ebook img

Orbital motion effects in astrometric microlensing PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Orbital motion effects in astrometric microlensing

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed27January2014 (MNLATEXstylefilev2.2) Orbital motion effects in astrometric microlensing ⋆ Sedighe Sajadian SchoolofAstronomy,IPM(InstituteforResearchinFundamentalSciences),P.O.Box19395-5531,Tehran,Iran 4 1 0 27January2014 2 n ABSTRACT a We investigate lens orbital motion in astrometric microlensing and its detectability. In mi- J crolensingevents,thelightcentroidshiftinthesourcetrajectory(theastrometrictrajectory) 4 falls offmuchmore slowly than the lightamplificationas the sourcedistance fromthe lens 2 positionincreases.Asaresult,perturbationsdevelopedwithtimesuchaslensorbitalmotion canmakeconsiderabledeviationsinastrometrictrajectories.Therotationofthesourcetrajec- ] M toryduetolensorbitalmotionproducesamoredetectableastrometricdeviationbecausethe astrometriccross-sectionismuchlargerthanthephotometricone.Amongbinarymicrolens- I . ing events with detectable astrometric trajectories, those with stellar-mass black holes have h mostlikelydetectableastrometricsignaturesoforbitalmotion.Detectinglensorbitalmotion p in their astrometric trajectories helps to discover further secondary components around the - o primaryevenwithoutanyphotometricbinaritysignatureaswellasresolveclose/widedegen- r eracy. For these binary microlensing events, we evaluate the efficiency of detecting orbital t s motion in astrometric trajectories and photometric light curves by performingMonte Carlo a simulation.Weconcludethatastrometricefficiencyis87.3percentwhereasthephotometric [ efficiencyis48.2percent. 1 1 INTRODUCTION ing high precision astrometry, which will be operational in near v 6 future(Proftetal.2011). 1 Gravitational field of an object acts as a gravitational lens which During a microlensing event by measuring the astrometric 4 deviateslightpathofacollinearbackgroundsourceandproduces lensing and parallax effects, the mass of the deflector can be in- 6 distortedimages(Einstein1936).InGalacticscale,theangularsep- ferred without knowing the exact distances of the lens and the 1. aration of the images is of order of milli-acrsecond that is too source from the observer (Paczyn´ski1997; Miralda-Escde´1996). 0 smalltoberesolvedevenbythemostmoderntelescopes.Instead, Also the degeneracy in close/wide caustic-crossing binary mi- 4 the combined light of images received by an observer is mag- crolensingevents(Dominik1999)canberemovedbyastrometric 1 nified in comparison to the un-lensed source. This phenomenon measurements (Gould&Han2000; Chungetal.2009). The two v: is called gravitational microlensing which was proposed as a configurationsofthelensandsourceproducedifferentastrometric i methodtoprobedarkobjectsinGalactichalo,extrasolarplanets, trajectorieseventhoughtheymightpresentthesamelightcurves. X studystellaratmosphere,etc.(Liebes1964;Chang&Refsdal1979; Hence, by measuring the astrometric trajectories this degeneracy r Paczyn´ski1986a,b). canberemoved(Hanetal.1999). a One of features of gravitational microlensing is the devi- Generally, there are some anomalies in microlensing events ation of the light centroid of the source star images from the which deviate the observed light curve and astrometric trajectory source star position. For the case of a point-mass lens, the cen- of source star from the standard model. Some deviations owing troidshiftofsourcestarimagestracesanellipseinthelensplane to these anomalies help obtain extra information about lens and whilethesourcestarispassinganstraightforwardlineinthelens source and thus resolve degeneracy. One of them is the effect of plane (Walker1995; Miyamoto&Yoshii1995; Høgetal.1995; lens orbital motion in a binary microlensing event. In this case Jeongetal.1999).Incontrastwiththemagnificationfactorwhich two components in a gravitationally bound binary system which isadimensionlessscalar,thelightcentroidshiftofthesourcestar act as lens rotate around their common center of mass. As a re- images isa dimensional vector and itssizeis proportional toan- sult,theirorientationchangesasamicrolensingeventprogressand gular Einsteinradius, i.e.theangular radiusof images ringwhen the resulting light curve is different from that due to a static bi- observer, source and lens are completely aligned. For a stellar- narymicrolens.TheratiooftheEinsteincrossingtimetotheorbital mass lens, the angular Einstein radius is a few hundreds micro- periodoflenssystemisconsidered asacriterionwhichindicates arcsecond,toosmalltobeobserveddirectly.However,itsquantity theprobabilityofdetectingtheorbitalmotioninthemicrolensing enhancesintwocases:(i)whenthelensmassishigh,e.g.astellar- lightcurve(Dominik1998;Iokaetal.1999).Measuringthiseffect massblackholeasmicrolensand(ii)whenthelensisverycloseto givesinformationabout theorbitof microlensessystemwhichin theobserver.Thelightcentroidshiftofsourcestarimagesinthese turn helps to resolve the close/wide degeneracy (Anetal.2002; microlensingeventsismeasurablebyhigh-precision interferome- Gaudietal.2008; Dongetal.2009; Shinetal.2013). Detectabil- terse.g. VeryLargeTelescope Interferometry(VLTI)ortheHST ityoforbitalmotioninlightcurvesofbinarymicrolensingevents (Paczyn´ski1995).AnimportantfutureprojectisGAIA,perform- wasinvestigatedextensivelybyPennyetal.