- An ab initio, DFT and semiempirical SCF-MO package - Version 2.8-20 September 2010 Design andScientific Directorship: Frank Neese Technical Directorship: Frank Wennmohs Lehrstuhl für Theoretische Chemie Wegelerstr. 12D-‐53115 Bonn, Germany [email protected]‐bonn.de With contributions from: Ute Becker, Dmitry Ganyushin, Andreas Hansen, Dimitrios G. Liakos, Christian Kollmar, Simone Kossmann, Taras Petrenko, Christoph Reimann, Christoph Riplinger, Kantharuban Sivalingam, Edward Valeev, Boris Wezisla Input Description TABLE OF CONTENTS 1 GENERAL INFORMATION........................................................................................11 1.1 PROGRAM COMPONENTS.............................................................................................11 1.2 UNITS AND CONVERSION FACTORS.............................................................................12 2 PUBLICATIONS RELATED TO ORCA....................................................................13 3 CALLING THE PROGRAM (SERIAL AND PARALLEL).....................................23 3.1 CALLING THE PROGRAM..............................................................................................23 3.2 HINTS ON THE USE OF PARALLEL ORCA.....................................................................26 4 GENERAL STRUCTURE OF THE INPUT FILE.....................................................29 4.1 INPUT BLOCKS............................................................................................................29 4.2 KEYWORD LINES........................................................................................................31 4.3 ORCA AND SYMMETRY.............................................................................................42 4.4 USE OF EFFECTIVE CORE POTENTIALS........................................................................43 4.5 JOBS WITH MULTIPLE STEPS......................................................................................50 5 INPUT OF COORDINATES........................................................................................51 6 RUNNING TYPICAL CALCULATIONS...................................................................54 6.1 SINGLE POINT ENERGIES AND GRADIENTS....................................................................54 6.1.1 Hartree-Fock......................................................................................................54 6.1.1.1 Standard single points.........................................................................................................................54 6.1.1.2 Basis Set Options................................................................................................................................55 6.1.1.3 SCF and Symmetry.............................................................................................................................56 6.1.2 MP2....................................................................................................................59 6.1.2.1 MP2 and RI-MP2 Energies.................................................................................................................59 6.1.2.2 Orbital Optimized MP2 methods........................................................................................................60 6.1.2.3 MP2 and RI-MP2 Gradients...............................................................................................................61 6.1.2.4 Frozen core options............................................................................................................................63 6.1.2.5 MP2 Densities and Natural Orbitals...................................................................................................63 6.1.3 Coupled Cluster and Coupled Pair Methods.....................................................64 6.1.3.1 Basics..................................................................................................................................................64 6.1.3.2 Static versus Dynamic Correlation.....................................................................................................68 6.1.3.3 Basis Sets for Correlated Calculations. The case of ANOs................................................................72 6.1.3.4 Automatic extrapolation to the basis set limit....................................................................................75 Orca Version 2 - Input Description 3 6.1.3.5 Local Coupled Pair and Coupled Cluster Calculations......................................................................79 6.1.4 Density Functional.............................................................................................82 6.1.4.1 Standard Density Functional Calculations.........................................................................................82 6.1.4.2 DFT Calculations with RI...................................................................................................................83 6.1.4.3 Hartree-Fock and Hybrid DFT Calculations with RIJCOSX.............................................................85 6.1.4.4 Hartree-Fock and Hybrid DFT Calculations with RI-JK...................................................................86 6.1.4.5 DFT Calculations with Second Order Perturbative Correction (double hybrid functionals).............87 6.1.4.6 DFT Calculations with Empirical Van der Waals Correction............................................................88 6.1.5 Quadratic Convergence......................................................................................89 6.1.6 Counterpoise Correction....................................................................................91 6.1.7 Complete Active Space Self-Consistent Field.....................................................93 6.1.7.1 Introduction........................................................................................................................................93 6.1.7.2 A simple example...............................................................................................................................94 6.1.7.3 Starting Orbitals..................................................................................................................................96 6.1.7.4 CASSCF and Symmetry...................................................................................................................101 6.1.7.5 RI and RIJCOSX approximations for CASSCF...............................................................................105 6.1.7.6 Breaking Chemical Bonds................................................................................................................106 6.1.7.7 Excited States...................................................................................................................................111 6.1.7.8 CASSCF Natural Orbitals as input for Coupled Cluster Calculations.............................................113 6.1.8 N-Electron Valence State Perturbation Theory (NEVPT2)..............................118 6.1.8.1 Introduction......................................................................................................................................118 6.1.8.2 A simple example.............................................................................................................................119 6.1.8.3 RI Approximation.............................................................................................................................120 6.1.8.4 Parametric surface scans...................................................................................................................120 6.1.8.5 Approximations for large active CASSCF space.............................................................................121 6.1.8.6 State-averaged NEVPT2...................................................................................................................122 6.1.9 Scalar Relativistic SCF.....................................................................................123 6.1.9.1 Douglas-Kroll-Hess..........................................................................................................................123 6.1.9.2 ZORA and IORA..............................................................................................................................124 6.1.10 How to do efficient calculations with atomic natural orbitals?.......................125 6.2 GEOMETRY OPTIMIZATIONS, SURFACE SCANS, TRANSITION STATES, MECPS..........127 6.2.1 Geometry Optimizations..................................................................................127 6.2.2 Numerical Gradients........................................................................................128 6.2.3 Some Notes and Tricks.....................................................................................128 6.2.4 Initial Hessian for minimization.......................................................................129 6.2.5 Coordinate systems for Optimizations..............................................................130 6.2.6 Constrained Optimizations...............................................................................131 6.2.7 Constrained Optimizations for Molecular Clusters (Fragment Optimization).133 Orca Version 2 - Input Description 4 6.2.8 Relaxed Surface Scans......................................................................................135 6.2.9 Multiple XYZ file scans.....................................................................................138 6.2.10 Transition States...............................................................................................138 6.2.10.1 Introduction to Transition State Searches....................................................................................138 6.2.10.2 Hessians for Transition State Calculations..................................................................................141 6.2.10.3 Special Coordinates for Transition State Optimizations..............................................................143 6.2.11 MECP optimization..........................................................................................143 6.2.12 Using the Gaussian optimizer..........................................................................145 6.2.13 ORCA as external optimizer............................................................................146 6.3 VIBRATIONAL FREQUENCIES.....................................................................................146 6.4 REACTION ENERGIES FROM COMPOUND JOBS...........................................................148 6.5 EXCITED STATES WITH CIS, CIS(D) AND TD-DFT..................................................150 6.5.1 General Use......................................................................................................151 6.5.2 Use of TD-DFT for the calculation of X-ray absorption spectra.....................151 6.5.3 Excited state Geometry optimization................................................................155 6.5.4 Doubles correction...........................................................................................155 6.6 MULTIREFERENCE CONFIGURATION INTERACTION AND PERTURBATION THEORY.....156 6.6.1 Introductory Remarks.......................................................................................156 6.6.1.1 Introduction......................................................................................................................................156 6.6.1.2 RI-approximation..............................................................................................................................156 6.6.1.3 Individual Selection..........................................................................................................................157 6.6.1.4 Single excitations..............................................................................................................................157 6.6.1.5 Reference Spaces..............................................................................................................................157 6.6.1.6 Size Consistency...............................................................................................................................158 6.6.1.7 Performance......................................................................................................................................158 6.6.1.8 Symmetry..........................................................................................................................................159 6.6.2 A Tutorial Type Example of a MR Calculation................................................160 6.6.3 Excitation Energies between different multiplicities........................................175 6.6.4 Correlation Energies........................................................................................176 6.6.5 Thresholds........................................................................................................177 6.6.5.1 Reference Values for Total Energies................................................................................................177 6.6.5.2 Convergence of Single Reference Approaches with Respect to T ................................................178 sel 6.6.5.3 Convergence of Multireference Approaches with Respect to T ...................................................178 pre 6.6.6 Energy Differences – Bond Breaking...............................................................180 6.6.7 Energy Differences – Spin Flipping.................................................................182 6.6.8 Potential Energy Surfaces................................................................................184 Orca Version 2 - Input Description 5 6.6.9 Multireference Systems – Ozone.......................................................................187 6.6.10 Size Consistency...............................................................................................189 6.6.11 Efficient MR-MP2 