ebook img

Organelles in Disease 185 PDF

278 Pages·2023·8.633 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Organelles in Disease 185

Stine Helene Falsig Pedersen Diane L. Barber   Editors Organelles in Disease 185 Reviews of Physiology, Biochemistry and Pharmacology Volume 185 Editor-in-Chief StineHelene FalsigPedersen,DepartmentofBiology,UniversityofCopenhagen, Copenhagen,Denmark SeriesEditors DianeL.Barber,DepartmentofCellandTissueBiology,UniversityofCalifornia SanFrancisco,SanFrancisco,CA,USA EmmanuelleCordat,DepartmentofPhysiology,UniversityofAlberta,Edmonton, Canada MayumiKajimura,DepartmentofBiochemistry,KeioUniversity,Tokyo,Japan JensG.Leipziger,DepartmentofBiomedicine,AarhusUniversity,Aarhus,Denmark MarthaE.O’Donnell,DepartmentofPhysiologyandMembraneBiology,Univer- sityofCaliforniaDavisSchoolofMedicine,Davis,USA LuisA.Pardo,MaxPlanckInstituteforExperimentalMedicine,G€ottingen,Germany Nicole Schmitt, Department of Biomedical Sciences, University of Copenhagen, Copenhagen,Denmark ChristianStock,DepartmentofGastroenterology,HannoverMedicalSchool,Han- nover,Germany The highly successful Reviews of Physiology, Biochemistry and Pharmacology continuetoofferhigh-quality,in-depthreviewscoveringthefullrangeofmodern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aimstofilter,highlightandreviewthelatestdevelopmentsintheserapidlyadvanc- ingfields. 2021ImpactFactor:7.500,5-YearImpactFactor:8.212 2021EigenfaktorScore:0.00043,ArticleInfluenceScore:1.394 (cid:1) Stine Helene Falsig Pedersen Diane L. Barber Editors Organelles in Disease Editors StineHeleneFalsigPedersen DianeL.Barber DepartmentofBiology SchoolofDentistry,DepartmentofCell UniversityofCopenhagen andTissueBiology KøbenhavnØ,Denmark UCSanFrancisco SanFrancisco,CA USA ISSN0303-4240 ISSN1617-5786 (electronic) ReviewsofPhysiology,BiochemistryandPharmacology ISBN978-3-031-22594-9 ISBN978-3-031-22595-6 (eBook) https://doi.org/10.1007/978-3-031-22595-6 © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature SwitzerlandAG2023 Chapter“LipidDropletsinCancer”islicensedunderthetermsoftheCreativeCommonsAttribution4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details, see license informationinthechapter. Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseof illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsorthe editorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgements Contributionstothisvolumehavepartlybeenpersonallyinvited,withkindsupport of the series editors D.L. Barber, E. Cordat, M. Kajimura, J.G. Leipziger, M.E. O’Donnell,L.A.Pardo,N.Schmitt,andC.Stock v Contents GolgipHandIonHomeostasisinHealthandDisease. . . . . . . . . . . . . . 1 ElhamKhosrowabadiandSakariKellokumpu StressGranulesinCancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Min-SeokSongandEldaGrabocka LipidDropletsinCancer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 ToniPetan PatternsofCiliationandCiliarySignalinginCancer. . . . . . . . . . . . . . 87 AnnaA.Kiseleva,AnnaS.Nikonova,andEricaA.Golemis TargetingCancerLysosomeswithGoodOldCationicAmphiphilic Drugs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Anne-MarieEllegaard,PeterBach,andMarjaJa¨a¨ttela¨ Cancer-RelatedIncreasesandDecreasesinCalciumSignaling attheEndoplasmicReticulum-MitochondriaInterface(MAMs). . . . . . 153 AlbertoDanese,SaverioMarchi,VeronicaAngelaMariaVitto, LorenzoModesti,SaraLeo,MariuszR.Wieckowski,CarlottaGiorgi, andPaoloPinton EndosomalAcid-BaseHomeostasisinNeurodegenerativeDiseases. . . . 195 HariPrasadandRajiniRao EndolysosomalDisordersAffectingtheProximalTubuleoftheKidney: NewMechanisticInsightsandTherapeutics. .. . . . . . . . .. . . . . . . . .. . 233 BeatricePaolaFesta,MarineBerquez,DanielaNieri, andAlessandroLuciani Endo-LysosomalCationChannelsandInfectiousDiseases. . . . . . . . . . . 