(2011)whereastherel- c 0000RAS (cid:13) 2 SedigheSajadian evant deviation intheastrometrictrajectoryofsource starandits effectinmicrolensinglightcurvesinthesamewayasDominik’s detectabilityarenotclearyet. approach. Inthiswork,westudylensorbitalmotioninastrometricmi- Letusconsideragravitationallyboundsystemasmicrolens. crolensing and itsdetectability. In microlensing events, theastro- Under the gravitational effect, the secondary component with re- metrictrajectoryofsourcestartendstozeromuchmoreslowlythan specttothefirstonetracesoutanellipseoneofwhosefocusisat thelightamplificationasthesourcedistancefromthelensposition thecenterofmassposition.Twocomponentsoftheirrelativedis- rises.Asaresult,perturbationsenlargedwithtimesuchaslensor- tancearegivenby: bitalmotioncanproduceconsiderabledeviationsintheastrometric x(ξ) = a(cosξ ε) trajectories.Sincetheastrometriccross-sectionismuchlargerthan − the photometric one, so the rotation in the source trajectory ow- y(ξ) = a 1 ε2sinξ, (1) − ing to the orbital motion is more probable to be detected in the wherexandypaxesarealongthesemi-majorandsemi-minoraxes, astrometric trajectory than the photometric light curve. However, ε is the eccentricity, a isthe semi-major axis and ξ is a periodic dependingonthesizeoftheangularEinsteinradiusthiseffectcan functionwithtimewhichforasmalleccentricityanduptoitsfirst bedetected.Wefindthat,amongbinarymicrolensingeventswith orderisestimatedas: detectableastrometrictrajectories,thosewithrotatingstellar-mass black holes have most likely detectable astrometric signatures of ξ(t)=2πt−tp +2εsin(2πt−tp), (2) orbitalmotion.Forthesebinarymicrolensingevents,weevaluate P P theefficiencyofdetectingorbitalmotioninastrometrictrajectories where tp is the time of arriving at the perihelion point of orbit, andphotometric light curvesbyperforming Monte Carlosimula- P is the orbital period of the lenses motion. To study the orbital tion.Detectinglensorbitalmotionintheirastrometrictrajectories motion of lenses on microlensing light curves, weshould project helpstodiscoverevensecondarycomponentswithnophotometric theorbitplaneof lensesintotheskyplane.Inthatcase,weneed binaritysignaturesaswellasresolveclose/widedegeneracy. totwoconsecutiverotationangles:β aroundx-axisandγ around Thispaperisorganizedasfollows:Insection(2)theeffectof y-axis.Theprojectedcomponentsoftherelativepositionvectorof orbitalmotioninbinarymicrolensingeventsareexplained.Wenext thesecondonewithrespecttothefirst,intheskyplanenormalized describeastrometricpropertiesof microlensingeventsandfinally totheEinsteinradiusare: weinvestigate theorbital motioneffect on theastrometric trajec- x (t) = ρ[cosγ(cosξ(t) ε)+ tories.InthenextsectionbypreformingaMonteCarlosimulation 1 − westudytheastrometricandphotometricefficienciesfordetecting +sinβsinγ 1 ε2sinξ(t)] − lensorbitalmotion.Insection(4)weexplaintheresults. x (t) = ρcosβ 1 pε2sinξ(t), (3) 2 − where ρ isthe normpalized semi-major axis tothe Einstein radius (Dominik1998). Hence, lens orbital motion causes the projected 2 ORBITALMOTIONINASTROMETRIC distance between two lenses in the lens plane changes with time MICROLENSING whichisgivenby: Inthissectionwefirststudytheorbitalmotioneffectinbinarymi- crolensing events. Havingreviewed theastrometric microlensing, d(t)= x1(t)2+x2(t)2. (4) weinvestigatethemicrolensingeventswithdetectableastrometric On thepother hand, the binary axis with respect to the projected shiftsinsource trajectories. Finally,westudy whether theorbital source trajectory rotates with angle θl(t) = tan−1(x2/x1). So, motioneffectintheastrometrictrajectoriesisdetectable. duringamicrolensingeventwithbinaryrotatinglenses,thesource trajectory rotates with respect to the binary axis with angle θ l − aroundthelineofsighttowardstheobserver.However,thisrotation 2.1 Orbitalmotioneffectofbinarymicrolenes isnotalwaysdetectableintheobserverreferenceframe. Dominik(1998)firststudiedtheeffectoflensorbitalmotioninbi- Thesignatureoflensorbitalmotioninthemicrolensinglight narymicrolensingeventsandconcludedthatinthemostmicrolens- curves is not always observable and its Detectability depends ing events this effect is ignorable, but in some long-duration mi- strongly on the ratio of the lensing characteristic time to the or- crolensingeventscanprobablybeobserved.Orbitalmotioneffects bitalperiodoflensesmotion.Dominik(1998)consideredtheEin- ontheplanetarysignalsinhigh-magnificationmicrolensingevents steincrossingtimeasthecharacteristictimeofabinarymicrolens- wasinvestigatedbyRattenburyetal.(2002).Recently,Pennyetal. ingeventtoevaluatetheorbitalmotiondetectability.However,the (2012) indicated how fraction of binary and planetary microlens- orbitalmotiondetectionefficiencyforbinarymicrolensingevents ingeventsexhibittheorbitalmotioneffectsintheirlightcurvesby withoutcaustic-crossing featuresistoosmallandoforder ofone performingMonteCarlosimulationandinvestigatedthosefactors per cent (Pennyetal.2011). As a result, we consider the effec- whichchangethisfraction.Untilnow,severalobservedmicrolens- tive time scale for detecting signatures of lens orbital motion as ing events have shown the signatures of lens orbital motion. In t˜E = ∆(q,d)tE instead of the Einstein crossing time, where somecases,thesesignatureshaveallowedtoinfersomeoforbital ∆(q,d) refers to the average over the ratios of the lengths of parametersandremovetheclose/widedegeneracy(Anetal.2002; the source trajectories providing the sources are inside the caus- Gaudietal.2008;Dongetal.2009; Shinetal.2013). Sometimes, ticcurvetothetotallengthofthesourcetrajectories.Weassume there are several degenerate best-fitting solutions for orbital mo- thatthereareseveralparallelsourcetrajectoriesoverthelensplane tion modeling. Three