calculations for larger molecules.......................................190 6.7 SOLVATION...............................................................................................................191 6.8 CALCULATION OF PROPERTIES..................................................................................193 6.8.1 Population Analysis and Related Things..........................................................193 6.8.2 Absorption and Fluorescence Bandshapes.......................................................197 6.8.3 IR/Raman spectra, Vibrational Modes and Isotope Shifts...............................202 6.8.3.1 IR Spectra.........................................................................................................................................202 6.8.3.2 Raman Spectra..................................................................................................................................204 6.8.3.3 Resonance Raman Spectra................................................................................................................206 6.8.3.4 NRVS Spectra...................................................................................................................................206 6.8.3.5 Animation of Vibrational Modes......................................................................................................207 6.8.3.6 Isotope Shifts....................................................................................................................................208 6.8.4 Thermochemistry..............................................................................................210 6.8.5 Electric Properties............................................................................................213 6.8.6 NMR Chemical Shifts.......................................................................................214 6.8.7 Hyperfine and Quadrupole Couplings.............................................................216 6.8.8 The EPR g-Tensor and the Zero-Field Splitting Tensor..................................219 6.8.9 ‘Broken-Symmetry’ Wavefunctions and Exchange Couplings.........................221 7 DETAILED DOCUMENTATION.............................................................................224 7.1 MORE ON COORDINATE INPUT..................................................................................224 7.1.1 Fragment Specification....................................................................................224 7.1.2 Defining Geometry Parameters and Scanning Potential Energy Surfaces......225 7.1.3 Inclusion of Point Charges...............................................................................227 7.2 CHOICE OF COMPUTATIONAL MODEL.......................................................................228 7.2.1 Features Common to All Calculations.............................................................228 7.2.2 Density functional calculations........................................................................230 7.2.2.1 Choice of Functional........................................................................................................................230 7.2.2.2 Choice of Integration Grid................................................................................................................235 7.2.2.3 Using the RI-J approximation to the Coulomb part.........................................................................241 7.2.2.4 The Split-RI-J Coulomb Approximation..........................................................................................243 7.2.2.5 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJONX)...................................244 7.2.2.6 Using the RI Approximation for Hartree-Fock and Hybrid DFT (RIJCOSX).................................245 7.2.2.7 Improved Analytical Evaluation of the Coulomb term: Split-J........................................................247 7.2.2.8 The Standard Basis Sets and Computational Levels........................................................................247 Orca Version 2 - Input Description 6 7.2.3 Second Order Møller-Plesset Perturbation Theory.........................................248 7.2.4 Semiempirical Methods....................................................................................251 7.3 CHOICE OF BASIS SET...............................................................................................255 7.3.1 Built in Basis Sets.............................................................................................255 7.3.2 Assigning or Adding Basis Functions to an Element.......................................260 7.3.3 Assigning or Adding Basis Functions to Individual Atoms..............................261 7.3.4 Reading orbital and auxiliary basis sets from a file.........................................262 7.4 CHOICE OF INITIAL GUESS AND RESTART OF SCF CALCULATIONS...........................263 7.4.1 AutoStart feature..............................................................................................263 7.4.2 One Electron Matrix Guess..............................................................................264 7.4.3 Basis Set Projection..........................................................................................264 7.4.4 PModel Guess...................................................................................................264 7.4.5 Hueckel and PAtom Guesses............................................................................265 7.4.6 Restarting SCF Calculations............................................................................265 7.4.7 Changing the Order of Initial Guess MOs and Breaking the Initial Guess Symmetry 266 7.5 SCF CONVERGENCE.................................................................................................267 7.5.1 Convergence Tolerances..................................................................................267 7.5.2 Dynamic and Static Damping...........................................................................269 7.5.3 Level Shifting....................................................................................................270 7.5.4 Direct Inversion in Iterative Subspace (DIIS)..................................................270 7.5.5 An alternative DIIS algorithm: KDIIS..............................................................271 7.5.6 Approximate Second Order SCF (SOSCF)......................................................271 7.5.7 Full Second Order SCF (NR)...........................................................................272 7.5.8 Fractional Occupation Numbers......................................................................275 7.6 CHOICE OF WAVEFUNCTION AND INTEGRAL HANDLING...........................................276 7.6.1 Choice of Wavefunction Type...........................................................................276 7.6.2 UHF Natural Orbitals......................................................................................279 