ebook img

Ordinal length and the canonical topology PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ordinal length and the canonical topology

ORDINAL LENGTH AND THE CANONICAL TOPOLOGY HANSSCHOUTENS 3 1 0 ABSTRACT. Weextendtheclassicallengthfunctiontoanordinal-valuedinvariantonthe 2 classofallfinite-dimensionalNoetherianmodules.Weshowhowtocalculatethiscombi- n natorialinvariantbymeansofthefundamentalcycleofthemodule,thuslinkingthelattice a ofsubmodulestohomologicalpropertiesofthemodule.Usingthis,wedefineonamodule J itscanonicaltopology,inwhicheverymorphismiscontinuous. 8 2 ] 1. INTRODUCTION C A Thepurposeofthispaperistolaythefoundationsofanew,ordinal-valuedinvariantin CommutativeAlgebra:the(ordinal)lengthlen(M)ofaNoetherianmoduleM,measuring . h (by meansof an ordinal)the longestdescendingchain of submodulesin M. Recall that t a anordinalisanisomorphismclassofatotalwell-order(=admittingthedescendingchain m condition),andtheclassofordinals,orderedbytheinitialsegmentrelation,isagainawell- [ order;eachnaturalnumberisanordinalbyidentifyingitwithachainofthatlength;theor- derof(N,≤)isdenotedωandisequaltothesupremumofalln∈N;theorder-typeofthe 1 lexicographicalorderon Nd isdenotedωd. Apartfromtheusual(non-commutative)sum v 7 α+β,wealsoneedthe(commutative)shuffleornaturalsumα⊕β givenbycoefficient- 5 wiseadditionintheCantornormalform(fordetails,see §2). Sincedescendingchainsin 4 a Noetherian module M are well-ordered with respect to the reverse inclusion, they are 6 ordinals,andwedefinelen(M)asthesupremumofallordinalsobtainedthisway. . 1 In[8]weshowedthat,whereaslengthcannolongerbeadditiveonexactsequences,it 0 isstillsemi-additive: 3 1 Theorem(Semi-additivity). If0→N →M →Q→0isanexactsequenceofNoether- : ianR-modules,then v i (1) len(Q)+len(N)≤len(M)≤len(Q)⊕len(N). X r Moreover,ifthesequenceissplit,thenthelastinequalityisanequality. a As an application, we obtain that a Noetherian ring has length ωd if and only if it is a domain of Krull dimension d. In this paper, we prove the remarkable fact that this combinatorial invariant can be described in terms of homological invariants: recall that the local multiplicity e (M) at a prime ideal p is defined as the length of the p-torsion p submoduleofM (whenceisnon-zeroifandonlyifpisanassociatedprimeofM). p MainTheorem. ThelengthofM isequalto e (M)ωdim(R/p). Lp p Combiningthiswithsemi-additivity,leadstomanyinterestingapplications([8,6,7]). Inthispaper,weapplythetheorytodefineacanonicaltopologyoneverymodule:theopen submodulesinthistopologyarepreciselythosethathavethesamelengthasM. Weshow Date:January29,2013. Key words and phrases. Commutative Algebra; ordinal length; local cohomology; Chow group; local multiplicity. 1 2 HANSSCHOUTENS thatanymorphismbetweenmodulesiscontinuousinthistopology. Anyopensubmodule is essential, and in [7], we will characterize those modules for which the converse also holds. In the last section, as an applicationof this material, we discuss the phenomenon of degradation: how source and target of a module may force the morphism to become (almost)zero.Forinstance,weshow Theorem. If an endomorphism on M factors through a module that has no associated primesincommonwithM,thenitmustbenilpotent. 