattendtodecreasewithage(i.e.decompositionor "humification"),whilelignincontentincreaseswithage; thesethreestructuralgroupshave allbeenusedtocharacterizethedegreeofpeatdecomposition(Clymo,1983;Brownetal., 1988;Bohlinetal.,1989).Analysisofpeathasalsorevealedalargevarietyofphenolic compounds,manyofwhichmaybeextractedinthe"lignin"fraction.Concentrationof celluloseandligninismuchhigherinthefibrousfraction(remnantplantparts)ofpeat, whilehumicacidsaremuchmoreprevalentinthehumusfraction,althoughfulvicacids werefoundinsomewhatgreateramountsinthefibrousfraction(GivenandDickinson, 1975).Humicacidcontentoftemperatepeatsshowedatendencytoincreasewithageand depth,butpeatsintropicalandsubtropicalregions,includingtheEverglades,didnot reflectthistrend.Interpretationofchemicalanalyisisofpeatmaybecloudedbyuncertainty abouttheextenttowhichpresentcharacteristicsrepresenthistoricaldifferencesin vegetationversusvariabilityofdecompositionprocesses. Thedegreeofdecompositiongenerallyincreaseswithdepthofthepeat,therefore, theorganicmatterbecomesincreasinglyhumifiedatgreaterdepth(Clymo,1983). Assuminganhistoricallyconstantqualityandquantityofsubstrateadditiontothesoil,the rateofdecompositionisgreatestintheupperregionsoftheprofile,decreasingwithdepth. Thisisduenotonlytoantecedentdecompositionofsubstrateinthesoilprofile,buttothe verticalgradientofsoilenvironmentalparameters.Thelattercategorymayinclude dissolved concentration(insaturatedsoil),soilmoisture(unsaturatedsoil),andnutrient availability.Allofthesevariables,particularlythefirsttwo,arefunctionsofhydrologic conditions.Dissolved02concentrationisaffectedbothbytherateofdiffusionfromthe

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.