ebook img

Optoelectronic Properties of Impurity-Modified CuGaS2 Solar Cell Absorber Films PDF

79 Pages·2011·22.25 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optoelectronic Properties of Impurity-Modified CuGaS2 Solar Cell Absorber Films

SCHRIFTENREIHE DES HZB · EXAMENSARBEITEN Optoelectronic Properties of Impurity-Modified CuGaS Solar Cell Absorber 2 Films Sascha Klemz Diplomarbeit Institut für Technologie E-I3 September 2011 Berichte des Helmholtz-Zentrums Berlin (HZB-Berichte) Das Helmholtz-Zentrum Berlin für Materialien und Energie gibt eine Serie von Berichten über Forschungs- und Entwicklungsergebnisse oder andere Aktivitäten des Zentrums heraus. Diese Berichte sind auf den Seiten des Zentrums elektronisch erhältlich. Alle Rechte an den Berichten liegen beim Zentrum außer das einfache Nutzungsrecht, das ein Bezieher mit dem Herunterladen erhält. Reports of the Helmholtz Centre Berlin (HZB-Berichte) The Helmholtz Centre Berlin for Materials and Energy publishes a series of reports on its research and development or other activities. The reports may be retrieved from the web pages of HZB and used solely for scientific, non-commercial purposes of the downloader. All other rights stay with HZB. doi: http://dx.doi.org/10.5442/e0005 Helmholtz-Zentrum Berlin für Materialien und Energie · Hahn-Meitner-Platz 1 · D-14109 Berlin · Telefon +49 30 8062 0 · Telefax +49 30 8062 42181 · www.helmholtz-berlin.de Optoelectronic Properties of Impurity-Modified CuGaS Solar Cell 2 Absorber Films Diploma Thesis Sascha Klemz submitted to the University of Applied Sciences of Brandenburg Faculty of Engineering Sciences Physical Engineering prepared at the Helmholtz-Zentrum Berlin für Materialien und Energie Supervisor: Prof. Dr. sc. nat. K. P. Möllmann Supervisor: Dr. Björn Marsen . Eidesstattliche Erklärung Hiermit versichere ich, die vorliegende Arbeit selbstständig und unter ausschließlicher Verwendung der angegebenen Quellen und Hilfsmittel erstellt zu haben. Die Arbeit wurde bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht. Berlin, den 15. September 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents 1 Introduction 9 2 Theoretical background 11 2.1 Structure of chalcopyrite (CuFeS ) and gallite (CuGaS ) . . . . . . . . . . 11 2 2 2.2 Optical properties of solids . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 Allowed direct transitions in semiconductors . . . . . . . . . . . . . 13 2.2.2 Absorption and dispersion described by Lorentzian oscillators . . . 16 2.2.3 Crystal field theory and d-d-transitions . . . . . . . . . . . . . . . . 18 2.2.4 Optical propagation model of light interacting with a stack of layers 20 2.3 Device structure of chalcopyrite thin film solar cells . . . . . . . . . . . . . 25 3 Experimental and Modeling Methods 27 3.1 Preparation of CuGaS and Cu-Ga-Fe-S films . . . . . . . . . . . . . . . . 27 2 3.2 VIS-NIR Spectrophotometer . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Modeling of reflectance and transmittance curves . . . . . . . . . . . . . . 29 3.4 Optoelectronic characterization methods . . . . . . . . . . . . . . . . . . . 31 3.4.1 Photoconductivity of co-planar contacted solar cell absorber layers . 31 3.4.2 Current-Voltage measurements . . . . . . . . . . . . . . . . . . . . 33 3.4.3 Quantum efficiency of solar cells . . . . . . . . . . . . . . . . . . . . 34 4 Optical Properties of CuGa Fe S Films 37 1−x x 2 4.1 Basic characterization of iron modified CuGaS absorber layers and solar 2 cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2 Optical analysis of CuGa Fe S thin films . . . . . . . . . . . . . . . . . 39 1−x x 2 4.2.1 Experimental results from reflectance and transmittance measure- ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 Simulated reflectance and transmittance curves . . . . . . . . . . . 44 4.3 Optoelectronic effects of the iron incorporation . . . . . . . . . . . . . . . . 50 4.3.1 PhotoconductivitymeasurementsofCuGa Fe S absorberlay- 0.997 0.003 2 ers on glass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5 Solar cells with CuGa Fe S absorbers 53 1−x x 2 5.1 J-V characteristics of CuGa Fe S solar cell devices . . . . . . . . . . . . 53 1−x x 2 5.2 Quantum efficiency characteristics of CuGa Fe S solar cell devices . . . 54 1−x x 2 5.3 Intensity-dependent photocurrent measurements . . . . . . . . . . . . . . . 57 6 Summary and Conclusions 61 7 Appendix 63 Bibliography 69 Abstract Transition-metal doped chalcopyrite thin films have been recommended as a suitable ab- sorberlayerforintermediatebandsolarcells. ThinfilmsofCuGa Fe S hadbeengrown 1−x x 2 on glass and on glass/Mo in a coevaporation process at a substrate temperature of 400°C. The amount of incorporated iron has been varied from x = 0.003 to x = 0.76 as measured by energy dispersive x-ray spectroscopy. X-ray diffraction patterns have been analyzed to investigate present phases and the current thin film absorber layers have been determined to be a single-phase solid solution material. Transmittance and reflectance curves have been recorded to study optical transitions and distinct absorption peaks around 1.3 and 1.9 eV have been evaluated which increase in prominence with increasing iron content. An optical model including absorption process and the propagation path of the light has beendevelopedtoquantifysub-bandgaptransitionsintermsoftransitionratesandoscilla- tor strength respectively. Using a co-planar device and photoconductivity measurements, higher sub-bandgap photocurrent for Fe-containing samples have been observed compared to the CuGaS sample. Solar cell devices have been fabricated from CuGa Fe S ab- 2 1−x x 2 sorber layers using the standard chalcopyrite glass/Mo/absorber/CdS/ZnO device struc- ture. The solar cell performance has been evaluated by current-voltage, spectral- and intensity-dependent quantum efficiency. The device performance in general decreases with increasing iron content which is attributed to iron defects induced interface recombi- nation. However, forthesamplewiththelowestamountofiron, anincreasedsub-bandgap photoresponse is observed, dropping off around 1.9 eV. This is interpreted as carrier col- lection facilitated by Fe related states. The defect level around 1.9 eV have been further investigated due to an intensity-dependent photocurrent generation. The photocurrent of the sample with the lowest iron content increases linear with the incident photon flux whichhasbeenvariedoverfiveordersofmagnitude. Thequantumefficiencyofthesample have been shown no dependence of the incident light intensity. .

Description:
Absorber Films. Diploma Thesis. Sascha Klemz submitted to the. University of Applied Sciences of Brandenburg. Faculty of Engineering Sciences. Physical Engineering prepared at Carola Kelch and Michael Kirsch for the fabrication of solar cells and KCN-etching. • Jan Schniebs for the fabrication o
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.