systems with complete orbital solutions withthesamelengthsi.e.Lsothattheycoverthecausticcurve.In have been found, e.g. the microlensing event OGLE-2011-BLG- thiscase,∆(q,d)isgivenby: 0417 (Shinetal.2011; Shinetal.2012). However, one of these N N solutions can actually be checked with radial velocity method 1 1 ∆(q,d)= ( li/N)= liδ= c, (5) (Gouldetal.2013). In the following we study the orbital motion L NLδ S i i X X c 0000RAS,MNRAS000,000–000 (cid:13) Orbitalmotioneffects inastrometricmicrolensing 3 0.5 u0=0.1 u0=0.4 1 10-1 0.4 u0=0.8 u0=1.2 u0=2.0 0.3 u0=5.0 0.5 10-2 M (solar mass) 0 10-3 δθθ/c,yE 00..12 log -0.5 10-4 0 -0.1 -1 10-5 -0.4 -0.2 0 0.2 0.4 -1 -0.5 0 0.5 1 δθc,x/θE log s(Au) Figure 1. The map of the detectability factor f in the lenses parameter Figure2.Thetrajectory ofthe lightcentroid shiftnormalized totheθE spacecontainingthelensestotalmassMandthesemi-majoraxisoflenses assumingapoint-like sourcestarispassinganstraightforward lineinthe orbit s. The black dashed and solid lines represent the branch values of gravitational fieldofapoint-masslensforvariousamountsofimpactpa- theprojected distance between twolenses normalized totheEinstein ra- rameter.Thestarsignsindicatethemostdeviationinthelightcentroidof diusbetween3differenttopologiesofcaustic:close,intermediateandwide imageswithrespecttothesourcepositionwhichhappensatu=√2. binariesrespectively. 2.2 Astrometricpropertiesofmicrolensing Inmicrolensingevents,thelightcentroidvectorofsourcestarim- whereliisthelengthoftheportionofithsourcetrajectoryprovid- ages does not coincide withthesource position. Thisastrometric ingthesourceisinsidethecausticcurve,N isthenumber ofthe shift in source star position changes with time as a microlensing sourcetrajectories,δ = L/N isthenormaldistancebetweentwo eventprogresses.Forapoint-masslens,thecentroidshiftvectorof consecutivesourcetrajectories,distheprojecteddistancebetween sourcestarimagesisgivenby: twolenses normalized tothe Einsteinradiusand q istheratioof tihseeqleunasltmoathsesersa.tiAococfotrhdeinagretaoinetqeuraiotirotno(th5e),ciatuisstciclecaurrvtheatto∆an(qa,rdea) δθc = µ1θµ11++µµ22θ2 −uθE = u2θ+E 2u, (7) equaltoL2 i.e. c.Byconsideringthisfactor,thedetectabilityof where θi and µi are the position and magnification factor of ith lensorbitalmotiSoncanbecharacterizedbythefactorf: image,u=pxˆ+u0yˆisthevectoroftheprojectedangularposition ofthesourcestarwithrespecttothelensnormalizedbytheangular f = t˜E. (6) EinsteinradiusofthelensθE inwhichp=(t−t0)/tE ,t0isthe P time of the closest approach, tE is the Einstein crossing time, xˆ andyˆaretheunitvectorsinthedirectionsparallelwithandnormal Themapofdetectabilityfactorf isshowninFigure(1)inthepa- tothedirectionofthelens-sourcetransversemotion.Theangular rameterspaceoflensescontainingthetotalmassoflensesM and Einsteinradiusoflensisgivenby: semi-major axiss. Inthis figurethe black dashed and solidlines represent the threshold values between the close-intermediate (or M π (mas) resonance) and intermediate-wide binaries respectively. For cal- θE =√κMlπrel =300µas l rel , (8) culating the inner area of caustics, we first determine the caustic s0.3M⊙r 0.036 pointswhichhavesosmalldeterminantofJacobianmatrix.Then, whereM isthelensmass,κ= 4G andπ =1Au( 1 1 ) aftersortingtheconsecutivepointsonthecausticlinewecalculate where Dll and Ds are the lensc2aAnud sourcreeldistancesDflro−mDtshe the interior area of caustics numerically. The detectability factor observer. Usually, a microlensing parallax is defined as πE = has the highest amount for the intermediate microlensing events πrel/θE whichcanbemeasuredfromthephotometricevent. whichlocateneartotheclose-intermediatethresholdline(dashed Thecomponentsofthiscentroidshiftvectoraregivenby: line).However,Gaudi(2012)intuitivelypointedoutthatthereso- p nancemicrolensingeventsaccordingtotheirlargesizesandcross- δθc,x(u0,p) = u2+p2+2θE, sections are more sensitive to the small changes in d owing to 0 u lensorbitalmotion.Accordingtothisfigure,theorbitalmotionde- δθc,y(u0,p) = u2+p02+2θE. (9) tectabilityinmicrolensingeventswithmoremassivelenseswhich 0 have the same caustic curve, is larger than those with less mas- Theshiftinthelightcentroidtrajectoryofthesourcestarimages sive lenses. For this plot, we consider q = 1, vt = 175km/s, owingtoapoint-masslenstracesanellipsewhilethesourcestar Dl = 4KpcandDs = 8Kpc.However, thesmalleramountsof ispassinganstraightforwardlineinthelensplane,plottedinFig- q just move two threshold lines towards each other so that they ure(2).BydefiningX = δθc,x andY = δθc,y − 2(uu020θ+E2),these mostlyformcloseandwidebinarieswhilethedetectabilityfactor coordinatessatisfythefollowingequation: ismaximumforintermediatebinariessimilartotheplottedcase. Y Inthefollowing,weexplaintheastrometricpropertiesofmi- X2+( )2 =a2, (10) b crolensing and seek binary microlensing events which have de- whereb= u0 anda= θE .Thisellipseiscalledtheas- tectable astrometric trajectories as well as very likely detectable √u20+2 2√u20+2 orbitalmotionsignatures. trometricellipse(Walker1995;Jeongetal.1999).Theratioofthe c 0000RAS,MNRAS000,000–000 (cid:13) 4 SedigheSajadian M(M ) Dl(Kpc) Ds(Kpc) RE(Au) θE(millias) µl(′′/yr) Vt(Km/s) tE(day) s(Au) P(day) ⊙ ( ) >5 6.5 8.0 >7.0 >1.1 0.006 175 >70 4 61300 A ∼ ∼ ∼ ∼ ∼ ( ) 0.3 60.1 8.0 60.5 >4.9 >0.4 185 65 4 5000 B ∼ ∼ ∼ ∼ ∼ Table1.Thepossiblerangesofphysicalparametersoftwosetsofbinarymicrolensingeventswithmeasurableshiftsintheastrometriclightcentroidofsource starimages:( )gravitational microlensing events withbinarystellar-mass blackholes and( )thosewithhighpropermotionstarslocated indistances A B smallerthan100parsecfromthesun. axes of this ellipse is a function of impact parameter, so that for 4 2.6 3 3.6 thelargeimpact parameter thisellipseconverts toa circlewhose (a) 2 radius decreases by increasing impact parameter and for small 2.4 R)E 01 2.4 Y( -1 amounts, itbecomes astraight line(seeFigure2) (Walker1995). 