Optomechanical Microwave Quantum Illumination in Weak Coupling Regime ∗ Wen-Juan Yang1,2, Xiang-Bin Wang1,2,3 1State Key Laboratory of Low Dimensional Quantum Physics, Tsinghua University, Beijing 100084, People’s Republic of China 2 CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 3 Jinan Institute of Quantum Technology, Jinan, Shandong 250101, China We propose to realize microwave quantum illumination in weak coupling regime based on multi- modeoptomechanicalsystems. Inourproposal themultimodetogetherwith afrequency-mismatch process could reduce mechanical thermal noise. Therefore, we achieve a significant reduction of error probability than conventional detector in weak coupling regime. Moreover, we optimize the 7 signal-to-noise ratio for limited bandwidth by tuningthedelay time of entangled wave-packets. 1 0 2 I. INTRODUCTION tonsincavitiescaninducebistabilitywhichmaygiverise n to experimentaldifficulties[27]. Therefore,it is meaning- a J Quantumentanglementisakeyingredientinquantum ful to study the generation of entanglement in weak in- 1 information processing[1–3]. In practice, entanglement teraction regime. Also, the existing study is limited to 2 canbeeasilydestroyedbyenvironmentnoise[4,5]. Quan- thesituationthattheoutputsignalsaremonochromatic. tum illumination(QI) can benefit from entanglement in A study for the more practical case of finite bandwidth ] target detection even it is under these entanglement- is needed. h destroying noise[3, 6–11]. In this paper, we propose a novel realization of quan- p - The aim of quantum illumination is to detect low- tumilluminationinweakcouplingregimebasedonmulti- nt reflective target which is embedded in a bright back- modeoptomechanicalsystems. Thetransmitterisanop- a ground thermal bath. Half of a pair of entangled op- tomechanicalsystemconsistingofatwo-modemicrowave u tical beams is sent out to interrogate the target region. cavitycouplingwithatwo-modeopticalcavityviaame- q Thenthereturnedandtheretainedsignalbeamareused chanicalresonator. Inthissystem,theoutputmicrowave [ to decide the presence or absence of the object. Even signal and the optical signal of the two cavities are en- 1 though the fragile entanglement is easily destroyed by tangled. Thereceiverisasimilaroptomechanicalsystem v the bright thermal noise, quantum-illumination proto- which converts the reflected microwave signal into opti- 5 col still has remarkable advantage over classical probe cal signal. The retained optical mode of the transmit- 9 protocol[7, 9–11]. Several experiments have realized the ter and the optical mode of the receiver are then sent 9 practical protocol in quantum sensing[12–14]. Recently, to the photon-detectors to make a joint measurement. 5 Weedbrooketal.