2. ORDINALS AND ORDINAL LENGTH Apartialorderingiscalleda (partial)well-order ifithasthedescendingchaincondi- tion, that is to say, any descendingchain must eventuallybe constant. A total orderis a well-orderifandonlyifeverynon-emptysubsethasaminimalelement.Anordinalisthen anequivalenceclass,uptoanorder-preservingisomorphism,ofatotalwell-order.Theset of ordinals is a transfinite extension of the set of natural numbers N, in which the usual inductionisreplacedbytransfiniteinduction.Wesaythatα≤β ifαcanbeembeddedas atotalorderinβ. Anyboundedsubsetofordinalshasthenaninfimumandasupremum. The(Cantor)sumα+β istheordinalcorrespondingtothewell-orderon α⊔β obtained bylettinganyelementofβ belargerthananyelementofα. Thus,1+ωisthesameasω, whenceinparticulardifferentfrom ω+1. Wewillnotneedarbitraryordinalmultiplica- tion,butonlyproductsoftheformnαwithn ∈N,simplydefinedasthesumofncopies of α (be aware that logicianswould use the more awkwardnotation α·n forthis). The supremumofthenωisdenotedω2andistheorder-typeofthelexicographicalorderingon N2. Theωdaresimilarlydefined,andtheirsupremumisdenotedωω. LetObethecollectionofordinalsstrictlybelowωω. Anyα ∈ OhasauniqueCantor normalform (2) α=a ωd+···+a ω+a d 1 0 with a ∈ N, called its Cantor coefficients. The support of α, denoted Supp(α) ⊆ N, n consistsof all i forwhich a 6= 0. The maximumandminimumof the supportof α are i called respectivelyits degree and order. An ordinalis a successor ordinal(=of the form α+1forsomeordinalα) ifandonlyif itsorderis zero. Thesumofall a iscalledthe i valenceofα. Theordering≤onordinalscorrespondstothelexicographicalorderingon thetuplesofCantorcoefficients(a ,...,a ). Letussaythatαisweakerthanβ,denoted d 0 α (cid:22) β, if a ≤ b foralli, where,likewise, theb aretheCantorcoefficientsof β. Note i i i that≤extendsthepartialorder(cid:22)toatotalorder. Apart from the usual ordinal sum, we make use of the natural or shuffle sum α⊕β giveninCantornormalformas (a +b )ωd +···+a +b . Notethattheshufflesum d d 0 0 iscommutative,andα+β willin generalbesmallerthan α⊕β. Infact, weshowedin [8, Theorem 7.1] that the shuffle sum is the largest possible ordinal sum one can obtain fromwritingbothordinalsasasumofsmallerordinalsandthenrearrangingtheirterms. Inparticular,Oisclosedunderbothadditions.Moreover,sinceα(cid:22)β ifandonlyifthere existsγ suchthatα⊕γ =β,wemayview(O,⊕,(cid:22))asapartiallyorderedcommutative semi-group. 3. LENGTHAND SEMI-ADDITIVITY Allringswillbe commutative,Noetherian,of finiteKrulldimension,andallmodules will be finitely generated. Throughout, if not specified otherwise, R denotes a (finite- dimensional, Noetherian) ring and M denotes some (finitely generated) R-module. By ORDINALLENGTHANDTHECANONICALTOPOLOGY 3 Noetherianity,thecollectionofsubmodulesofM orderedbyinverseinclusionisapartial well-order,calledtheGrassmanianofM anddenotedGr (M)(orjustGr(M)). Inpar- R ticular,anychaininGr (M)is(equivalentto)anordinal. Thesupremumofallpossible R ordinalsarisingasachaininthiswayiscalledthelengthofM andisdenotedlen (M),or R whenthebaseringisclear,simplybylen(M). NotethatthelengthofM asanR-module isthesameasthatofanR/Ann (M)-module,andsowemayassume,ifnecessary,that R M isfaithful. ItfollowsfromtheJordan-Ho¨ldertheorythat thisordinallengthcoincides withtheusuallengthformodulesoffinitelength. Thelengthofaringisthatofamodule overitself. Inotherwords,len(R)isthelongestdescendingchainofidealsinR. Itisusefultohavealsoatransfinitedefinitionoflength:wedefineaheightrankl(·)on Gr (M),asfollows. Putl(M) := 0. GivenasubmoduleN ⊆ M,atasuccessorstage, R wesaythatl(N) ≥ α+1, if thereexistsa submoduleN′ ⊆ M containingN suchthat l(N′) ≥ α. Ifλisalimitordinal(thatistosay,notasuccessorordinal),thenwesaythat l(N)≥λ,providedforeachα<λ,thereexistsasubmoduleN ⊆M containingN with α l(N )≥α. Finally,wesaythatl(N)=αifl(N)≥αbutnotl(N)≥α+1.Weprovein α [8,Theorem3.10]thattheheightrankofthezeromoduleisthelengthofM.Infact,more generally,foranysubmoduleN ⊆M,itsheightrankequalsitsco-length,thatistosay, (3) l(N)=len(M/N). Notethatheightranksatisfiesthefollowingcontinuityproperty:l(N)islessthanorequal tothesupremumofalll(W)+1,forallW strictlycontainingN. Usingsemi-additivity (seeintroduction)weshowedin[8]: 3.1.Theorem(Dimension). LetM beafinitelygeneratedmoduleoverafinite-dimensional NoetherianringR. Thenthedegreeoflen(M)isequaltothedimensionofM. Inpartic- ular,Risad-dimensionaldomainifandonlyiflen(R)=ωd. (cid:3) The order of a module is by definition the order of its length, and will be denoted ord(M); the valence val(M) is the valence of its length. We will calculate these two invariantsinCorollary4.5below. Letuscallanexactsequencestronglyequilateralifwe haveequalityatbothsidesof(1);ifweonlyhaveequalityattheright,wecallthesequence equilateral. Beingstronglyequilateralisreallyapropertyofordinals: α+β = α⊕β if andonlyifthedegreeofβ isatmosttheorderofα,andhence 3.2.Corollary. AnexactsequenceoffinitelygeneratedR-modules 0→N →M →Q→0, isstronglyequilateralifandonlyifdimN ≤ord(Q). (cid:3) 4. LENGTH ASA COHOMOLOGICAL RANK Ascustomary,wedefinethedimensionofaprimeidealp⊆R,denoteddim(p),asthe KrulldimensionoftheresidueringR/p.Wedenotethecollectionofallassociatedprimes (= prime ideals of the form Ann(a) with a ∈ M) by Ass(M); it is always a finite set. We willmakefrequentuse, fora shortexactsequence 0 → N → M → Q → 0, ofthe followingtwoinclusions(see,forinstance,[2,Lemma3.6]) (4) Ass(N)⊆Ass(M); (5) Ass(M)⊆Ass(N)∪Ass(Q) 4 HANSSCHOUTENS We define the the (zero-th) local cohomology1of M at p, denoted H0(M), as the p- p torsionofM ,thatistosay,thesubmoduleofM consistingofallelementsthatarekilled p p bysomepowerofp. AsH0(M)isamoduleoffinitelengthoverR ,wedenotethislength p p bye (M) and call itthe localmultiplicity ofM atp (see, forinstance, [2, p. 102]). An p alternativeformulationisthroughthenotionofthefinitisticlengthofamoduleM,defined asthesupremumlenfin(M)ofalllen(N)withN ⊆Mandlen(N)<ω.ByNoetherianity, M hasalargestsubmoduleH offinitelength,andhencelenfin(M) = len(H). Withthis notation,wehave (6) e (M)=lenfin(M ), p p foranyprimeidealp,andthisisnon-zeroifandonlyifpisanassociatedprimeofM. We nowdefinethecohomologicalrankofamoduleM as coh(M):=Mep(M)ωdim(p). p It is instructiveto view this fromthe pointof view ofChow cycles. Let A(R) be the ChowringofR, definedasthefreeAbeliangroupon Spec(R). AnelementD ofA(R) will be called a cycle, and will be represented as a finite sum a [p ], where [p] is the P i i symboldenotingthefreegeneratorcorrespondingtotheprimeidealp. Thesumofalla i iscalledthedegreedeg(D)ofthecycleD. WedefineapartialorderonA(R)bytherule thatD (cid:22)E,ifa ≤b ,foralli,whereE = b [p ].Inparticular,denotingthezerocycle i i P i i simplyby0,wecallacycleD effective,if0 (cid:22) D,andweletA+(R)bethesemi-group of effective cycles. This allows us to define a map from effective cycles to ordinals by sendingtheeffectivecycleD = a [p ]totheordinal Pi i i o(D):=Maiωdim(pi). i Clearly,ifD andE areeffective,theno(D+E) = o(D)⊕o(E). Moreover,ifD (cid:22) E, theno(D)(cid:22)o(E),sothatwegetamap(A+(R),+,(cid:22))→(O,⊕,(cid:22))ofpartiallyordered semi-groups. ToanyR-moduleM,wecanassignitsfundamentalcycle,bytherule (7) cycR(M):=Xep(M)[p] p Immediately from (6) we get o(cyc(M)) = coh(M). Our main result now links this cohomologicalinvarianttoourcombinatoriallengthinvariant: 4.1.Theorem. ForanyfinitelygeneratedmoduleM overafinite-dimensionalNoetherian ringR,wehavelen(M)=o(cyc(M))=coh(M). Beforewegivetheproof,wederivetwolemmas. Itisimportanttonoticethatthefirst oftheseisnottrueatthelevelofcycles. 