2.2 -2 -3 1.2 sswionhcifcreohmabasa=swtreo2lθlmuE0aestratinhcdedwpataearawclaleanxgsemitmetpahsleyuraoenmbgtuealniantrtuEh0einflsretoenmisnmprahadsoistuoscmafnertorbmye, A 11 ..268 -4-4-3-2-1x( R0E )1 2 3 4 - 01.2 δθ(mas)c,y inferred. In this figure the points with the maximum amounts of the centroid shift (i.e. u = √2) were shown with star symbols. 1.4 -2.4 1.2 bθFEeoir/nuuglw≫enhse√erde2abstyhtheaespimzoeiangotn-fmifithacseastailosetnnrosfmafcoetrotrruicocfeant1prootiiendntd-slshikitfeotsf1oalu+lrsc2oe/ffsutaa4sr. mag) 0 . 011 -3 -2 -1 δθ 0c,x(mas 1) 2 -343..56 mas) Hence,thecentroidshiftofsourcestarim≫agesfallsoffmuchmore res( 1.5 res( -0.1 0 slowlythanthelightamplificationofsourcewhilethesourcedis- -2 -1 0 1 2 3 -6 -4 -2 0 2 4 6 t(tE) t(tE) tancefromthelensrises(Dominik&Sahu2000).Asaresult,the astrometriccross-sectionislargerthanthephotometriconeinmi- 2.4 4 1.6 2 crolenInsincgonetvraesnttsw.ith the magnification factor which is a dimen- 2.2 (b) Y(R)E - 02 0.8 2 sionlessscalar,thelightcentroidshiftofthesourcestarimagesis -4 astediinmreandsiiuosnaglivveenctboyraenqduaittisosniz(e8)i.sTphroepaonrgtiuolnaarlEtointshteeiannrgaudliaursEoifna- A 11..68 -4 -2x( R0E) 2 4 0 δθ(mas)c,y K-orM-dwarfstarasthemostprobablelenswithM 0.3M l ∼ ⊙ 1.4 -0.8 locatedintheGalacticdiskD 6.5Kpc,intheobservationsto- l whuanrddsretdhemGicarola-catriccsebcuolngde(i.see.eDeqs∼ua∼tio8n.08K)pwch,icishoisftoorodesrmoafllatofebwe 01. .112 δθc,x(mas) -1.6 -1 0 1 3 olabrsEerivnesdte.inHorawdeivuesr,enfohrantwceos:se(ts)ofwmheincrothleenlseinnsgmevaesnstsisthhiegahnagnud- res(mag) 0 1.5 res(mas) ( )whenthelensissoclosetoAtheobserver.Thesetwoclassesof -0.1-2 -1 0 1 2 3 -6 -4 -2 0 2 4 6 0 mBicrolensing events with detectable astrometric trajectories have t(tE) t(tE) differentpropertiesowingtodifferentamountsoftheEinsteinra- Figure3.Twotypicalbinarymicrolensingeventswithrotatingstellar-mass dius.Intable(1)webrieflyexpressthepossiblerangesofamounts blackholes.Ineachsubfigure,thelightcurves(leftpanels),astrometrictra- oftheirphysicalparameters. jectories(rightpanels)andthesourcetrajectorieswithrespecttothecaustic curve(insetsintheleft-handpanels)withoutandwithconsideringtheef- Theset( )ofmicrolensingeventswhicharecharacterizedin A fectoflens orbital motionareshownwithgreen dashed andbluedotted thesecondrowoftable(1)arelong-durationmicrolensingevents linesrespectively.Thepoint-masslensmodelsareshownbyredsolidlines. withnolightfromthelens.Theseeventswithdetectableastromet- Thephotometricandastrometricresidualswithrespecttothestaticbinary rictrajectoriesarebest candidates toindicate the massof stellar- modelareplotted withgraydottedlines. Therelevant parameters canbe massblackholeslocatedintheGalacticdiskthroughthephotomet- foundinTable(2). ricandastrometricdataaswellastheparallaxeffect(Sahu2011a). IthasbeenfiveyearssincetheHSTstartedobservingsomeoflong- durationmicrolensingeventswithnolightfromthelens.Because noisolatedblackholehasbeendiscoveredtodate,sotheseevents Thesecond set ( ) whicharecharacterized inthethirdrow B verylikelyshowbinaritysignatures(Sahu2011b).Thebinarymi- of table (1) contains gravitational microlensing events in which crolensingeventsduetostellar-massblackholeslocatedinGalac- the lens is so close to the sun, e.g. closer than 100 parsec from tic disk with the total mass of lenses larger than 5M and semi thesunposition.Thesestarsarebestcandidatesfortheastromet- ⊙ major axis of order of 4Au which have the orbital period larger ricmicrolensing through GAIA mission for accurately indicating than1300days,arecharacterizedbytheEinsteinradiuslargerthan their mass(Proftetal.2011). Owing to the small distance of the 7.8AuandtheEinsteincrossingtimelargerthan80days.Therefore, lens from the sun, their proper motion is so high and larger than mostoftheseeventsarecloseandafewofthemareintermediate 0.5arcsecondinyear.Thesemicrolensingeventsarecharacterized orwidebinarymicrolensingeventsinwhichtheorbitalmotionef- by the Einstein radius smaller than 0.5Au and Einstein crossing fectoflensesisnotignorableduetotheconsiderableratioofthe timesmallerthan5days.Letusassumethatthelensisabinarysys- Einsteincrossingtimetotheorbitalperiodandthefinitesizeeffect tem.Inthatcase,mostofthesebinarymicrolensingeventsarewide istoosmallowingtothelargeEinsteinradius. andafewofthemareintermediateorclosemicrolensingeventsin c 0000RAS,MNRAS000,000–000 (cid:13) Orbitalmotioneffects inastrometricmicrolensing 5 Ml(M ) q s(Au) d(RE) tE(day) P(day) β◦ γ◦ α◦ u0 vt(km/s) ⊙ (a) 8.5 0.06 2.5 0.33 48.6 478.9 5.3 85.7 101.7 0.43 271.6 − (b) 13.7 0.09 3.9 0.28 276.7 734.8 23.1 69.3 71.6 0.45 88.6 − (c) 15.4 0.12 9.5 0.64 233.1 2572.1 40.3 82.7 233.4 0.77 110.0 − Table2.TheparametersusedtomakethemicrolensinglightcurvesshowninFigure(3)andFigure(4). whichtheorbitalmotioneffectoflensesisignorableduetothetoo 1.7 6 1.6 smallratioof theEinsteincrossing timetotheorbital period and (c) 4 the finite-lens effect is probably considerable owing to the small 1.6 R)E 02 Y( -2 0.8 Einsteinradius.Notethat,thefinite-sourceeffectismostlyignor- 1.5 -4 atobltehebHeseconaucuresc,eebositfnatarhrfeyrosmmmiactlrhloealmeonbossuiennrgtveoerfviet.hnee.tsxrew(l=aittihvDerlod/tiaDsttisan)ngc6estoe0lf.l0ath1r-e2m5lea.nsss A 11..34 -6-6-4-2x( R0E) 2 4 6 0 δθ(mas)c,y blackholeslocatedintheGalacticdiskwhichhavedetectableas- 1.2 -0.8 trometricshiftsinthesourcestartrajectorieshavemostlikelyde- 1.1 ttieoctaobflethoerbEiitnasltmeionticornosssiignngattuirmese(tcoasteheAo)r.bIintatlhepseerieovdenists,htihghe.raIf- 0. 