[11]showthatquantumdiscordexhibits We use a two-mode and off-resonant(with frequency de- 0 . the role of preserving the benefits of quantum illumina- tuning δ) process to minimize the mechanical thermal 1 tion while entanglement is broken. noise. Consequently, our method can achieve a signifi- 0 It is advantageousto operate the frequency of the sig- cant reduction of error probability than classical system 7 1 nal which interrogates the object in microwave region[9, ofthesametransmittedenergy. Ourmethodworksinthe : 10, 12–14]. But so far there is no efficient way to detect weak many-photoncoupling regime where rotating-wave v single photon in microwave region while in the visible approximation works well. Moreover, we optimize the i X light frequency region, ultrasensitive detection of single- delay time ofthe microwavesignal’s filter function. This r photon have been achieved. Such that the detection of makes it possible for our method to work with a finite a microwave signals via the detection of their entangled bandwidthofsignals. Inthiscase,wecanstillachievean optical signals is a more efficient way[15–18]. Optome- improvementofsignal-to-noiseratioby48%thanthatof chanicalsystemscouldbeagoodcandidatetorealizethe classicaldetection given that signals-bandwidth σ which entanglement of microwave and optical fields by using equals cavities-bandwidth κ . mechanical motion[19–28]. However, the existing pro- The paper is organized as follows. In Sec. II we de- posal is supposed to work with rotating wave approx- scribethesystemandderivethequantumLangevinequa- imation(RWA) which requests weak many-photon cou- tionsfortheHamiltonianofourproposedsystem. InSec. plings of optomechanical systems[10]. In addition, it is III we calculate the error probability of the proposed QI extremely difficult to achieve strong coupling in optical system, give an analytical expression for the delay time regime for a system to generate entanglement between and analyze the limited bandwidth situation. Finally, optical and microwave modes. Moreover, plenty of pho- Sec. IV summarizes the main conclusions of this work. ∗EmailAddress: [email protected] 2 quency mismatch fulfilling ω δ = ω J ω , M M M − ≪ − ≪ under the resolved-sidebandapproximationand rotated- wave approximation, the Hamiltonian can be linearized as[30, 31] G G Hˆ =δˆb†ˆb 1(aˆ†ˆb+aˆ ˆb†) 2(aˆ ˆb+aˆ†ˆb†), (2) 1 − 2 + + − 2 − − where G /2 = g α , G /2 = g α , α = −iΩ±e−iφ± 1 + + 2 − − − ± κ/2 and κ is the cavity decay rate. Coupling terms G and 1 G can be chosen to be real and positive by adjusting 2 the laser phases φ and φ respectively. The Hamilto- + − nianshowsthattheemittedphotonsfrommodesaˆ and + aˆ could be entangled via intermediate phonon mode ˆb. − Taking cavity dissipation κ and mechanical dissipation γ into consideration, the Langevin equations of Eq. (2) are[32] FIG.1: (a)Optomechanicalsystemconsistingofatwo-mode microwave cavity coupling with a two-mode optical cavity via a mechanical resonator. (b) Realization of microwave G κ quantumillumination inhybridoptomechanical system. The aˆ˙+ = i 1ˆb aˆ+ √κaˆ+,in, 2 − 2 − transmitter entangles microwave signal and optical signal. G κ The receiver converts the reflected microwave signal into op- aˆ˙ = i 2ˆb† aˆ √κaˆ , (3) − − −,in tical signal and performs a phase-conjugate operation. 2 − 2 − ˆb˙ = iG1aˆ +iG2aˆ† (iδ+ γ)ˆb √γˆb . 