4.2.Lemma. IfM →QisapropersurjectivemorphismofR-modules,then coh(Q)<coh(M). Proof. Let N be the (non-zero) kernel of M → Q, and let d be its dimension. If p ∈ Ass(M) but not in the support of N, then M ∼= Q , so that they have the same local p p cohomology. This holds in particular for any p ∈ Ass(M) with dim(p) > d, showing thatcoh(Q) and coh(M) can only start differingat a coefficientof ωi for i ≤ d. So let 1Thisdeviatesslightlyfromthepracticein[2,App.4]aswealsolocalize. ORDINALLENGTHANDTHECANONICALTOPOLOGY 5 p∈Ass(M)∩Supp(N)havedimensiond.Ingeneral,localcohomologyisonlyleftexact, but by Lemma 4.3 below, we have in fact an exact sequence (8). Since e (N) 6= 0, we p mustthereforehavee (Q)<e (M). Itnoweasilyfollowsthatcoh(Q)<coh(M). (cid:3) p p 4.3.Lemma. Givenanexactsequence0 → N → M → Q → 0,ifpisaminimalprime ofM,then (8) 0→H0(N)→H0(M)→H0(Q)→0 p p p isexact. Proof. Itiswell-known(see [2, App.4])thatH0(·)isleftexact, sothatweonlyneedto p proveexactnessat the final map. By assumption, M has finite length and hence N = p p H0(N). Choose n high enoughso that pnN = 0. Suppose a¯ ∈ H0(Q), that is to say, p p p pma¯=0inQ ,forsomem. Leta∈M beapre-imageofa¯underthesurjectionM →Q. p Therefore,pma∈N ,whencepm+na=0inM ,showingthata∈H0(M). (cid:3) p p p 4.4.Corollary. Givenanexactsequence0→N →M →Q→0,ifM hasnoembedded primes,thenwehaveanequalityofcycles (9) cyc (M)+D =cyc (N)+cyc (Q) R R R whereDisaneffectivecyclesupportedonAss(Q)\Ass(M). Proof. Let D be the cycle given by (9), so that D has supportin Ass(M)∪Ass(Q) by (5). WeneedtoshowthatD iseffectiveandsupportedonAss(Q)\Ass(M). Sinceany associatedprimepofM isminimal,DisnotsupportedinpbyLemma4.3. Ontheother hand,anyassociatedprimeofQnotinAss(M)appearswithapositivecoefficientin D, showingthatthelatteriseffective. (cid:3) Proof of Theorem 4.1. Let us first prove len(M) ≤ coh(M) by transfinite induction on coh(M), where the case coh(M) = 0 corresponds to M = 0. Let N be any non- zero submoduleof M. By Lemma4.2, we have coh(M/N) < coh(M), and hence our inductionhypothesisappliedtoM/N yieldslen(M/N)≤coh(M/N)<coh(M). Since len(M/N) = l(N)by(3),continuitythereforeshowsthatlen(M) = l(0)canbeatmost coh(M),asweneededtoshow. Toprovetheconverseinequality,weinductonthelengthof M. Chooseanassociated primepofM ofminimaldimension,say,dim(p) = e. Byassumption,thereexistsm ∈ M such that Ann (m) = p. Let H be the submodule of M generated by m. Clearly, R coh(H) = ωe,andsobywhatwealreadyproved,len(R/p) ≤ ωe. ByTheorem3.1,this thenisanequality. SowemayassumethatQ := M/H isnon-zero. ByLemma4.3, we gete (M)=e (Q)−1. Bysemi-additivity,wehaveaninequality p p len(Q)+len(H)≤len(M) andtherefore,byinduction (10) coh(Q)+ωe ≤len(M) LetgbeanyassociatedprimeofM differentfromp.Byminimalityofdimension,gcannot containp. In particular, M ∼= Q , whence e (M) = e (Q). Expandingcoh(Q) in its g g g g Cantornormalform b ωi,letλ := b ωi. Puttingtogetherwhatweprovedsofar, P i Pi≥e i wecanfindanordinalαwithord(α)≥e(stemmingfromprimesassociatedtoQbutnot toM),suchthatλ⊕ωe =coh(M)⊕α. Sincecoh(Q)+ωe =λ⊕ωe,weget,from(10) andthefirstpart,inequalities coh(M)⊕α≤len(M)≤coh(M) 6 HANSSCHOUTENS whichforcesα=0andallinequalitiestobeequalities. (cid:3) 4.5.Corollary. The orderofa moduleisthesmallestdimensionofanassociatedprime, anditsvalenceisthedegreeofitsfundamentalcycle. (cid:3) By[1,Proposition1.2.13],overalocalring,wehave (11) depth(M)≤ord(M). Thisinequalitycanbestrict: forexample,atwo-dimensionaldomainwhichisnotCohen- Macaulay,hasdepthonebutordertwobyTheorem3.1. Ournextresultgivesaconstraint onthepossiblelength(nottobeconfusedwithitsheightrank)ofasubmodule,whichwas exploitedin[6],tostudybinarymodules. 4.6.Theorem. IfN ⊆M,thenlen(N)(cid:22)len(M). Conversely,ifν (cid:22)len(M),thenthere existsasubmoduleN ⊆M oflengthν. Proof. ThefirstassertionisimmediatefromTheorem 4.1,inclusion(4),andthefactthat (8) is always left exact. For the second assertion, let µ := len(M). We induct on the (finite collection) of ordinals ν weaker than µ to show that there exists a submodule of thatlength. The case ν = 0 being trivial, we may assume ν 6= 0. Let i be the orderof ν andwrite ν = θ⊕ωi forsome θ (cid:22) ν. Sincethenθ (cid:22) µ, thereexistsasubmoduleof length θ by induction. Let H ⊆ M be maximalamong all submodulesof length θ. By Theorem4.1, thereexistsan i-dimensionalassociatedprimepofM,suchthatH0(H)is p strictlycontainedinH0(M). Hencewecanfindx∈M outsideH suchthatpx⊆H. Let p N :=H +Rxandletx¯betheimageofxmoduloH,sothatN/H =Rx¯. Sincepx¯=0, the length of Rx¯ is at mostωi. By semi-additivityapplied to the inclusion H ⊆ N, we have an inequality len(N) ≤ θ ⊕ len(Rx¯), and hence len(N) ≤ ν. Maximality of H yieldsθ <len(N). Ontheotherhand,sincelen(N)(cid:22)µbyourfirstassertion,minimality ofithenforceslen(N)=ν,asweneededtoshow. (cid:3) 4.7. Remark. In fact, if N ⊆ M, then cyc(N) (cid:22) cyc(M), so that the fundamental cycle map is a morphism Gr(M)◦ → A(R) of partially ordered sets, where Gr(M)◦ is the opposite order given by inclusion. On the other hand, by (3) and Theorem 4.1, the map Gr(M) → A(R) given by N 7→ cyc(M/N) factors through the length map Gr(M) → O,butthereisnonaturalorderingon A(R)forwhichthisbecomesamapof orderedsets. Wemayimprovethelowersemi-additivitybyreplacing≤by(cid:22): 4.8.Corollary. If0→N →M →Q→0isexact,thenlen(Q)+len(N)(cid:22)len(M). Proof. Thisisreallyjustafactaboutordinals: withµ,ν,θbeingtherespectivelengthsof M,N,Q, semi-additivitygivesθ+ν ≤ µ ≤ θ⊕ν, whereasTheorem4.6givesν (cid:22) µ, and we now show that these inequalities imply that θ +ν (cid:22) µ. Write µ = ν ⊕α and letdbethedimensionofν. Foran arbitraryordinal β, we havea uniquedecomposition β = β+ ⊕ β− with β− of degree strictly less than d and β+ of order at least d. By assumption,ν+ = aωd forsomea,andhencethesemi-additivityinequalitiesatdegreed and higherbecome θ+ ⊕aωd ≤ α+ ⊕aωd ≤ θ+ ⊕aωd, showing that θ+ = α+. By definitionofordinalsum,θ+ν =θ+⊕ν andso (θ+ν)⊕α− =θ+⊕ν⊕α− =α+⊕α−⊕ν =α⊕ν =µ provingthatθ+ν (cid:22)µ. (cid:3) ORDINALLENGTHANDTHECANONICALTOPOLOGY 7 Recall that a moduleM is called unmixed of dimension d if all its associated primes havedimensiond. Theorem4.1thenshowsthatM isunmixedifandonlyiford(M) = dimM,inwhichcaselen(M)=ℓgen(M)ωd,wherewedefinethegenericlengthofM as thesumofthelocalmultiplicitiesatalld-dimensionalprimes. Corollary3.2yields: 4.9.Corollary. LetRbead-dimensionalNoetherianringand0 → N → M → Q → 0 a short exact sequence. If Q is unmixed of dimension d, then this sequence is strongly equilateral. (cid:3) Recall the dimension filtration D (M) ⊆ D (M) ⊆ ··· ⊆ D (M) = M of a d- 0 1 d dimensional finitely generated R-module M defined by Schenzel in [5], where D (M) i is the submodule of all elements of dimension at most i, where we define the dimen- sion of an element x ∈ M as the dimension of the module it generates, that is to say, dim(R/Ann (x)). Equivalently,D (M)isthelargestsubmoduleofM ofdimensionat R i mosti. 