11 -1 δθc ,0x(mas) 1 2 -31.6 tmheertreicissnigoncaatuursetioc-fcororbsistianlgmfeoatitounreoirnetvheenirolifgthhtecsuercvoensd,athryeplehnostois- res(mag) 0 1.5 res(mas) -0.1 0 too small tobe detected whereas theastrometricsignature owing -2 -1 0 1 2 3 -6 -4 -2 0 2 4 6 t(tE) t(tE) totheorbitalmotioncanbedetectedintheastrometrictrajectories which can show the existence of a secondary component. In this Figure4.Asimulatedmicrolensinglightcurveandastrometrictrajectoryof workwepayattentiontotheseeventsowingtomuchprobabilityof sourcestar.DatapointstakenbysurveytelescopesandtheHSTareshown withvioletpointsandblackstars.Theparametersusedtomakethisevent detectingastrometricsignaturesoforbitalmotion. canbefoundintable(2). 2.3 Astrometricmicrolensingwithrotatingstellar-mass blackholes Here,westudytheastrometricmicrolensingduetorotatingstellar- Theorbitalmotionoflensesmakestheastrometrictrajectoryrotate mass black holes. Asmentioned, lensorbital motion changes the inthesamewayasthesourcetrajectory. lenses orientation. As a result, the magnification pattern changes Inthesubfigure(b)someoscillatoryfashionscanbeseenin withtimeowingtothetimevariationoftheprojecteddistancebe- the astrometric trajectory which is owing to lens orbital motion. tween two lenses as well as the straightforward source trajectory Indeed, whenever the source trajectorydoes not crossthe caustic rotateswithrespect tothebinary axis.However, sourcestar does curve, the astrometric centroid shift can be estimated as the case not always receive the gravitational effect of the secondary com- of point-mass lens, i.e. δθc′ = u′u2+′ 2 where u′ = x′s2+ys′2, ponent, e.g.when theratioof thelensmassesissosmall.Inthat x′s and ys′ arethecomponents of angular source-lenspdistance by case, the source trajectory does not change in the observer refer- consideringtheeffectoflensorbitalmotion: enceframe.Consideringthispoint,weletthelensesrotatearound theircommoncenterofmasswhentheastrometrictrajectorydevi- x′s = 1−ε2sinξ(t)[u0(cosβcosα−sinαsinβsinγ) atesmorethan 5microarcsecondsfromtheastrometricellipsedue + pp(t)(cosβsinα+sinβsinγcosα)] toapoint-masslenslocatedatthecenter ofmasspositionwhose + cosξ(t)cosγ[p(t)cosα u sinα] p(t)ε 0 massisequal tothetotal massof thelenses. However,whenthis − − differencebecomessmallerthanthethresholdamount,westopthe ys′ = 1−ε2sinξ(t)[u0(cosβsinα+cosαsinβsinγ) lensesrotationand letthe sourcetrajectoryslowlyreturn backto + pp(t)( cosβcosα+sinβsinγsinα)] − itsstraightforwardtrace. + cosξ(t)cosγ[u cosα+p(t)sinα] u εcosγ, (11) 0 0 In Figure (3) we represent two examples of microlensing − eventswithrotatingstellar-massblackholes.Ineachsubfigure,the whereαistheanglebetweenthesourcetrajectoryandthebinary lightcurves(leftpanels)andastrometrictrajectories(rightpanels) axis.Byconsideringtheorbitalmotionsomeoscillatoryfashions, withoutandwithconsidering theeffectoflensorbitalmotionare termscontainingsinξandcosξ,willappearintheastrometrictra- shown with green dashed and blue dotted lines respectively. The jectorieswhichdependingontheratiooftheEinsteincrossingtime point-mass lens models are shown by red solid lines. The photo- totheorbitalperiodtheyorsomepartsofthemcanbedetected. metric and astrometric residuals with respect to the static binary Whentheanglebetweentheorbitalmotionplaneoflensesand modelareplottedwithgraydottedlines.Theparametersofthese skyplaneisabout π/2i.e.γ 0andβ π/2,therotationof ∼ ∼ ∼ microlensingeventscanbefoundinTable(2).Weusethegeneral- binaryaxisissosmall.Inthatcase,theorbitalmotionsignaturein izedversionoftheadaptivecontouringalgorithm(Dominik2007) theastrometrictrajectoriesisignorableespeciallywhenthereisno forplottingastrometrictrajectoriesinbinarymicrolensingevents. caustic-crossingfeature. Even though, theorbital motion effect isnot obvious in thelight Depending onthesizeoftheangular Einsteinradiusthisef- curves, this effect can be detected in the astrometric trajectories. fectcanbeseenintheastrometrictrajectory.Ifthereisnocaustic- c 0000RAS,MNRAS000,000–000 (cid:13) 6 SedigheSajadian crossing feature,theprobability of detecting thephotometricsig- natureoforbitalmotionissosmall. 0.09 0.08 3 MONTECARLOSIMULATION In this section we perform a Monte Carlo simulation to obtain 0.07 quantitativelydetectabilityoflensorbitalmotioninastrometricand 0.06 photometric microlensing with rotating stellar-mass black holes. In the first step, we produce an ensemble of binary microlens- )max d(t0.05 iinngg teovetnhtespwhyitshicsatleldlaisrt-rmibaustsiobnlaocfkphaoralemsetaesrsm. Tichroenle,ncsoesrreascpcoonrdd-- dN/event0.04 inglightcurvesandastrometrictrajectoriesaregeneratedaccord- ing to the real data points from an ensemble of observatories in 0.03 themicrolensingexperiment.Byconsideringadetectabilitycrite- 0.02 rion, weinvestigatewhether thesignatures of lensorbital motion canbeseeninobservationsofmicrolensinglightcurvesandastro- 0.01 metrictrajectories.Ourcriterionfordetectabilityoforbitalmotion is∆χ2 = χ2OM −χ2SB > ∆χ2th where χ2OM and χ2SB are the 0 0 1 2 3 4 5 6 7 χ2softheknownrotatingbinarymicrolensingmodelandthestatic tmax(tE) model with the same binary parameters respectively. We assume thatfromfittingprocessandsearchingallparameterspacethebest- Figure 5. Distribution functions of the