2 + 2 −− 2 − in II. MULTI-MODE OPTOMECHANICAL SYSTEM The equations can be solved after Fourier transforma- tions where Oˆ[ω] = ∞ Oˆ(t)eiωtdt(with Oˆ = aˆ ,aˆ ,ˆb). −∞ + − As illustrated in Fig. 1 (a), we consider an optome- Applying the inputR-output relations Oˆ = √ΓOˆ + chanical system including a single-mode mechanical res- out Oˆ (with Γ=κ,γ)[32], we obtain onatorcoupledtobothatwo-modemicrowavecavityand in atwo-modeopticalcavity. Thetwomicrowavemodesare qatuefrnecqieusenωcies,ωω+,p,reωs+peacntidvetlwy.oTophteicmalemchoadneiscaalrmeaotdfereis- aˆ+[ω]=A+aˆ+,in[ω]−Baˆ†−,in[−ω]+C+ˆbin[ω], (4) at frequenc−y,pωb.−Cavity modes aˆ+,p and aˆ−,p are reso- aˆ−[−ω]=B∗aˆ†+,in[ω]+A−aˆ−,in[−ω]+C−ˆb†in[ω]. nantly driven by lasers. The Hamiltonian of the system is[18, 29–31] The correlation functions of input mode satisfy Hˆ = (ω aˆ† aˆ +ω aˆ†aˆ )+ω ˆb†ˆb j,p j,p j,p j j j M jX=± haˆ†+,in(t)aˆ+,in(t′)i= nT+δ(t−t′), jg (aˆ† +aˆ†)(aˆ +aˆ )(ˆb+ˆb†) aˆ† (t)aˆ (t′) = nTδ(t t′), (5) −X j j,p j j,p j h −,in −,in i − − j=± ˆb† (t)ˆb (t′) = nTδ(t t′), + Ω (aˆ eiωj,pt+iφj +H.c.), (1) h in in i b − j j,p X j=± where nT, nT and nT are thermal photon numbers of + − b where ω =ω J, Ω and φ are the intensities and the two cavity modes and phonon thermal number of ± ±,p j j ± phases of the driving lasers respectively. Given the fre- mechanical mode respectively. We obtain G2γκ n [ω,ω′]= aˆ† [ω]aˆ [ω′] =2π[4nT 1 + h +,out +,out i b G2 G2+[γ+2i(δ ω)](κ 2iω)2 | 1− 2 − − | (G G κ)2 +4 1 2 ]δ(ω ω′), (6a) [G2 G2+(γ+2i(δ ω))(κ 2iω)](κ 2iω)2 − | 1− 2 − − − | 3 G2γκ n [ ω, ω′]= aˆ† [ ω]aˆ [ ω′] =2π[4(1+nT) 2 − − − h −,out − −,out − i b G2 G2+[γ+2i(δ ω)](κ 2iω)2 | 1− 2 − − | (G G κ)2 +4 1 2 ]δ(ω ω′), (6b) [G2 G2+(γ+2i(δ ω))(κ 2iω)](κ 2iω)2 − | 1− 2 − − − | x[ω, ω′]= aˆ [ω]aˆ [ ω′] =2πδ(ω ω′)[ 2G G κ +,out −,out 1 2 − h − i − − G2(κ 2iω)+(κ+2iω)(G2 (γ+2i(δ ω))(κ 2iω))+2(1+nT)γ(κ2+4ω2) 1 − 2− − − b ]. (6c) (G2 G2+(γ+2i(δ ω))(κ 2iω))(G2 G2+(γ 2i(δ ω))(κ+2iω))(κ2+4ω2) 1− 2 − − 1− 2 − − Here we assume that nT =nT =0. In practice, in order + − to minimize the error probability of output signals, an increase of repeat rate is needed. Therefore, we need to consider output signals within certain frequency band- width. After projecting output signals onto wave-packet modes, aˆ = ∞ f∗(t)aˆ (t)dt. Here f (t) are fil- ±,f −∞ ± ±,out ± ter functions whRich satisfy ∞ f (t)2dt=1. −∞| ± | We use logarithmic negaRtivity to measure the entan- glementoftwocavitymodes. Thelogarithmicnegativity is given by[33] E =max(0, log 2η−), (7) N − 2 where η− is the smallest partial transposed symplectic eigenvalue of matrix V. The components of the covari- FIG. 2: (a) The spectrum of photon number n+[ω] around ance matrix have the form V = 1 ξ ξ + ξ ξ where ω = 0 and around ω = δ where G/κ = 1.0, γ/κ = 0.001, ij 2h i j j ii T ξ = [xˆ ,pˆ ,xˆ ,pˆ ]T with xˆ = (aˆ +aˆ† )/√2 and δ/κ = 1.5, nb = 61.945(ω+/2π = 10GHz, Tb = 30mK), pˆ± =(+aˆ±,f+−aˆ−†±,f−)/(i√2). T±hus we±h,afve ±,f nET+N.