ebook img

Organic Ferroelectric Materials and Applications (Woodhead Publishing Series in Electronic and Optical Materials) PDF

642 Pages·2021·78.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Organic Ferroelectric Materials and Applications (Woodhead Publishing Series in Electronic and Optical Materials)

Organic Ferroelectric Materials and Applications Woodhead Publishing Series in Electronic and Optical Materials Organic Ferroelectric Materials and Applications Edited by Kamal Asadi An imprint of Elsevier WoodheadPublishingisanimprintofElsevier TheOfficers’MessBusinessCentre,RoystonRoad,Duxford,CB224QH,UnitedKingdom 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OX51GB,UnitedKingdom Copyright©2022ElsevierLtd.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronic ormechanical,includingphotocopying,recording,oranyinformationstorageandretrievalsystem, withoutpermissioninwritingfromthepublisher.Detailsonhowtoseekpermission,furtherinformation aboutthePublisher’spermissionspoliciesandourarrangementswithorganizationssuchasthe CopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions. ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher (otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchandexperience broadenourunderstanding,changesinresearchmethods,professionalpractices,ormedicaltreatment maybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluating andusinganyinformation,methods,compounds,orexperimentsdescribedherein.Inusingsuch informationormethodstheyshouldbemindfuloftheirownsafetyandthesafetyofothers,including partiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assume anyliabilityforanyinjuryand/ordamagetopersonsorpropertyasamatterofproductsliability, negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructions,orideas containedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-821551-7(print) ISBN:978-0-12-821552-4(online) ForinformationonallWoodheadpublications visitourwebsiteathttps://www.elsevier.com/books-and-journals Publisher:MatthewDeans AcquisitionsEditor:KaylaDosSantos EditorialProjectManager:RachelPomery ProductionProjectManager:AnithaSivaraj CoverDesigner:MilesHitchen TypesetbySTRAIVE,India Contents Contributors xi Preface xv 1 Introduction 1 Kamal Asadi 1.1 Piezoelectric phenomena 1 1.2 Pyroelectric phenomena 3 1.3 Ferroelectric phenomena 4 1.4 Conclusion 6 References 6 2 Ferroelectric charge-transfer complexes 7 Sachio Horiuchi,Shoji Ishibashi,and Yoshinori Tokura 2.1 Introduction 7 2.2 Background 10 2.3 Spin-Peierls transition system 15 2.4 Neutral-ionic transition (NIT) system 21 2.5 Miscellaneous approach to ferroelectric CT complexes 34 2.6 Summaryand outlook 38 Acknowledgment 39 References 39 3 Hydrogen-bonded organic molecularferroelectrics/ antiferroelectrics 47 Sachio Horiuchi,Shoji Ishibashi,and Yoshinori Tokura 3.1 Introduction 47 3.2 Prototropic ferroelectrics 49 3.3 Proton-transfer-type binarycomponents 60 3.4 Proton-transfer-type antiferroelectrics 69 3.5 Domain structures 74 3.6 Summaryand outlook 76 Acknowledgement 77 References 77 4 Synthesis ofpolyvinylidene fluoride andits copolymers 85 Maryam Bozorg, Aldo Altomare,and Katja Loos 4.1 Fluorinated polymers 85 4.2 Poly(vinylidene fluoride) 85 vi Contents 4.3 HomopolymerizationofPVDF 86 4.4 Vinylidene fluoride-based copolymers 89 4.5 Well-defined copolymers containing PVDF 91 4.6 Free radical polymerization 91 4.7 Polycondensation 92 4.8 Controlled radical polymerization 93 4.9 Atom transfer radical polymerization (ATRP) 93 4.10 Reversibleaddition-fragmentation chain transfer polymerization (RAFT)/macromolecular design via reversible addition-fragmentationof xanthate (MADIX) 97 4.11 Iodine transfer polymerization 100 4.12 Click chemistry 101 4.13 Grafting 101 4.14 Applications 103 4.15 Conclusion 106 References 107 5 Ferroelectric polymer blends for optoelectronic applications 113 Insung Bae and CheolminPark 5.1 Introduction 113 5.2 Thermodynamic preliminaries 114 5.3 Ferroelectric polymer blends: Morphologies, phase separations, and ferroelectric polarization behaviors 116 5.4 Optoelectronic applications with ferroelectric polymer blends 126 5.5 Self-assembled ferroelectric block copolymers 142 5.6 Concluding remarks 143 Acknowledgments 145 References 145 6 Nylons 153 Zhongbo Zhang and Lei Zhu 6.1 Introduction 153 6.2 Ferroelectricityinthe crystalline phase ofnylons 155 6.3 Ferroelectricityinamorphous phasesof nylons 162 6.4 Novel ferroelectric nylons: SHL and DHL 167 6.5 Summary andoutlook 177 References 179 7 Switchingdynamics in organicferroelectrics 185 Tim Cornelissen and MartijnKemerink 7.1 Introduction 185 7.2 Dipoleswitching inorganic ferroelectric materials 186 7.3 Analytical models 190 7.4 Monte