time, with respect to the time of fittedsolutionistheknownbinarysolution.Ouraimistocompare theclosestapproach andintheunitoftheEinstein crossingtime,ofthe photometricefficiencyofdetectinglensorbitalmotionwiththeas- maximumphotometric(greenhistogram)andastrometric(redhistogram) trometricone.Hence,wecalculate∆χ2forsimulatedlightcurves deviations duetolensorbitalmotionforbinarymicrolensing eventswith andastrometrictrajectoriesindependently. detectableeffectsoflensorbitalmotionintheirlightcurvesandastrometric Here,weexplaindistributionfunctionsofthelensandsource trajectoriesrespectively. parameters. For lens parameters we take the mass of the stellar- mass black hole as the primary from the following distribution function(Farretal.2011): m⋆ isthemassofthesourcestarintheunitofthesolarmassand M α = 0.3for0.01 6 m⋆ 6 0.08,α = 1.3for0.08 6 m⋆ 6 0.5 P(Ml)∝exp(−Mol), (12) Aanndotαhe=rpa2r.a3m5eftoerrwme⋆ne>ed0i.n5o(uKrrsoimupualaettioanl.i1s9t9h3e;raKdriouuspoafs2o0u0r1c)e. whereP(Ml)=dN/dMlandMo =4.7M intherangeofMl star. This parameter will be used in generating the light curve ⊙ ∈ [4.5,25]M . The mass ratio of the secondary to the primary is of microlensing events with the finite size effect. For the main- ⊙ drawnfromthedistributionfunction(Duquennoy&Mayor1991): sequence stars,the relationbetween themass and radiusisgiven (q q )2 byR⋆ =m0⋆.8whereallparametersnormalizedtothesun’svalue. ρ(q) exp( − 0 ) (13) Wedidnotconsidergiantsourcestars.Forindicatingthetrajectory ∝ − 2σ2 q ofthesourcewithrespecttothebinarylens,weidentifythispath whereρ(q)=dN/dqintherangeofq [0.01,1],q =0.23and withanimpactparameterandorientationdefinedbyananglebe- 0 ∈ σq = 0.42. Wechoose the semi-major axis s of thebinary orbit tweenthetrajectoryofsourcestarandthebinaryaxis.Weletthis fromtheO¨piklawwherethedistributionfunctionfortheprimary- anglechangeintherangeof[0,2π].Theimpactparameteristaken secondary distance is proportional to ρ(s) = dN/ds s−1 uniformlyintherangeofu0 [0,1]andthecorresponding time (O¨pik1924) in the range of s [0.6,30]Au. The loca∝tion of foru issetzero. ∈ 0 ∈ lenses from the observer is calculated from the probability func- Thevelocitiesofthelensandthesourcestararetakenfromthe tionofmicrolensingdetectiondΓ/dx ρ(x) x(1 x),where combinationoftheglobalanddispersionvelocitiesoftheGalactic ∝ − x = Dl/Ds changes in the range of x ∈ [0,p1] and ρ(x) is the diskandbulge(Rahaletal.2009;Binney&Tremaine1987).The stellar density of thin disk, chosen from Rahal et al. (2009). The relative velocities of the source-lens is determined by projecting time of arriving at the perihelion point of orbit tp is chosen uni- thevelocityofthesourcestarintothelensplane. formlyintherangeoftp [t0 P,t0+P].Theprojectionangles Weignorethemicrolensingeventsinwhichtheminimumdis- ∈ − toindicatetheorientationoforbitoflenseswithrespecttothesky tancebetweentwolensesandalsominimumimpactparameterare plane, i.e.β and γ, aretaken uniformly inthe range of [ π,π]. notoneorderofmagnitudelargerthantheSchwarzschildradiusof −2 2 Wetaketheeccentricityofthelenses’orbituniformlyintherange theprimarylens.BecausetheydonotobeyKeplerianlaws. ofε [0,0.15]. Now, we generate data points over the light curves and as- ∈ For the source, we take the coordinate toward the Galactic trometrictrajectories.Weassumethatmicrolensingeventsareob- bulge(l,b), distributionof thematter instandard Galacticmodel servedwiththeHST,OGLEandMOAsurveys.Thetimeinterval and generate the distribution of the source stars according to the betweendatapointsandthephotometricuncertaintiesforeachdata Besanconmodel(Dweketal.1995;Robinetal.2003).Weassign pointtakenbysurveytelescopesaredrawnfromthearchiveofthe thethe absolute, apparent color and magnitude of thesource star microlensinglightcurves.TheHSTstartobservingtheseeventsaf- inthesameapproachwhichisexplainedin(Sajadianetal.2013). terthatthelightcurvereachestoagiventhresholdofmagnification Themassof source star istaken fromthe Kroupamass function, (i.e. 3 ).WesupposethattheHSTismonitoringthesemicrolens- ξ = dN/dm ∝ m−⋆α,intherangeofm⋆ ∈ [0.3,3]M⊙,where inge√ve5ntswithcadenceoneday.Theotherfactorinsimulationof c 0000RAS,MNRAS000,000–000 (cid:13) Orbitalmotioneffects inastrometricmicrolensing 7 1 1 0.9 1 0.8 0.8 0.8 0.7 0.8 0.6 0.6 00..56 0.6 0.4 0.4 0.4 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0 0 0 0 5 10 15 20 25 -2 -1.5 -1 -0.5 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ml(Mo) log10(q) u0 x 1 1 1 0.9 0.8 0.8 0.8 0.75 0.7 0.6 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.3 0.2 0.25 0.2 0.2 0.1 0 0 0 0 -1 log10(d(RE))0 close resonance wide -90 -60 -30 β0 30 60 90 -90 -60 -30 0γ 30 60 90 Figure6.Theastrometric(solidline)andphotometric (dashedline)effi- Figure7.Theastrometric(solidline)andphotometric (dashedline)effi- cienciesofdetectinglensorbitalmotionfordifferentparametersoflenses cienciesofdetectinglensorbitalmotionfordifferentparametersofsource anddifferenttopologyofcaustics(thelastpanel). starandlensestrajectories. torieshelpstodiscover further secondary components around the thelightcurveistheexposuretimeforeachdatapointtakenbythe primarylensaswellasresolveclose/widedegeneracy. HST.Fromtheexposuretimewecancalculatethetheerrorbarfor InFigure(5)weplotthedistributionfunctionsofthetimeof eachdatapoint.Wecantunetheexposuretimeinsuchawaythat themaximumphotometric(greenhistogram)andastrometric(red wehaveuniformerror barsthought out thelight curve. Here,we histogram)deviationsduetolensorbitalmotion,measuredwithre- demandthephotometricaccuracyforeachdatapointtakenbythe