=(0c), nTT−he=sp0e.c(tbru)mThoefslopgeacrtirtuhmmiocf-nloeggaartiitvhitmyico-vneergoautitvpiutyt photon numberEN/n+. V + 1 0 V V 11 2 13 14 0 V + 1 V V V= 11 2 14 − 13 , (8) in Fig. 2. As shownin Fig. 2(a), output photonnumber V13 V14 V33+ 21 0 n+[ω] has two peaks. One is at ω ≈ 0 with width ∼ κ and the other is at ω δ with width Γ. When δ ap- V V 0 V + 1 ≈ ∼ 14 − 13 33 2 proaches 0, the two peaks emerge together. In this case, n [ω =0] 1 and the maximum entanglement appears where + ≫ at ω = 0, and the ratio(E /n ) of the entanglement to N + ∞ V = aˆ† aˆ = f [ω]2n [ω]dω, the photon number goes to the minimum. This is the 11 h +,f +,fi Z | + | + reason why the optimum ratio E /n in the previous −∞ N + ∞ literature Ref. [10] appears at G1 G2 but not at the V33 = haˆ†−,faˆ−,fi=Z−∞|f−[ω]|2n−[ω]dω, oInptoiumrucmaseenwtahnegrleemδ =ent0,peovinentwthhoeurge≫hpathraemraettieorEG1/≈nG2is. ∞ 6 N + V = Re( aˆ aˆ )=Re( f∗[ω]f∗[ ω]x[ω]dω), the secondminimum valleyataroundω =0,itstillhave 13 h +,f −,fi Z + − − a considerable value. −∞ ∞ V = Im( aˆ aˆ )=Im( f∗[ω]f∗[ ω]x[ω]dω), 14 h +,f −,fi Z + − − −∞ III. QUANTUM ILLUMINATION with 1 ∞ The input-output relation for the receiver is n [ω]= n [ω,ω′]dω′, + 2π Z + −∞ aˆ [ ω]=B∗aˆ† [ω]+A aˆ′ [ ω]+C ˆb′†[ω], (9) 1 ∞ −η − +R,in − −,in − − in n [ω]= n [ω,ω′]dω′, − 2π Z−∞ − where aˆ+R,in is the signal reflected from interrogated x[ω]= 1 ∞ x[ω, ω′]dω′. target region. We have aˆ+R,in = aˆB when there is 2π Z − no low reflective object in the target region(hypothesis −∞ H0) and aˆ+R,in = √ηaˆ+ + √1 ηaˆB when there con- − Wedrawthespectrumofn [ω],E [ω]andE [ω]/n [ω] tainslowreflectiveobjectinthetargetregion(hypothesis + N N + 4 H )[9]. Here aˆ is the background thermal mode in the (iid) signal-idler-mode pairs. Thus the error probability 1 B interrogated region. The mean photon number is n or of receiver is given by[9] B n /(1 η) providing the absence or presence of low re- B − flective object. We measure the photon numbers of mixed modes erfc( SNRM/8) QI cˆη,± =(aˆ−η±ˆa−)/√2. The object’s absenceorpresence PQMI = q 2 , (10) is determined by the photon number difference which is Nˆ = M (Nˆ(k) Nˆ(k)) where Nˆ(k) = cˆ(k)†cˆ(k) and c k=1 c,+ − c,− c,± η,± η,± M = tPmWm is the independent, identically distributed where the signal-to-noise ratio satisfies 4M[( Nˆ Nˆ ) ( Nˆ Nˆ )]2 SNRM = h c,+iH1 −h c,−iH1 − h c,+iH0 −h c,−iH0 , (11) QI ( ( ∆Nˆ ∆Nˆ )2+ ( ∆Nˆ ∆Nˆ )2)2 q h c,+− c,−iH0 q h c,+− c,−iH1 where Nˆ Nˆ =0, (12a) h c,+iH0 −h c,−iH0 Nˆ Nˆ =2√ηRe[ Baˆ aˆ ], (12b) h c,+iH1 −h c,−iH1 h +,f −,fi ( aˆ† aˆ aˆ† aˆ )2 ( ∆Nˆ ∆Nˆ )2 = Nˆ ( Nˆ +1)+ Nˆ ( Nˆ +1) h −η,f −η,fiH0 −h −,f −,fi , h c,+− c,−iH0 h c,+iH0 h c,+iH0 h c,−iH0 h c,−iH0 − 2 (12c) ( aˆ† aˆ aˆ† aˆ )2 ( ∆Nˆ ∆Nˆ )2 = Nˆ ( Nˆ +1)+ Nˆ ( Nˆ +1) h −η,f −η,fiH1 −h −,f −,fi h c,+− c,−iH1 h c,+iH1 h c,+iH1 h c,−iH1 h c,−iH1 − 2 2(√ηIm[ Baˆ+,faˆ−,f ])2. (12d) − h i In Fig. 3 (a), we plot F SNRM/SNRM with co- [e−iωtd x′[ω]ei(ϕ(0)+ϕ′(0)ω+...)],(13) ≡ QI coh | | forpeeqruaetnivceypωar=am0.etHeresreC1SN=RGκMγ21 ainsdthCe2s=ignGκaγ22l-tino-nreosiosenarnat- wthheerpehaxs′e[ωo]f x=′[ω[A].