4.10.Proposition. Givenad-dimensionalmoduleM,theexactsequence 0→D (M)→M →M/D (M)→0 i i is strongly equilateral, for each i. Moreover, len(D (M)) is obtained from len(M) by i omittingthemonomialsofdegreebiggerthani. Proof. Itfollowsfrom[5,Corollary2.3]thattheassociatedprimesofM/D (M)arepre- i cisely the associated primes of M of dimension strictly largerthan i. By Corollary 4.5, thismeansthatlen(M/D (M))hasorderatleasti+1. Sincelen(D (M))hasdegreeat i i mostibyTheorem3.1,theresultfollowsfromCorollary3.2. (cid:3) Anotherwaytoformulatethisresultisasthefollowingformulaforcalculatinglength d (12) len(M)=Mlen(Di(M)/Di−1(M)), i=0 andeachnon-zeroD (M)/D (M)isunmixedofdimensioniandoflengtha ωi,where i i−1 i a isitsgenericlength. i 4.11.Example. LetRbethecoordinateringofaplanewithanembeddedlineinsidethree dimensionalspaceoverkgivenbytheequationsx2 =xy =0inthethreevariablesx,y,z. Using Theorem 4.1, one easily calculates that len(R) = ω2 +ω, where the associated primesarep = (x)andq = (x,y). Theidealsoflengthω areexactlythosecontainedin p. Theidealsoflengthω2+ω(theopenidealsintheterminologyfromthenextsection), arepreciselythosethatcontainanon-zeromultipleofxandanon-zeromultipleofy(this follows,forinstance,from[6,Proposition4.10]). Finally,theremaining(non-zero)ideals oflengthω2,arethosecontainedinqbutdisjointfromp(notethatifI isnotcontainedin q,thenIR =R andIR =R ,sothatI mustbeopen). p p q q 5. OPEN SUBMODULES By semi-additivity, len(N) is at most len(M), and, in fact, len(N) (cid:22) len(M) by Theorem4.6. IfM hasfinitelengthandN isapropersubmodule,thenobviouslyitslength must be strictly less, but in the non-Artinian case, nothing excludes this from being an equality. So,wecallN ⊆M open,iflen(N)=len(M). ImmediatelyfromTheorem4.1 andTheorem4.6,weget 8 HANSSCHOUTENS 5.1.Corollary. AsubmoduleN ⊆M isopenifandonlyifH0(N)=H0(M)forallp,if p p andonlyifcyc (N)=cyc (M),ifandonlyifval(N)=val(M). (cid:3) R R 5.2.Remark. Inparticular,thelongexactsequenceoflocalcohomologyyieldsthatN ⊆ M is open if and only if the canonicalmorphism H0(M/N) → H1(N) is injective, for p p every(associated)primep(ofM). 5.3. Proposition. Given an exact sequence 0 → N → M → Q → 0, if dim(Q) < ord(M),thenN isopen. Inparticular,anynon-zeroidealinadomainisopen,andmore generally,anyidealinanunmixedringcontainingaparameterisopen. Proof. Letν = a ωi,µ= b ωi,andθ = c ωi betherespectivelengthsofN,M P i P i P i and Q. By semi-additivity,µ ≤ θ ⊕ν, whence b ≤ a +c , forall i. By assumption, i i i c = 0wheneverb 6= 0,sothatinfactb ≤ a ,foralli,thatistosay,µ ≤ ν. Sincethe i i i i otherinequalityalwaysholds,N isopen. Toprovethelastassertion,letxbeaparameter inad-dimensionalunmixedringR,sothatR/xRhasdimensionstrictlylessthand. Since ord(R) = d byTheorem 4.1, ourfirst assertion showsthatthe ideal (x), andhence any idealcontainingx,isopen. (cid:3) Let us call a submodule N ⊆ M equilateral, if 0 → N → M → M/N → 0 is equilateral, that is to say, if len(M) = len(N)⊕len(M/N). Hence a direct summand isequilateralbysemi-additivity. ByCorollary3.2,anysubmoduleN suchthatdimN ≤ ord(M/N),isequilateral,buttheconverseneednothold. 