Carlo models 204 7.5 Molecular dynamics 212 Contents vii 7.6 First-principle theory 217 7.7 Conclusion andoutlook 220 References 221 8 Piezoresponse force microscopyfor functional imaging of organic ferroelectrics 233 Haidong Lu andAlexei Gruverman 8.1 Introduction 233 8.2 Principles ofpiezoresponse forcemicroscopy 233 8.3 ChallengesofPFM characterizationin organic ferroelectrics 236 8.4 ApplicationofPFM technique toorganic ferroelectrics 237 8.5 Conclusion andoutlook 259 References 259 9 Dielectric spectroscopy offerroelectric polymers 263 Valentin V. Kochervinskii and InnaA. Malyshkina 9.1 Introduction 263 9.2 Methodological aspects 264 9.3 The effect ofcrystaland supramolecularstructure ofthe ferroelectric polymersontheir dielectric properties 268 9.4 Dielectricproperties of textured ferroelectric films 283 9.5 Peculiarities of dielectric relaxationin ultrathin films 305 9.6 Space chargerelaxationand phase transitionsin heterogeneous ferroelectric polymers 319 References 343 10 Liquid structuring in fluoropolymer solutionsinducedby water 357 Jasper J.Michels, Hamed Sharifi Dehsari, MohammadMahdi Abolhasani,andKamal Asadi 10.1 Introduction 357 10.2 Some theoretical ingredients 358 10.3 Water vapor-induced demixing influoropolymer films 362 10.4 ControlledLLPS inelectrospun fluoropolymer fibers 366 10.5 Conclusions 372 References 372 11 Solutionprocessingofpiezoelectricunconventionalstructures 375 V.F. Cardoso, C.M. Costa, D.M. Correia, E.O. Carvalho, N. Per(cid:1)inka, P.M.Martins,R.M.Meira,T.Marques-Almeida,T.Rodrigues-Marinho, andS. Lanceros-Mendez 11.1 Introduction 375 11.2 Processingand applications ofunconventional structures 378 viii Contents 11.3 Final remarksand future trends 419 Acknowledgment 419 References 419 12 Polarization offerroelectric polymers through electrolytes 441 Negar Sani, MagnusBerggren, and Simone Fabiano 12.1 Introduction 441 12.2 Ferroelectric/electrolyte interface:The basic concept 442 12.3 Applications 445 12.4 Concluding remarks 452 References 453 13 Piezoelectric composites 457 Hamideh Khanbareh, Aatif Rasheed,and Jibran Khaliq 13.1 Introduction 457 13.2 Basic concepts 457 13.3 Critical review 458 13.4 Concluding remarks 467 Dedication 468 References 468 14 Ferroelectricpolymercompositesforcapacitiveenergystorage 477 Yao Zhou and QingWang 14.1 Introduction 477 14.2 Dielectricmaterials for capacitiveenergystorage 478 14.3 Ferroelectric polymer dielectrics for capacitive energy storage 479 14.4 Conclusion and perspective 494 References 496 15 Ferroelectric polymers for energy harvesting 503 ZhubingHan and QingWang 15.1 Introduction 503 15.2 Ferroelectric polymers 504 15.3 Piezoelectric nanogenerators 505 15.4 Pyroelectric nanogenerators 512 15.5 Triboelectric nanogenerators 515 15.6 Hybrid nanogenerator 517 15.7 Nanogenerators beyond PVDF 520 15.8 Conclusion 521 References 521 16 Electrocaloric effects inferroelectric polymers 535 Heng Cui, Wen He, Qibing Pei, and Rujun Ma 16.1 Introduction 535 16.2 Electrocaloric effect inferroelectric polymers 545 Contents ix 16.3 Electrocaloric effect inferroelectric polymer-based composites 557 16.4 Polymer-based electrocaloric effect devices 563 16.5 Outlook 565 References 565 17 Biomimetic biocompatibleferroelectric polymer materials with an activeresponseforimplantologyandregenerativemedicine 571 Oleg V. Gradov,Margaret A. Gradova, and ValentinV. Kochervinskii 17.1 Basic criteriafor biocompatibility of the implantable materials andtheir evolution from passive (since 1970) toactive ones 571 17.2 Surfacephysicsoftheimplantablematerialandbiointerfaceasa prerequisite of biocompatibility 574 17.3 Excitable membrane-mimetic materials with nonstationary reaction-diffusion properties for development of biocompatible biomimetic materials 577 17.4 Biocompatibilitycriteriaof ferroelectric polymersas a consequent ofbioferroelectricity 580 17.5 Electrophysical criteriafor active biocompatible biomimetic implants—From energyharvestingtoward reactivity 582 17.6 Excitability andmultiparametric active response ofsoft matter/polymer ferroelectric materials todifferent external stimuli 584 17.7 Implantable PVDF-based sensors andactuators within the framework of“artificial life” and self-organization concepts 587 17.8 Emergent biomimetic ferroelectric scaffolds assensorsand actuators for the feedback-controlled tissue morphogenesis 589 17.9 From PVDF-based sensing toacoustically guidedimplantable microfluidics and acoustofluidic micro total analysis systems 590 17.10 Surface electrocapillary effect and implantable ferroelectric thread-based microfluidics 592 17.11 Conclusions 593 Acknowledgments 594 References 594 Index 621

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.