+T|Bhe|2el+imCin+aCti−onB(onfTbin+teg1r)a]ndan’sdphϕasies coh tioofclassicalmicrowavetransmitterwhichisequivalent dependence on ω would improve the value of signal-to- to 4ηMV /(2n +1)[10]. From the figure, we can see noise ratio. If bandwidth σ is small, then t = ϕ′(0) = 11 B d tlahragtetFhecmouaxldimbuemobFtaainpepdeawrsitahtwCe1a≈k mC2anayn-dphaotroelnatoivpe- dϕd(ωω)|ω=0 could be the optimal delay time which reads tomechanical coupling where G /2,G /2 κ. Photon 1 2 γ number n+[0] is shown in fig. 3(1b) wit2h C1≪and C2. topt = γ[1+4(δ)2 +4κ γ Let us now discuss the situation where the output sig- nT + 1 +C nals have a bandwidth σ, i.e., filter functions f+[ω] and + b 2 ], (14) f [ω] have a bandwidth σ. The filter functions have the (nT + 1 +C)2+(δ)2 − b 2 γ afonrdmff+[ω[ω]]==0efioωrtdω/√σ(, f−[,ω]σ=) 1o/r√(σσ,for).ωH∈er[e−fσ2,[ωσ2]] where we assume that C = C = C and nT = nT = 0. ± ∈ −∞ −2 2 ∞ + 1 2 + − has a time-delay term eiωtd as discussed in Ref. [30]. To InFig. 4(a),weshowSNRQI withbandwidthσfordelay find optimal topt at which the signal-to-noise ratio de- time td = 0 and td = topt. It can be easily seen that creases slowly with the bandwidth, we revisit Eq. (12b). the signal-to-noise ratio indeed decreases slowly with σ We have[30] increasesfortd =toptcomparedtothatfortd =0. Figure of meritF with σ is shownin Fig. 4 (b). The advantage σ σ Baˆ aˆ = 1 2 e−iωtdx′[ω]= 1 2 of QI over classical system decreases rapidly for td = 0 h +,f −,fi σ Z−σ σ Z−σ while QI always has advantage over classical ones even 2 2 5 ter performance in error probability than classical sys- 0 −5 P g10−10 o l −15 PQMI PM FIG. 3: (a) QI advantage over classical system. F versus coh C1 and C2. Parameter settings are γ/κ = 0.001, δ/κ = 1.5, −204 5 6 7 nTb =61.945, nT+ =0, nT− =0, η =0.07 and nB =610(room log10M temperature T =273K). (b) Photon number n+[ω =0] ver- sus cooperative parameters C1 and C2. For C1,C2 ≫ 1 and FIG. 5: Error probability PQMI and PcMoh versus log10M for κ≫γ the stability condition could be C1 ≥C2[28]. σ/κ=1. See Fig. 4 for theother parameter values. tem. a x 10-5 5 4 IV. CONCLUSION QI3 R N S 2 Insummary,wehaveproposedaschemetoachieveop- t=t 1 d opt t=0 tomechanicalQIinweakcouplingregime. Thefrequency d b 00 0.5 σ1/κ 1.5 2 mismatch δ minimizes the mechanicalthermal noise and increasestheratioE /n . Asaresult,weachieveasub- 1.5 N + stantial reduction of error probability than classical sys- 1.2 tematC =C comparedtothatofRef.[10]atC C . 0.9 1 2 1 ≫ 2 F Consequently, our quantum illumination proposal works 0.6 in weak coupling regime. Furthermore, we optimize the t=t 0.3 td=0opt delay time of microwave signal’s wave packets. Finally, d 00 0.5 1 1.5 2 we find a 48% improvement of signal-to-noise ratio for σ/κ σ =κ. FIG. 4: (a) Signal-to-noise ratio SNRQI versus bandwidth σ/κ. Parameter settings are C1 = 500, C2 = 500, γ/κ = T T T ACKNOWLEDGMENTS 0.001, n+ = 0, n− = 0, nb = 61.945, nB = 610, δ/κ = 1.5, η=0.07. (b) F versusbandwidth σ/κ. We acknowledge the financial support in part by the 10000-Plan of Shandong province (Taishan Scholars), for relative large σ for td =topt. The performance of QI NSFCgrantNo. 