5.4.Proposition. Amaximal(proper)submoduleiseitherequilateraloropen. Inpartic- ular,ifM haspositiveorder,thenanymaximalsubmoduleisopen. Proof. LetN M bemaximal,sothatQ := M/N issimple,oflengthone. Letν and µbetherespectivelengthsofN andM. Bysemi-additivity,wehaveν ≤ µ ≤ ν +1. If theformerinequalityholds,thesubmoduleisopen,andifthelatterholds,itisequilateral. ThelastassertionnowfollowsfromTheorem4.1,forifM haspositiveorder,itslengthis alimitordinal,andso,by(3),nomoduleoffiniteco-lengthcanbeequilateral. (cid:3) Intheringcase,wecanevenprove: 5.5.Proposition. If(R,m)isanon-Artinianlocalring,thenmisopen. Proof. Let ν andµ be the respectivelengthsof m and R. In view of Proposition5.4, to ruleoutthatmisequilateral,wemayassumethatitisanassociatedprime. Choosex∈R withAnn(x) = mandputR¯ := R/xR. SincexRhaslengthone,Corollary3.2applied totheexactsequences0 → xR → R → R¯ → 0and0 → xR → m → mR¯ → 0yields µ = len(R¯)+1 and ν = len(mR¯)+1. By induction, len(mR¯) = len(R¯), and hence ν =µ. (cid:3) 5.6. Remark. As for primary ideals n, they will not be open in general if R has depth zero. More precisely, suppose len(R) = λ + n with λ a limit ordinal and n ∈ N. If nH0(R)=0(whichwillbethecaseiflen(R/n)≥n),thenlen(n)=λ. Indeed,thecase m n = 0 is trivial, and we may always reduceto this since n is a moduleoverR/H0(m), R andthelatterhaslengthλbyProposition5.3. 5.7.Corollary. IfN ⊆M isopen,thenSupp(M/N)isnowheredenseinSupp(M). The converseholdsifM hasnoembeddedprimes. ORDINALLENGTHANDTHECANONICALTOPOLOGY 9 Proof. LetQ := M/N. Theconditiononthesupportsmeansthatnominimalprimepof M liesinthesupportofQ.However,forsuchp,wehaveM =H0(M). HenceN =M p p p p byCorollary5.1,showingthatQ =0.SupposenextthatM hasnoembeddedprimesand p Supp(Q) is nowheredensein Supp(M). LetD := cyc(N)+cyc(Q)−cyc(M)as givenbyCorollary4.4,andletpbeanassociatedprimeofQ. SinceSupp(Q)isnowhere dense,pisnotanassociatedprimeofM.Sincethecyclecyc(M)−cyc(N)hassupport inAss(M)andisequaltocyc(Q)−D,itmustbethezerocycle,sincecyc(Q)andD havesupportdisjointfromAss(M). HenceN ⊆M isopenbyCorollary5.1. (cid:3) TogetherwithProposition5.3,thisproves: 5.8.Corollary. IfN ⊆ M isopenthendim(M/N) < dim(M),andtheconverseholds ifM isunmixed. (cid:3) In[6],wecalledamoduleM weaklycompressible,ifM embeds(asasubmodule)in everyopensubmodule.Thefollowinggeneralizes[6,Corollary6.12]: 5.9.Corollary. IfM hasnoembeddedprimeideals,thenitisweaklycompressible. Proof. LetN ⊆ M beopenandputQ := M/N. ByCorollary5.7,nominimal(whence associated)primeofM liesinthesupportofQ. Hencethereexistsx ∈ Ann(Q)outside any associated prime of M. In particular, xM ⊆ N and multiplication by x gives an isomorphismM ∼=xM. (cid:3) 6. THECANONICAL TOPOLOGY Asthenameindicates,thereisanunderlyingtopology.Toprovethis,weneed: 6.1.Theorem. Theinverseimageofanopensubmoduleunderamorphismisagainopen. Inparticular,ifU ⊆M isopen,andN ⊆M isarbitrary,thenN ∩U isopeninN. Proof. We start with provingthe secondassertion. Let µ := len(M), ν := len(N) and α:=len(N ∩U). Wehaveanexactsequence 0→N ∩U →N ⊕U →N +U →0. SinceN+U isagainopen,semi-additivityyieldslen(N⊕U)≤α⊕µ. Sincetheformer is equal to ν ⊕µ, we get ν ≤ α, showing that N ∩U is open in N. To prove the first assertion, let f: M → N be an arbitrary homomorphism and let V ⊆ N be an open submodule.LetG⊆M ⊕N bethegraphoff andletp: G→M betheprojectiononto thefirstcoordinate.SinceM ⊕V isopeninM ⊕N bysemi-additivity,(M ⊕V)∩Gis openinG,bywhatwejustproved.Sincepisanisomorphism,theimageof(M⊕V)∩G underpisthereforeopeninM. Butthisimageisjustf−1(V),andsowearedone. (cid:3) We can nowdefine a topologyon M by letting the collectionof open submodulesbe a basis of open neighborhoodsof 0 ∈ M. This is indeed a basis since the intersection offinitelymanyopensisagainopenbyTheorem6.1. Anarbitraryopeninthistopology is then a (possibly infinite) union of cosets x+U with U ⊆ M open and x ∈ M. If a submoduleN is a unionofcosets x +U of opensubmodulesU ⊆ M, then onesuch i i i coset, x+U say, must contain 0, so that U ⊆ N, and hence the inequalitieslen(U) ≤ len(N)≤len(M)areallequalities,showingthatN