specttothetimeoftheclosestapproachandintheunitoftheEin- HSTabout0.4percentwhichischosenaccordingtotherecorded steincrossingtimei.e.tmax,forbinarymicrolensingeventswith exposuretimesforthoselong-duration microlensingeventsbeing detectable effects of lens orbital motion in their light curves and observedbytheHST. astrometric trajectories respectively. According to this figure, the Astrometricobservations of sourcestarpositionaredone by orbital motion signature in the astrometric trajectory can be seen the HST with the astrometric accuracy of σas = 200 micro- atsometimeoftenafteroneEinsteincrossingtimewithrespectto arcsecond. The simulated astrometric data points are shifted ac- the time of the closest approach whereas this signal in the light cording to the astrometric accuracy of the HST by a Gaussian curvecanbedetectedatsometimealmostbeforeit.Inwideorin- function. A sample of the simulated light curve and astrometric termediatebinaryeventswithdetectableastrometricsignaturesof trajectory of source star is shown inFigure (4). Inthis figurethe orbitalmotion,themaximumdeviationhappensatverylatetime, datatakenbysurveytelescopesandtheHSTareshownwithvio- e.g.t t0 >6tE,whichhavemadesomesosmallpeaksinFigure − letpointsandblackstars.Theparametersusedtomakethisevent (5). arebrought inthefourthrowoftable(2).Thetime-variationrate Inordertostudythesensitivityofdetectingorbitalmotionin of the astrometric centroid shift vectors is not constant. As a re- astrometrictrajectoriesofsourcestarandphotometriclightcurves sult, in some places over the astrometric trajectory the HST data ontheparametersofthemodel,weplottheastrometric(solidline) pointsdonotuniformlysetdespitesimilarcadences(seeFigure4). andphotometric(dashedline)detectionefficienciesintermsofthe Inthisevent,theorbitalmotioneffectisobviousintheastrometric relevant parameters of the binary lens and source in Figures (6) trajectoryaswellasthephotometriclightcurve. and(7).Weignoretheirrelevantparametersthatdonotchangethe Our criterion for detectability of orbital motion is ∆χ2 = efficiency function. The detection efficiency function in terms of χ2 χ2 > ∆χ2 .Weconsider∆χ2 =250forbothphoto- thebinarylensandsourceparametersisgivenasfollows. OM − SB th th metricandastrometricobservations.FromtheMonteCarlosimu- (i)Thefirstparameteristheprimarylensmass,M.Here,the l lationweobtainthat80.2,16.9and2.9percentoftotalsimulated astrometricefficiencyofdetectinglensorbitalmotionriseswithin- events are close, intermediate and wide binaries and the average creasingtheprimarylensmass.Thephysicalinterpretationofthis detectionefficiency< ǫOM >fortheorbitalmotiondetectionin featureisthattheangular Einsteinradiusandasaresult ofitthe theastrometrictrajectoriesandtheamplificationlightcurvesofbi- astrometricsignal risewithincreasing theprimarylensmass. On narymicrolensingeventswithstellar-massblackholesare87.3and thephotometric detection efficiency therearetwo factorsthat ef- 48.2percent,respectively.Asaresult,intheseeventslensorbital fectinversely.WithincreasingtheprimarylensmasstheEinstein motioncanbeseenmostlikelyinastrometrictrajectorieswhereas radiusriseswhichdecreasesthenormalizeddistancebetweentwo photometricsignaturesoforbitalmotionareoftentoosmalltobe lenscomponentsandthecausticsize.Ontheotherhand,theratio detected.Detectinglensorbitalmotionintheirastrometrictrajec- oftheEinsteincrossingtimetotheorbitalperiodoflensesmotion c 0000RAS,MNRAS000,000–000 (cid:13) 8 SedigheSajadian increases.However,thefirsteffectisdominant.Because,thepho- this signal in the light curve can be detected at sometime almost tometric signature of orbital motion can more likely be detected beforeit. whilethesourceiscrossingthecaustic. Binary microlensing events with rotating stellar-mass black (ii) The second parameter is the ratio of the lens masses, q. holes which have detectable astrometric shifts in the source star Theratioofthelensmasseshasageometricaleffectontheshapeof trajectorieshavemost likelydetectable orbital motion signatures. thecausticlines,whereincreasingittowardsthesymmetricshape Intheseevents,theratiooftheEinsteincrossingtimetotheorbital maximizesthedetectionefficiency.Indeed, thesizeofthecentral periodishigh.Although,orbitalmotioneffectintheirlightcurves causticscalesasq(Gaudi2012). is too small especially when there is no caustic-crossing feature, (iii)Thethirdparameter istheprojectedSemi-majoraxisof but the astrometric signature owing to the orbital motion can be lensorbit normalized tothe Einsteinradius. The photometric de- detectedattheendpartsofastrometrictrajectories.Inaddition,the tectionefficiencyhasthemaximumamountaround1RE inwhich Hubble Space Telescope (HST) is observing some long-duration thecausticcurveshavethemaximumsize.However,theastromet- microlensing events which are likely to be owing to stellar-mass ric detection efficiency has the highest amount for close binaries blackholes,followingtheapprovedproposalbySahuetal.