7.6.3 Integral Handling (Conventional, Direct, SemiDirect)....................................279 7.7 THE SECOND ORDER MANY BODY PERTURBATION THEORY MODULE (MP2)..........283 7.7.1 Standard MP2...................................................................................................283 7.7.2 RI-MP2.............................................................................................................284 7.7.3 Orbital Optimized MP2....................................................................................292 Orca Version 2 - Input Description 7 7.7.4 RICOSX-RI-MP2 Gradients.............................................................................296 7.8 THE SINGLE REFERENCE CORRELATION MODULE....................................................297 7.8.1 Theory...............................................................................................................297 7.8.2 Closed shell equations......................................................................................301 7.8.3 Open shell equations (spin-unrestricted formalism)........................................305 7.8.4 Use of the MDCI Module.................................................................................305 7.9 THE COMPLETE ACTIVE SPACE SELF-CONSISTENT FIELD (CASSCF) MODULE........307 7.9.1 General Description.........................................................................................307 7.9.2 CASSCF Properties.........................................................................................318 7.10 N-ELECTRON VALENCE STATE PERTURBATION THEORY......................................319 7.11 RELATIVISTIC OPTIONS.........................................................................................320 7.12 GEOMETRY OPTIMIZATION....................................................................................324 7.13 EXCITED STATES VIA CIS AND TD-DFT................................................................342 7.13.1 General Features..............................................................................................343 7.13.2 Semiempirical Methods....................................................................................344 7.13.3 HF-Wavefunctions............................................................................................347 7.13.4 Non-Hybrid DFT..............................................................................................347 7.13.5 Hybrid DFT......................................................................................................349 7.13.6 Doubles Correction..........................................................................................349 7.13.7 Computational Aspects.....................................................................................351 7.13.7.1 RI approximation (AO-basis).......................................................................................................351 7.13.7.2 RI approximation (MO-basis)......................................................................................................351 7.13.7.3 Integral Handling.........................................................................................................................352 7.13.7.4 Valence versus Rydberg states.....................................................................................................352 7.13.7.5 Asymptotatically Corrected Density Functionals........................................................................353 7.13.7.6 Potential Energy Surface Scans...................................................................................................356 7.13.7.7 Potential Energy Surface Scans along Normal Coordinates........................................................357 7.13.7.8 Normal Mode Scan Calculations Between Different Structures..................................................361 7.14 THE MULTIREFERENCE CORRELATION MODULE...................................................363 7.14.1 General Description of the Correlation Module..............................................363 7.14.2 The SOC Submodule of the MRCI Module....................................................367 7.14.2.1 Calculation of the Spin-Spin Coupling and Spin-Orbit Coupling and Effects............................367 7.14.2.2 Magnetic fields in MRCI.............................................................................................................375 7.14.2.3 g-tensor calculations.....................................................................................................................376 7.14.2.4 Relativistic Picture Change in Douglas Kroll SOC and Zeeman operators.................................377 7.14.2.5 MCD and Absorption Spectra Calculation and Generation.........................................................378 Orca Version 2 - Input Description 8 7.15 SIMULATION AND FIT OF VIBRONIC STRUCTURE IN ELECTRONIC SPECTRA, RESONANCE RAMAN EXCITATION PROFILES AND SPECTRA WITH THE ORCA_ASA PROGRAM...................382 7.15.1 General Description of the Program................................................................383 7.15.2 Spectral Simualtion Procedures: Input Structure and Model Parameters.......384 7.15.2.1 Example: Simple Model...............................................................................................................384 7.15.2.2 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHO Model........386 7.15.2.3 Example: Modelling of Absorption and Fluorescence Spectra within the IMDHOFA Model...389 7.15.2.4 Example: Modelling of Effective Broadening, Effective Stokes Shift and Temperature Effects in Absorption and Fluorescence Spectra within the IMDHO Model.....................................................................390 7.15.2.5 Example: Modelling of Absorption and Resonance Raman Spectra for the 1-1A →1-1B Transition in 1,3,5 g u trans-hexatriene..................................................................................................................................................393 7.15.2.6 Example: Modelling of Absorption spectrum and Resonance Raman Profiles for the 1-1A →1-1B g u Transition in 1,3,5 trans-hexatriene...................................................................................................................397 7.15.3 Fitting of Experimental Spectra.......................................................................399 7.15.3.1 Example: Gauss-Fit of Absorption Spectrum..............................................................................399 7.15.3.2 Example: Fit of Absorption and Resonance Raman Spectra for 1-1A →1-1B transition in 1,3,5 trans- g u hexatriene 406 7.15.3.3 Example: Single-Mode Fit of Absorption and Fluorescence Spectra for 1-1A →1-1B transition in g 2u Tetracene 413 7.15.4 Quantum-Chemically Assisted Simulations and Fits of Optical Bandshapes and Resonance Raman Intensities.........................................................................................417 7.15.4.1 Example: Quantum-Chemically Assisted