isindeedopenintheprevioussense. WecallthisthecanonicaltopologyonM,andTheorem6.1showsthatanyhomomor- phism is continuous in the canonical topology. Moreover, multiplication on any ring is continuous: givena ,a ∈ RandanopenidealI suchthata a ∈ I,letJ := a R+I. 1 2 1 2 i i 10 HANSSCHOUTENS HenceJ isanopenneighborhoodofa andJ ·J ⊆ a a R+I = I. IfM hasdimen- i i 1 2 1 2 sionzero,thenthecanonicaltopologyistrivial,sinceM isthentheonlyopensubmodule. ThecomplementofanopenmoduleN istheunionofallcosetsa+N witha ∈/ N,and henceisalsoopen. Inparticular,anopenmoduleisalsoclosed,andthequotienttopology on M/N is discrete, whence in generaldifferentfrom the canonical topology. The zero moduleisclosedifandonlyiftheintersectionofallopensubmodulesis0,thatistosay, ifandonlyifthecanonicaltopologyisHaussdorf. 6.2.Corollary. Amoduleisnon-Artinianifandonlyifitscanonicaltopologyisnon-trivial. Proof. OnedirectionisimmediatesinceanArtinianmodulehasnoproperopensubmod- ules. Fortheconverse,weshow,byinductionon len(M),thatM hasanon-trivial,open submodule. Assumefirstthatµisalimitordinal. ChooseasubmoduleN ofM ofheight rank1.By(3),thismeanslen(M/N)=1,andsoN isopenbyProposition5.3. Next,as- sumeµ=ν+1.LetH beasubmoduleofheightrankν,sothatby(3)again,M¯ :=M/H haslengthν. Byinduction,wecanfindaproperopensubmoduleofM¯,thatistosay,we canfindN M containingH suchthatlen(N/H) = ν. Semi-additivityappliedtothe inclusionH ⊆ N yieldsν+len(H) ≤ len(N). Sincelen(H)6= 0andlen(N) ≤ ν+1, wegetequality,thatistosay,len(N)=ν+1,whenceN isopen. (cid:3) 6.3. Proposition. The closure of a submodule N ⊆ M is equal to N + D (M). In 0 particular,asubmoduleisclosedifandonlyifithasthesamefinitisticlengthasM. Proof. Let H := D (M), and let W be an open submodule containing N. By Theo- 0 rem 6.1, the intersection H ∩W is openin H, and since H has finite length(so that its topologyistrivial),wemusthaveH = W ∩H,provingthatH liesinW. Asthisholds forallopensW containingN,theclosureofN containsH. Using Corollary 3.2, oneeasily showsthatthequotienttopologyonM/H isequalto thecanonicaltopology. Therefore,tocalculatetheclosure,wemaydivideoutH,assume thatM haspositiveorder,andwethenneedtoshowthatN isclosed. Letx ∈ M beany elementnotin N andletm bea maximalidealcontaining(N : x). SinceM/mkM has finitelength,eachmkM isopenbyProposition5.3,whencesoiseachN +mkM. Ifxis containedineachofthese,thenitiscontainedintheirintersectionW := ∩(N +mkM). ByKrull’sIntersectiontheorem,thereexistsa∈msuchthat(1+a)W ⊆N. Inparticular, 1+a ∈ (N : x) ⊆ m,contradiction. SoxliesoutsidesomeopenN +mkM,andhence doesnotbelongtotheclosureofN. ThelastassertionisnowalsoclearbyTheorem 4.1,sincethefinitistic lengthofM is equaltothelengthofD (M). (cid:3) 0 6.4. Corollary. A module has a separated canonicaltopology if and only if its order is positiveifandonlyifanysubmoduleisclosed. (cid:3) 6.5.Example. If (R,m) is localand M has positivedepth, then the canonicaltopology refines the m-adic topology on M: indeed mkM is then open by Proposition 5.3. We alreadyshowedthatthis isnolongertruein ringsofpositivedepthin Remark5.6. Also notethatthecanonicaltopologyonalocaldomainisstrictlyfinerthanitsadictopology, sinceallnon-zeroidealsareopen. Theringk[[x,y]]/(x2,xy),oflengthω+1,isnotHaussdorfastheclosureofthezero ideal is the ideal (x) by Proposition 6.3. It is the only closed, non-openideal, since the closureofanyidealmustcontainxwhenceisopenwhendifferentfrom(x). Inparticular, whereasthecanonicaltopologyisnotHaussdorf,theadiconeis.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.