11174177and60725416,OpenResearch is about 48% better than classical system at σ =κ. Fund Program of the State Key Laboratory of Low- Fig. 5 plots error probability PM and PM versus Dimensional Quantum Physics Grant No. KF201513; QI coh log M for σ = κ. Microwave(optical) photon number and the key R&D Plan Project of Shandong Province, 10 n¯ 0.09(n¯ 0.09). QI has orders of magnitude bet- grant No. 2015GGX101035. + − ≈ ≈ [1] M.A.Nielsen andI.L.Chuang,QuantumComputation [9] S. Guha and B. I. Erkmen, Phys. Rev. A 80, 052310 andQuantumInformation(CambridgeUniversityPress, (2009). Cambridge, England, 2000). [10] S.Barzanjeh,etal.,Phys.Rev.Lett.114,080503(2015). [2] C. Weedbrook et al., Rev.Mod. Phys.84, 621 (2012). [11] C. Weedbrook, S. Pirandola, J. Thompson, V. Vedral, [3] M.M.Wilde,QuantumInformationTheory,(Cambridge and M. Gu, New. J. Phys. 18, 043027(2016). UniversityPress, Cambridge, England, 2013). [12] E. D. Lopaeva, et al., Phys. Rev. Lett. 110, 153603 [4] M. F. Sacchi, Phys. Rev.A 72, 014305 (2005). (2013). [5] M. Piani and J. Watrous, Phys. Rev. Lett. 102, 250501 [13] Z. Zhang,M. Tengner,T. Zhong,F. N.C.Wong, andJ. (2009). H. Shapiro, Phys. Rev.Lett. 111, 010501 (2013). [6] S.Lloyd, Science 321, 1463 (2008). [14] Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. [7] S.-H.Tan, et al., Phys. Rev.Lett. 101, 253601 (2008). Shapiro, Phys.Rev.Lett. 114, 110506 (2015). [8] J. H. Shapiro and S. Lloyd, New. J. Phys. 11, 063045 [15] G. Romero, J. J. Garc´ıa-Ripoll, and E. Solano, Phys. (2009). Rev. Lett.102, 173602 (2009). 6 [16] Y.-F.Chen, et al., Phys.Rev.Lett. 107, 217401 (2011). [26] Y.-D. Wang and A. A. Clerk, Phys. Rev. Lett. 110, [17] L. C. G. Govia, et al., Phys. Rev.A 90, 062307 (2014). 253601 (2013). [18] K. Zhang, F. Bariani, Y. Dong, W. Zhang, and P. [27] M. C. Kuzyk, S. J. van Enk, and H. Wang, Phys. Rev. Meystre, Phys. Rev.Lett. 114, 113601 (2015). A 88, 062341 (2013). [19] F. Marquardt, S. M. Girvin, Physics, 2, 40 (2009); P. [28] Y.-D.Wang,S.Chesi,andA.A.Clerk,Phys.Rev.A91, Meystre, Ann. Phys. (Berlin) 525, 215 (2013); M. As- 013807 (2015). pelmeyer,T.Kippenberg,and F.Marquardt,Rev.Mod. [29] A. Mari and J. Eisert, Phys. Rev. Lett. 108, 120602 Phys.86, 1391 (2014). (2012). [20] M. Paternostro, et al., Phys. Rev. Lett. 99, 250401 [30] Z.J.Deng,X.-B.Yan,Y.-D.Wang,andC.-W.Wu,Phys. (2007). Rev. A 93, 033842 (2016). [21] C.Wipf,T.Corbitt,Y.Chen,andN.Mavalvala,NewJ. [31] Z.J.Deng,S.J.Habraken,F.Marquardt,New.J.Phys. Phys.10, 095017 (2008). 18, 063022(2016). [22] Sh.Barzanjeh,D.Vitali,P.Tombesi,andG.J.Milburn, [32] C. Gardiner and P. Zoller, Quantum Noise, 3rd ed. Phys.Rev.A 84, 042342 (2011). (Springer, New York, 2004); D. F. Walls and G. J. Mil- [23] S.G.Hofer,W.Wieczorek,M.Aspelmeyer,andK.Ham- burn,Quantum Optics(Springer, Berlin, 1994). merer, Phys. Rev.A 84, 052327 (2011). [33] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 [24] Sh.Barzanjeh, M.Abdi,G.J.Milburn,P.Tombesi, and (2002). D.Vitali, Phys. Rev.Lett. 109, 130503 (2012). [25] L. Tian, Phys. Rev.Lett. 110, 233602 (2013).