ebook img

Orbital Accuracy Analysis for a Geosynchronous Synthetic Aperture Radar Imaging Satellite PDF

97 Pages·2011·1.15 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Orbital Accuracy Analysis for a Geosynchronous Synthetic Aperture Radar Imaging Satellite

MASTER'S THESIS Orbital Accuracy Analysis for a Geosynchronous Synthetic Aperture Radar Imaging Satellite enol Özkan Master of Science Space Engineering - Space Master Luleå University of Technology Department of Computer Science, Electrical and Space Engineering CRANFIELD UNIVERSITY SCHOOL OF ENGINEERING MSc THESIS Academic Year 2010-2011 ¨ S¸enol Ozkan Orbital Accuracy Analysis for a Geosynchronous Synthetic Aperture Radar Imaging Satellite Supervisors: Dr. Stephen E. Hobbs Dr. Peter Roberts July 2011 This thesis is submitted in partial (75%) fulfillment of the requirements for the Degree of MSc in Astronautics and Space Engineering. (cid:13)c Cranfield University, 2011. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. i Abstract In geosynchronous region, operating a synthetic aperture radar can be advantageous compared to low Earth orbiting radars. Difficulties arise due to the long integra- tion duration requirement of this configuration. Image recovery from the signals recorded during long integration durations depends on the quality of the phase his- tory knowledge. Knowing the phase history accurately requires modelling the phase shifts that might influence the image recovery process. In this project, the orbital perturbation sources that can cause phase shifts have been analysed and modelled. An orbit propagator software was developed in order to observe the effects of the perturbations on the orbit, and a discussion was made about the uncertainties as- sociated with the developed software. It was seen that the models developed in this study are accurate enough to have a GEOSAR mission with 8 hours of integration duration. However, it must be noted that a solar pressure model study was not included in this work, and later it should be carried out in order to cover all of the perturbation sources. ii iii Acknowledgements I would like to thank my supervisors Dr. Stephen Hobbs and Dr. Peter Roberts for their guidance throughout the project. I also want to thank my dear friend B. Y. Kaya for his support. iv CONTENTS v Contents Contents v List of Figures ix List of Tables xi Abbreviations xiii 1 Introduction 1 1.1 Aim of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Structure of the Document . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Literature Review 3 2.1 GEO Environment and GEOSAR . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Geosynchronous Orbit . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Synthetic Aperture Radar . . . . . . . . . . . . . . . . . . . . 4 2.1.3 SAR Requirements in GEO . . . . . . . . . . . . . . . . . . . 5 2.2 Coordinate Systems and Time Systems . . . . . . . . . . . . . . . . . 7 2.2.1 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 Time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Perturbation Sources in GEO . . . . . . . . . . . . . . . . . . . . . . 9 vi CONTENTS 2.3.1 Non-spherical Gravitational Potential . . . . . . . . . . . . . . 10 2.3.2 Lunisolar and Third Body Perturbations . . . . . . . . . . . . 13 2.3.3 Solar Pressure Perturbation & Albedo . . . . . . . . . . . . . 14 2.3.4 Tidal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.5 Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.6 Micrometeoroids . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.7 Atmospheric Drag . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Perturbation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.1 Cowell’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.2 Encke’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.4.3 Variation of Parameters . . . . . . . . . . . . . . . . . . . . . 24 2.5 Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 Software Development 26 3.1 Software and Toolkits Used . . . . . . . . . . . . . . . . . . . . . . . 26 3.1.1 NAIF SPICE Toolkit . . . . . . . . . . . . . . . . . . . . . . . 27 3.1.2 Text Progress Bar . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2 Orbit Propagator Structure . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Coding of Perturbation Method . . . . . . . . . . . . . . . . . . . . . 29 3.4 Integration Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 MatLAB ODE Solvers . . . . . . . . . . . . . . . . . . . . . . 30 3.4.2 Achieving the Required Accuracy . . . . . . . . . . . . . . . . 31 3.4.3 Perturbation Method and Integration Method . . . . . . . . . 32 3.5 Non-spherical Earth Perturbations . . . . . . . . . . . . . . . . . . . 35 3.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 CONTENTS vii 3.5.2 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.3 Uncertainty in the Model . . . . . . . . . . . . . . . . . . . . . 38 3.6 Lunisolar and Third Body Perturbations . . . . . . . . . . . . . . . . 40 3.6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.6.2 Validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.6.3 Uncertainty in the Model . . . . . . . . . . . . . . . . . . . . . 42 3.7 Tidal Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7.1 Issues with the Model . . . . . . . . . . . . . . . . . . . . . . 44 3.7.2 Suggestions for Solutions of the Issues . . . . . . . . . . . . . 44 3.7.3 Uncertainty in the Model . . . . . . . . . . . . . . . . . . . . . 45 3.8 Relativistic Perturbations . . . . . . . . . . . . . . . . . . . . . . . . 45 3.9 STK Report Parsing Utility . . . . . . . . . . . . . . . . . . . . . . . 46 4 Results 47 4.1 Non-spherical Earth Model Effects . . . . . . . . . . . . . . . . . . . 49 4.1.1 Acceleration Magnitudes . . . . . . . . . . . . . . . . . . . . . 49 4.1.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Lunisolar and Third Body Effects . . . . . . . . . . . . . . . . . . . . 53 4.2.1 Acceleration Magnitudes . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Tidal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4 Relativistic Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Discussion 59 5.1 Discussion of the Perturbations . . . . . . . . . . . . . . . . . . . . . 59

Description:
Academic Year 2010-2011. Senol¨ c Cranfield University, 2011. All rights perturbation sources that can cause phase shifts have been analysed and modelled. A.1 Solid Earth tide corrections for k. Ф0Х The final chapter presents the findings of the thesis and gives suggestions for future work.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.