259 Yu-KaiChao,Sui-YuanChang,andChristianGrimm vii RevPhysiolBiochemPharmacol(2023)185:1–24 https://doi.org/10.1007/112_2020_49 ©TheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2020 Publishedonline:2September2020 Golgi pH and Ion Homeostasis in Health and Disease ElhamKhosrowabadiandSakariKellokumpu Contents 1 Introduction................................................................................... 2 2 MaintenanceofGolgipHHomeostasis...................................................... 2 2.1 GolgiAcidificationbytheV-ATPase................................................. 3 2.2 CounterIonTransport.................................................................. 3 2.3 ProtonLeakagePathway............................................................... 5 2.4 GolgiHomeostasisofOtherIons...................................................... 7 3 DiseasesAssociatedwithAlteredGolgipHandIonHomeostasis.......................... 8 3.1 AutosomalRecessiveCutisLaxaTypeII............................................. 8 3.2 Cancers................................................................................. 9 3.3 ViralInfections......................................................................... 10 3.4 MultigenerationalNon-syndromicIntellectualDisability(ID)........................ 11 3.5 AngelmanSyndromeandAutismSpectrumDisorders............................... 12 3.6 Hailey-HaileyDisease.................................................................. 13 3.7 CongenitalDisorderofGlycosylation2K(CDG2K).................................. 13 3.8 MenkesDiseaseandRelatedSyndromes.............................................. 14 4 PerspectivesandKeyQuestions.............................................................. 14 References......................................................................................... 17 Abstract Maintenance of the main Golgi functions, glycosylation and sorting, is dependentontheuniqueGolgipHmicroenvironmentthatisthoughttobesetbythe balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, suchaschloride,potassium,calcium,magnesium,andmanganese,isalsoimportant for Golgi homeostasis and dependent on the transport activity of other ion trans- porters present in the Golgi membranes. During the last decade, several new Author Contributions: E. Khosrowabadi and S. Kellokumpu both participated in writing and reviewingofthefinalmanuscript.E.Khosrowabadimadethefiguresandeditedthe referencesandthetext;S.Kellokumpumadefinalrevisionstothetext. E.KhosrowabadiandS.Kellokumpu(*) FacultyofBiochemistryandMolecularMedicine,UniversityofOulu,Oulu,Finland e-mail:elham.khosrowabadi@oulu.fi;sakari.kellokumpu@oulu.fi 2 E.KhosrowabadiandS.Kellokumpu disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentiallyinvolveproteinsthatregulateGolgipHorionhomeostasis. Keywords Disease·Golgidysfunction·Golgihomeostasis·Ionbalance·Resting pH 1 Introduction ThepHofsecretoryandendocyticcompartmentsisknowntobeuniquelyacidicin each compartment and crucial for their efficient functioning in mammalian cells (Kim et al. 1996; Demaurex et al. 1998; Palokangas et al. 1998; Schapiro and Grinstein 2000; Wu et al. 2001; Paroutis et al. 2004, for a recent review, see also Kellokumpu 2019).Ingeneral,theacidityofthesecretory compartments increases toward the plasma membrane, while the pH of endosomal compartments increases toward the cell center (late endosomes and lysosomes). Among all these compart- ments,theGolgiapparatusisthemostenigmaticone,asitrepresentsaconverging pointbetweenthetwopathways,receivingvesicularcarriersfromtheendoplasmic reticulum(neutral)andtheendosomalcompartments(acidic)andsendingthemback to these destinations as part of its sorting functions. Moreover, Golgi resting pH decreasesfromthecis-Golgicisternae (pH6.7)tomedial(pH6.5)andtrans-Golgi cisternae (pH 6.3) reaching pH 6.0 at the TGN. How this pH gradient along the cis-trans axis of Golgi cisternae is established is not completely clear, but it may involvetwodifferentmechanisms,whichbeneednotbemutuallyexclusive:thefirst onemayinvolveselectivetraffickingofvesicularcarriersbetweenthecis-Golgiand theneutralERandbetweenthetrans-Golgiandtheacidicendosomalcompartments. The other one is the number of proton pumps or proton leak “channels” that may change along the cis-trans axis of the Golgi stack (Wu et al. 2001; Paroutis et al. 2004). 2 Maintenance of Golgi pH Homeostasis The resting pH of the Golgi lumen is known to be established and maintained by threemainiontransportsystemsthatincludethevacuolar(V)-ATPase,acounterion (Cl(cid:1) or K+) transport, and a proton “leak” pathway that shuttles protons from the Golgilumenbacktothecytoplasm(Wuetal.2001;Demaurex2002;Paroutisetal. 2004).Eachofthesethreesystemsisbrieflydiscussedbelow. GolgipHandIonHomeostasisinHealthandDisease 3 2.1 Golgi Acidification by the V-ATPase TheV-ATPaseisthemainacidifierofallsecretoryandendocyticcompartments.Itis a multimeric protein complex whose oligomeric structure varies between different compartments.Consistentwiththis,uniquesubunitisoformsarefoundinmammals, theexpressionofwhichisoftentissue-andcelltype-specific(MarshanskyandFutai 2008). For example, multiple isoforms are found for the a-subunit which seems to dictatetheV-ATPasesintodistinctintracellularlocalizations.InyeasttheN-terminal cytosolicdomainsoftwoa-subunitisoforms(Vph1pandStv1p)areresponsiblefor the specific targeting of V-ATPase to vacuolar and Golgi compartments, respec- tively. In mice and humans, there are four distinct a-subunit isoforms (a1-a4) of whichthea2-subunitseemstodictatethelocalizationoftheV-ATPaseintheGolgi membranes.TheotherisoformsarefoundinV-ATPasesthatareexpressedvariably at the plasma membrane and/or endosomal-lysosomal compartments (Marshansky andFutai2008;Flincketal.2020). The V-ATPase uses ATP as an energy source to pump protons into the Golgi lumen(Fig.1top).Itsactivityisthereforedependentoncellularglucoseornutrient levels.Undernormalconditions,itisassumedtobeconstantlyactive(Schapiroand Grinstein 2000; Wu et al. 2001). Consistent with this view, addition of excess (10 mM) ATP induces rapid Golgi acidification that equilibrates after few minutes atpH~5(Fig.1top),i.e.,lowerthanthenormalrestingpH.Thisprobablyreflects experimental setup (high potassium bath solution without buffering, excess ATP). Likewise,Golgilumenstartstoalkalinizewithinfewsecondsequilibratingatneutral pH within few minutes after blocking the V-ATPase activity by using its specific inhibitorconcanamycinA(Fig.1,bottom). 2.2 Counter Ion Transport ContinuousprotonpumpingbytheV-ATPasehasthepropensitytoincreaseGolgi membranepotential(insidepositive)thatthenwouldslowdowntheactivityofthe V-ATPaseandthusGolgiacidity.Therefore,tokeepmembranepotentialunaltered, proton pumping needs to be counteracted by Cl(cid:1) import or K+ (Glickman et al. 1983;SchapiroandGrinstein2000;Paroutisetal.2004).Instrongsupportofthis, (cid:1) protein termed the GPHR (Golgi pH regulator), a Cl channel, was shown to be necessary for the maintenance of sufficiently acidic Golgi resting pH in the cells (Maedaetal.2008).Inaddition,itsmutagenesiswasshowntoalterglycosylation,to delayproteintransporttotheplasmamembrane,andtoinduceGolgifragmentation. OtherstudieshavesuggestedthatpassiveK+efflux(insteadofCl(cid:1)influx)isused to counteract membrane potential increase brought about by proton pumping (Howell and Palade 1982). This may relate to the high permeability of the Golgi membranes to K+ ions (Schapiroand Grinstein 2000) which could be mediated by Na+andK+conductivechannelssuchastheKv1.3(Zhuetal.2014)inconjunction

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.