(2010). withthelargeratiooftheEinsteincrossingtimetotheorbitalpe- Hence,weexpectthatifthereisasecondarylens,theastrometric riod. signatureofitsorbitalmotioncanmuchprobablybeobserved. (iv)Differenttopologiesofcausticcurve:Theastrometricand ByperformingMonteCarlosimulationweevaluatedtheeffi- photometricdetectionefficienciesaremaximizedincloseandinter- ciencyofdetectingorbitalmotioninastrometricandphotometric mediatebinariesrespectively.Indeed,thesizeofthecentralcaus- microlensingwithbinarystellar-massblackholes.Weconsidered ticwhichindicatestheprobabilityofcausticcrossingandthede- ∆χ2 > 250 as the detectability criterion and concluded that as- tectability of lens orbital motion photometrically has the highest trometric efficiency is 87.3 per cent whereas the photometric ef- amount for the intermediate microlensing events (see Figure 1). ficiency is 48.2 per cent. From total simulated events 80.2, 16.9 Notethatmostsimulatedeventsareclosebinaries. and 2.9 per cent were close, intermediate and wide binaries re- (v)Impactparameter,u ,showninFigure(7):Decreasingthe spectively.Also,themoremassivelenses,themoredetectablesig- 0 impactparameterincreasesthephotometricdetectionefficiency.A natures of orbital motion. Detecting orbital motion in binary mi- smallerimpactparameterfromthecenterofthelensconfiguration crolensingeventshelpsnotonlytodetectfurthersecondary com- risestheprobabilityofthecausticcrossing.However,theastromet- ponentsevenwithoutanyphotometricbinaritysignaturebutalsoto ricdetectionefficiencydoesnotdependontheimpactparameter. resolveclose-widedegeneracyaswell. (vi) Thenext parameter isx = Dl/Ds therelativedistance Acknowledgment I am especially thankful to Sohrab Rah- ofthelenstothesourcestarfromtheobserver. Theangular Ein- var for his encouragement, useful discussions and reading of the steinradius andastrometric signalsincrease by decreasing x.On manuscript.IwouldliketothankMartinDominikforgeneralizing theotherhand,theEinsteinradiushasthehighestamountaround hisadaptivecontouringalgorithmtocalculatetheastrometricshifts x=0.5.Whenxtendsto0.5,byincreasingtheEinsteinradiusthe inbinarymicrolensingevents,MatthewPennyforpointingoutan normalizeddistancebetweentwolenscomponentsandtheproba- importanterror,AndyGouldandCheonghoHanforcarefulread- bilityofthecausticcrossingdecrease. ingandcommentingonthemanuscript.Finally,Ithankthereferee (vii)and(viii)Inclinationanglesoforbitalplaneoflenseswith forusefulcommentsandsuggestionswhichcertainlyimprovedthe respect to the sky plane, β and γ. The astrometricdetection effi- manuscript. ciencyismaximizedinβ 0andγ π/2inwhichtherotation ∼ ∼± angleofthesourcetrajectorywithrespecttothebinaryaxisowing tolensorbitalmotion,θ,hasthemaximumamount. l REFERENCES AnJ.H.,etal., 2002,ApJ,572,L521. Binney, S.,&Tremaine, S. 1987, GalacticDynamics. Princeton 4 CONCLUSIONS Univ.Press,Princeton,NJ. In this work we investigated lens orbital motion in astrometric ChangK.,RefsdalS., 1979,Nature,282,L561. microlensing and itsdetectability. In microlensing events, theas- ChungS.-J.,ParkB.-G.,RyuY.-H.&HumphreyA. 2009,APJ, trometriccentroidshift insource trajectoriesfallsoff much more 695,L1357. slowlythanthelightamplificationasthesourcedistancefromthe DominikM., 2007,MNRAS,377,L1679. lenspositionincreases.Hence, perturbationsdeveloped withtime DominikM.&SahuK.C., 2000,ApJ.,534,L213. e.g.theeffectoflensorbitalmotionmakeconsiderabledeviations DominikM. 1999,A&A,349,L108. inastrometrictrajectorieswhereasthephotometricsignaloforbital DominikM., 1998,A&A,329,L361. motioncanmostlybedetectedwhenthesourceisaroundthecaus- DongS.,GouldA.,UdalskiA.,etal., 2009,ApJ,695,L970. ticcurve. DuquennoyA.&MayorM., 1991,A&A,248,L485. The orbital motion of lenses changes the magnification pat- Dwek,E.,Arendt,R.G.,Hauser,M.G.,etal., 1995,ApJ,445, ternbychangingtheprojecteddistancebetweentwolensesaswell L716. asrotatesthestraightforwardsourcestartrajectorywithrespectto EinsteinA., 1936,Science,84,L506. thebinaryaxis.Theseeffectscanbeseeninthemicrolensinglight FarrW. M.,SravanN.,Cantrell A.,Kreidberg L.,Bailyn C.D., curveiflensesrotateeachotherconsiderablywhenthesourcestar MandelI.&KalogeraV., 2011,ApJ,741,L103. is around the caustic curve. At the same time, the orbital motion GaudiB.S.,etal., 2008,Sci,319,L927. oflensesrotatestheastrometrictrajectoryinthesamewasasthe GaudiB.S., 2012,Annu.Rev.Astron.Astrophys.,50,L411. sourcetrajectory.DependingonthesizeoftheangularEinsteinra- GouldA.&HanC. 2000,ApJ,538,L653. dius this effect can be seen at sometime often after one Einstein GouldA.,ShinI.-G.,HanC.,UdalskiA.&YeeJ.C., 2013,ApJ, crossingtimewithrespecttothetimeoftheclosestapproachwhile 768,L126. c 0000RAS,MNRAS000,000–000 (cid:13) Orbitalmotioneffects inastrometricmicrolensing 9 HanC.,ChunM.-S.&ChangK. 1999,ApJ,526,L405. Høg,E.,Novikov,I.D.,&Polnarev,A.G. 1995,A&A,294, L287. IokaK.,NishiR.&Kan-YaY.,Prog.Theor.Phys.,102,L983. JeongY.,HanC.&ParkS.-H. 1999,ApJ,511,L569. Kroupa,P.,Tout,C.A.,&Gilmore,G.1993,MNRAS,262,L545. Kroupa,P.2001,MNRAS,322,L231. Liebes,Jr.S., 1964,Phys.Rev.,133,L835. Miralda-Escude´J., 1996,ApJ,470,L113. Miyamoto,M.&Yoshii,Y. 1995,AJ,110,L1427. O¨pik,E.,1924, Pulicationsde.L’ObservatoireAstronomique de I’Universite´deTartu,25,L6. Paczys´kiB., 1986a,ApJ,301,L502. Paczys´kiB., 1986b,ApJ,304,L1. Paczys´kiB., 1995,ActaAstron.,45,L345. Paczyn´skiB., 1997,Astrophys.J.Lett.astro-ph/9708155. PennyM.T.,MaoS.&KerinsE., 2011,MNRAS,412,L607. ProftA.,Demleitner M. &WambsganssJ., 2011, A &A, 536, L50. Rahal, Y.R.,AfonsoC.,AlbertJ.-N.,etal. 2009, A &A,500, L1027. RattenburyN.J.,BondI.A.,SkuljanJ.&YockP.C.M., 2002, MNRAS,335,L159. Robin, A.C.,Reyle´,C.,Derrie`re,S.,Picaud,S., 2003, A&A, 409,L523. Sajadian,S.,Rahvar,S.&DominikM., 2013,inpreperation. SahuK.C.,BondH.E.,AndersonJ.,UdalskiA.,DominikM.& YockP., 2010,theproposalnumber:13458. SahuK.C., 2011,OralPresentationat15thMicrolensingWork- shop,Salerno. SahuK.C., 2011,OralPresentationatannualMindStepmeeting, Qatar. ShinI.-G.,UdalskiA.,HanC.etal. 2011,ApJ,735,L85. ShinI.-G.,HanC.,ChoiJ.-Y.,etal. 2012,ApJ,755,L91. ShinI.-G.,SumiT.,UdalskiA.,etal., 2013,ApJ,764,L64. WalkerM.A. 1995,ApJ,453,L37. c 0000RAS,MNRAS000,000–000 (cid:13)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.