Analysis and Fit of the Absorption and Resonance Raman Spectra for the 1-1A →1-1B Transition in 1,3,5 trans-hexatriene.................................................................................418 g u 7.15.4.2 Important Notes about Proper Comparison of Experimental and Quantum Chemically Calculated Resonance Raman Spectra.................................................................................................................................426 7.15.4.3 Example: Normal mode scan calculations of model paramters for 1-1A →1-1B transition in 1,3,5 trans- g u hexatriene 428 7.16 THE COSMO SOLVATION MODEL........................................................................430 7.17 CALCULATION OF PROPERTIES..............................................................................433 7.17.1 Electric Properties............................................................................................433 7.17.2 The Spin-Orbit Coupling Operator..................................................................433 7.17.3 The EPR/NMR Module.....................................................................................436 7.17.3.1 Hyperfine and Quadrupole Couplings.........................................................................................437 7.17.3.2 The g-tensor.................................................................................................................................440 7.17.3.3 Zero-Field-Splitting......................................................................................................................441 GENERAL TREATMENT........................................................................................................443 7.18 POPULATIONS ANALYSIS AND CONTROL OF OUTPUT.............................................450 7.18.1 Controlling Output...........................................................................................450 Orca Version 2 - Input Description 9 7.18.2 Mulliken Population Analysis...........................................................................452 7.18.3 Löwdin Population Analysis.............................................................................453 7.18.4 Mayer Population Analysis..............................................................................454 7.18.5 Natural Population Analysis............................................................................455 7.18.6 UNO Orbital Printing.......................................................................................460 7.19 ORBITAL AND DENSITY PLOTS...............................................................................460 7.19.1 Contour Plots....................................................................................................460 7.19.2 Surface Plots.....................................................................................................462 7.19.2.1 General Points..............................................................................................................................462 7.19.2.2 Interface to gOpenMol.................................................................................................................464 7.19.2.3 Interface to Molekel.....................................................................................................................465 7.20 UTILITY PROGRAMS...............................................................................................466 7.20.1 orca_mapspc.....................................................................................................466 7.20.2 orca_chelpg......................................................................................................467 7.20.3 orca_pltvib........................................................................................................467 7.20.4 orca_vib............................................................................................................468 7.20.5 orca_plot...........................................................................................................468 7.20.6 orca_2mkl: Old Molekel as well as MolDen inputs.........................................468 7.20.7 orca_vpot..........................................................................................................469 8 SOME TIPS AND TRICKS (UPDATED DECEMBER 2009)................................469 8.1 COST VERSUS ACCURACY.........................................................................................469 8.2 CONVERGING SCF CALCULATIONS...........................................................................473 8.3 CHOICE OF THEORETICAL METHOD..........................................................................474 9 LITERATURE..............................................................................................................477 SUMMARY OF REVISIONS............................................................................................480 Orca Version 2 - Input Description 10 Foreword The ORCA project is now almost 10 years old and it is probably fair to say that the program has significantly matured over the past years. It is now used by almost 4000 individuals or research groups and is installed at dozens if not hundreds of supercomputer centers worldwide. We feel strongly encouraged by this fact and it is our pleasure to further develop the program for the benefit of the computational chemistry and spectroscopy communities. Since 2006 when the group moved to the university of Bonn, there has been a gradual shift in the focus of the development from special spectroscopy to more general purpose quantum chemistry. This was made possible because the development group has considerably grown and highly talented and motivated students continued to bring in new features in and greatly improved existing ones. The areas that are perhaps most active in future developments concern simplified wavefunction methods or the single reference type (MP2 and local coupled pair/coupled cluster methods) and new density functionals (in particular double hybrid functional). An area that will see more activity in the future is multireference theory. However, with all developments in improved wavefunctions, a focus of the program will remain theoretical spectroscopy and we plan to further enhance the programs capabilities in this area. Finally, performance, parallelization robustness and user friendliness are subjects that are high on our priority list. As always, we appreciate positive as well as negative feedback from our growing group of users and hope that you enjoy using the program as much as we enjoy developing it. As ORCA is strictly non-‐commercial you can count on the fact that it will remain free of charge. The best way to show your appreciation of our efforts is to cite our original research and development papers in your own work. This will provide us with the possibility of raising sufficient funding for continuing to do what we enjoy most – develop quantum chemistry! Frank Neese, December 2009
Description: