ebook img

Ordinary Differential Equations PDF

198 Pages·2005·0.709 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ordinary Differential Equations

ORDINARY DIFFERENTIAL EQUATIONS Sze-Bi Hsu ii Contents 1 INTRODUCTION 1 1.1 Introduction: Where ODE comes from . . . . . . . . . . . . . . . . . 1 2 FUNDAMENTAL THEORY 9 2.1 Introduction and Preliminary . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Local Existence and Uniqueness of Solutions of I.V.P. . . . . . . . . 11 2.3 Continuation of Solutions . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4 Continuous Dependence on Parameters and Initial Conditions . . . . 21 2.5 Differentiability of Initial Conditions and Parameters . . . . . . . . . 24 2.6 Differential Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 LINEAR SYSTEMS 35 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Fundamental Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.3 Linear Systems with Constant Coefficients . . . . . . . . . . . . . . . 39 3.4 Two Dimensional Linear Autonomous system . . . . . . . . . . . . . 46 3.5 Linear Systems with Periodic Coefficients . . . . . . . . . . . . . . . 50 3.6 Adjoint System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 STABILITY OF NONLINEAR SYSTEMS 65 4.1 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 Saddle Point Property: Stable and unstable manifolds . . . . . . . . 73 4.4 Orbital Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.5 Travelling Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . 88 5 METHOD OF LYAPUNOV 99 5.1 An Introduction to Dynamical System . . . . . . . . . . . . . . . . . 99 5.2 Lyapunov Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6 TWO DIMENSIONAL SYSTEMS 117 6.1 Poincare´-Bendixson Theorem . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Levinson-Smith Theorem . . . . . . . . . . . . . . . . . . . . . . . . 125 6.3 Hopf Bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 7 SECOND ORDER LINEAR EQUATIONS 145 7.1 Sturm’s Comparison Theorem and Sturm-Liouville boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.2 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.3 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.4 Fredholm Alternative for 2nd order linear equations . . . . . . . . . 158 iii iv CONTENTS 8 THE INDEX THEORY AND BROUWER DEGREE 163 8.1 Index Theory In The Plane . . . . . . . . . . . . . . . . . . . . . . . 163 8.2 Brief introduction to Brouwer degree in Rn . . . . . . . . . . . . . . 170 9 INTRODUCTION TO REGULAR AND SINGULAR PERTUR- BATION METHODS 177 9.1 Regular Perturbation Methods . . . . . . . . . . . . . . . . . . . . . 177 9.2 Singular Perturbations : Boundary Value Problems . . . . . . . . . . 182 9.3 Singular Perturbation : Initial Value Problem . . . . . . . . . . . . . 187 Chapter 1 INTRODUCTION 1.1 Introduction: Where ODE comes from Thetheoryofordinarydifferentialequationsisdealingwiththelargetimebehavior of the solution x(t,x ) of the initial value problem I.V.P of first order system of 0 differential equations: dx 1 =f (t,x ,x ,···,x ) dt 1 1 2 n . . . dx n =f (t,x ,x ,···,x ) dt n 1 2 n x (0)=x , i=1,2···n i i0 or in vector notation dx = f(t,x), f :D ⊆R×Rn −→Rn, D ⊆R×Rn is open , dt (1.1) x(0) = x 0 where x=(x ,···x ), f =(f ,···,f ) 1 n 1 n If the right hand side of (1.1) is independent of time t , i.e. dx =f(x). (1.2) dt Then we say (1.1) is an autonomous system. In this case, we call f is a vector field on its domain. If the right hand side depends on time t, we say (1.1) is a nonautonomoussystem. Themostimportantnonautonomoussystemistheperiodic system i.e., f(t,x) satisfies f(t+w,x)=f(t,x) for some w > 0 (w is the period). If f(t,x) = A(t)x where A(t) ∈ Rn×n, then we say dx =A(t)x. (1.3) dt 1 2 CHAPTER 1. INTRODUCTION is a linear system of differential equations. It is easy to verify that if ϕ(t),ψ(t) are solutions of (1.3), then αϕ(t)+βψ(t) is also a solution of linear system (1.3) for α,β ∈R. The system dx =A(t)x+g(t) (1.4) dt is called linear system with nonhomogeneous part g(t). If A(t)≡A, then dx =Ax (1.5) dt is a linear system with constant coefficients. A system (1.1) which is not linear is called a nonlinear system. Usually it is much harder to analyze nonlinear systems than the linear ones. The essential difference is that linear systems can be broken downintoparts. Throughsuperpositionprinciple,Laplacetransform,Fourieranal- ysis,wefindalinearsystemispreciselyequalstothesumofitsparts. Butnonlinear systems which phenomena is almost our everyday life, does not have superposition principle. Inthefollowingwepresentsomeimportantexamplesofdifferentialequa- tions from Physics, Chemistry and Biology. Example 1.1.1 mx¨+cx˙ +kx=0 This describes the motion of a spring with damping and restoring force. Apply Newton’s law, F =ma, we have ma=mx¨=F =−cx˙ −kx= Friction + restoring force. Let y =x˙. Then (cid:189) x˙ =y y˙ =−cy− kx m m Example 1.1.2 mx¨+cx˙ +kx=F coswt. Then we have (cid:181) (cid:182) (cid:181) (cid:182) x˙ y = y˙ cy− kx+F coswt m m (cid:112) If c=0 and w = k/m, then we have ”resonance”. Example 1.1.3 Electrical Networks Let Q(t) be the charge on the capacitor at time t. Use the following Kirchoff’s 2nd law: In a closed circuit, the impressed voltage equals the sum of the voltage drops in the rest of the circuit. 1.1. INTRODUCTION: WHERE ODE COMES FROM 3 Fig.1.1 1. The voltage drop across a resistance of R ohms equals RI (Ohm’s law) 2. The voltage drop across an inductance of L henrys equals LdI dt 3. The voltage drop across a capacitance C farads equals Q/C Hence dI Q E(t)=L +RI + dt C Since I(t)= dQ, it follows that dt d2Q dQ 1 L +R + Q=E(t) dt2 dt C Example 1.1.4 Van der Pol Oscillator [K] p.481, [HK] p.172 u(cid:48)(cid:48) +(cid:178)u(cid:48)(u2−1)+u=0, 0<(cid:178)(cid:191)1 Let E(t)= u(cid:48)2 + u2 be the energy. Then 2 2 E(cid:48)(t) = u(cid:48)u(cid:48)(cid:48) +uu(cid:48) =u(cid:48)(−(cid:178)u(cid:48)(u2−1)−u)+uu(cid:48) (cid:189) = −(cid:178)(u(cid:48))2(u2−1)= <0, |u|>1 >0, |u|<1 Hence the oscillator is “self-excited”. Example 1.1.5 Van der Pol Oscillator with periodic forcing u(cid:48)(cid:48) +(cid:178)u(cid:48)(u2−1)+u=Acoswt The is the equation Cartwright, Littlewood, Levinson studied in 1940-1950 and Smale constructed Smale’s horseshoe in 1960. It is one of the model equations in chaotic dynamics. 4 CHAPTER 1. INTRODUCTION Example 1.1.6 Second order conservative system x¨+g(x)=0 or equivalently x˙ =x 1 2 x˙ =−g(x ) 2 1 (cid:82) The energy E(x ,x )= 1x2+V(x ), V(x )= x1g(s)ds satisfies 1 2 2 2 1 1 0 d E =0 dt Example 1.1.7 Duffing’s equation x¨+(x3−x)=0 The potential V(x)=−(1/2)x2+(1/4)x4 is a double-well potential. Fig.1.2 Example 1.1.8 Duffing’s equation with damping and periodic forcing. x¨+βx˙ +(x3−x)=Acoswt This is also a typical model equation in chaotic dynamcis. Example 1.1.9 Simple pendulum equation d2θ g + sinθ =0 dt2 (cid:96) 1.1. INTRODUCTION: WHERE ODE COMES FROM 5 Fig.1.3 F = ma d2θ −mgsinθ = m(cid:96)· dt2 Example 1.1.10 Lorentz equation [S] p.301, [V] 1. x˙ =σ(y−x) 2. y˙ =rx−y−xz σ,r,b>0 3. z˙ =xy−bz When σ = 10, b = 8, r = 28, (x(0),y(0),z(0)) ≈ (0,0,0), we have butterfly 3 phenomenon. Example 1.1.11 Michaelis-Menten Enzyme Kinetics ([K] p.511),([LS] p.302) Consider the conversion of a chemical substrate S to a product P by enzyme catal- ysis. The reaction scheme E+S (cid:42)(cid:41)k1 ES →k2 E+P k−1 was proposed by Michaelis and Menten in 1913. By the law of Mass action. We have the follows equations d[E]=−k [E][S]+k [ES]+k [ES] dt 1 −1 2 d[S]=−k [E][S]+k [ES] dt 1 −1 d[ES]=k [E][S]−k [ES]−k [ES] dt 1 −1 2 d[P]=k [ES] dt 2 6 CHAPTER 1. INTRODUCTION subject to initial concentration [E](0)=E , [S](0)=S , [ES](0)=[P](0)=0. 0 0 Since d d [ES]+ [E]=0 dt dt Hence [ES]+[E]≡E 0 Let (cid:193) (cid:193) 1. u=[ES] C , v =[S] S , τ =k E t 0 0 1 0 (cid:193) (cid:177) (cid:177) 2. κ=(k +k ) k S , (cid:178)=C S , λ= k−1 , C =E 1+κ −1 2 1 0 0 0 k−1+k+2 0 0 Then we have the equation of singular perturation du (v+κ)u (cid:178) =v− , 0<(cid:178)(cid:191)1 dτ 1+κ (cid:193) dv =−v+(v+κλ)u (1+κ) dt u(0)=0, v(0)=1 We shall study this example in chapter 9. Example 1.1.12 Belousov-Zhabotinskii Reaction [M] dx (cid:178) = qy−xy+x(1−x) dt dy δ = −qy−xy+2fz dt dz = x−z dt where (cid:178),δ,q are small, f ≈0.5. This is an important oscillator in chemistry. Example 1.1.13 Logistic equation. Let x(t) be the population of a species. (cid:179) (cid:180) dx x = rx−bx2 =rx 1− dt K K = carrying capacity Example 1.1.14 The Lotka-Volterra model for Predator-Prey interaction. Let x(t),y(t) be the population of prey and predator at time t respectively. ([M],p.124 and p.62). Then we have   dx =ax−bxy dt a,b,c,d>0  dy =cxy−dy dt or   dx =rx(1− x)−bxy dt k  dy =cxy−dy dt

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.