OOppttiimmuumm RReecceeiivveerrss ffoorr tthhee AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee CChhaannnneell WWiirreelleessss IInnffoorrmmaattiioonn TTrraannssmmiissssiioonn SSyysstteemm LLaabb.. IInnssttiittuuttee ooff CCoommmmuunniiccaattiioonnss EEnnggggiinneeeerriinngggg NNaattiioonnaall SSuunn YYaatt--sseenn UUnniivveerrssiittyy TTaabbllee ooff CCoonntteennttss Optimum Receiver for Signals Corrupted by Additive ◊ WWhhiittee GGaauussssiiaann NNooiissee Correlation Demodulator ◊ MMaattcchheedd-FFiilltteerr DDeemmoodduullaattoorr ◊◊ The Optimum Detector ◊ PPerfformance off tthhe OOpttiimum RReceiiver ffor MMemorylless ◊ Modulation Probability of Error for Binary Modulation ◊ Probability of Error for M-ary Orthogonal Signals ◊ Probability of Error for M-ary Biorthogonal Signals ◊ Probability of Error for M-ary PAM ◊ Probability of Error for M-ary PSK ◊ 2 TTaabbllee ooff CCoonntteennttss Differential PSK (DPSK) and Its Performance ◊ PPrroobbaabbiilliittyy ooff EErrrroorr ffoorr QQAAMM ◊◊ Comparison of Digital Modulation Methods ◊ OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss wwiitthh RRaannddoomm PPhhaassee iinn ◊◊ AWGN Channel OOpttiimum RReceiiver ffor BBiinary SSiignalls ◊ Optimum Receiver for M-ary Orthogonal Signals ◊ PProbbabbiilliitty off EError ffor EEnvellope DDettecttiion off MM-ary OOrtthhogonall ◊ Signals 3 OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss CCoorrrruupptteedd bbyy AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee We assume that the transmitter sends digital information by use of ◊ M siggnals waveforms {{s ((t))=1,,2,,…,,M }}. Each waveform is mm transmitted within the symbol interval of duration T, i.e. 0≤t≤T. The channel is assumed to corrupt the signal by the addition of white ◊ Gaussian noise, as shown in the following figure: r(t) = s (t) + n(t) , 0 ≤ t ≤ T m where n(t) denotes a sample function of AWGN process with power spectral density Φ ( f )=½N W/Hz. nn 0 4 OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss CCoorrrruupptteedd bbyy AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee Our object is to design a receiver that is optimum in the sense that it ◊ minimizes the pprobabilityy of makingg an error. It is convenient to subdivide the receiver into two parts—the signal ◊ demodulator and the detector. The function of the signal demodulator is to convert the received waveform r(t) ◊ iinnttoo aann NN-ddiimmeennssiioonnaall vveeccttoorr rr=[[rr rr ....…rr ]] wwhheerree NN iiss tthhee ddiimmeennssiioonn ooff tthhee 11 22 NN transmitted signal waveform. The function of the detector is to decide which of the M possible signal ◊ wavefforms was ttransmiittttedd bbasedd on tthhe vecttor r. 5 OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss CCoorrrruupptteedd bbyy AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee Two realizations of the signal demodulator are described in the ◊ followingg section: One is based on the use of signal correlators. ◊ The second is based on the use of matched ffilters. ◊ The optimum detector that follows the signal demodulator is ◊ desiggned to minimize the pprobabilityy of error. 6 CCoorrrreellaattiioonn DDeemmoodduullaattoorr We describe a correlation demodulation that decomposes the ◊ receiver siggnal and the noise into N-dimensional vectors. In other words, the signal and the noise are expanded into a series of ◊ lliinneeaarrllyy wweeiigghhtteedd oorrtthhoonnoorrmmaall bbaassiiss ffuunnccttiioonnss {{ff ((tt))}}. n It is assumed that the N basis function {f (t)} span the signal space, ◊ n ssoo eevveerryy oonnee ooff tthhee ppoossssiibbllee ttrraannssmmiitttteedd ssiiggnnaallss ooff tthhee sseett {s (t)=1≤m≤M } can be represented as a linear combination of m {f (t)}. n In case of the noise, the function {f (t)} do not span the noise space. ◊ n However we show below that the noise terms that fall outside the signal space are irrelevant to the detection of the signal. 7 CCoorrrreellaattiioonn DDeemmoodduullaattoorr Suppose the receiver signal r(t) is passed through a parallel bank of ◊ N basis functions {f (t)}, as shown in the following figure: n T T [[ ]] ∫∫ r((tt)) ff ((tt))ddtt = ∫∫ s ((tt)) ++ n((tt)) ff ((tt))ddtt k m k 0 0 ⇒ r = s + n , k = 1, 2,.....N k mk k T s = ∫ s (t) f (t)dt , k =1,2,......N mk m k 0 TT n = ∫ n(t) f (t)dt , k =1,2,.......N k k 0 The signal is now represented by the vector s with components s , ◊ m mk k=1,2,…N. Their values depend on which of the M signals was ttrraannssmmiitttteedd.. 8 CCoorrrreellaattiioonn DDeemmoodduullaattoorr In fact, we can express the receiver signal r(t) in the interval 0 ≤ t ≤ ◊ T as: N N r((tt)) = ∑∑ s ff ((tt)) + ∑∑ n ff ((tt)) + n′′((tt)) mk k k k k=1 k=1 N = ∑∑ r ff ((t)) + n′′((t)) k k k=1 TThhee tteerrmm nn'((tt)),, ddeeffiinneedd aass ◊◊ N n′(t) = n(t) − ∑ n f (t) k k kk=11 is a zero-mean Gaussian noise process that represents the difference between origginal noise pprocess n((t)) and the ppart corresppondingg to the projection of n(t) onto the basis functions {f (t)}. k 9 CCoorrrreellaattiioonn DDeemmoodduullaattoorr We shall show below that n'(t) is irrelevant to the decision as to ◊ which siggnal was transmitted. Conseqquentlyy,, the decision mayy be based entirely on the correlator output signal and noise components r =s +n , k=1,2,…,N. k mk k The noise components {n } are Gaussian and mean values are: ◊ k T [[ ]] E(n ) = ∫∫ E n(t) f (t)dt = 0 for all n. k k PPoowweerr ssppeeccttrraall ddeennssiittyy 00 is Φ (f)=½N W/Hz and their covariances are: nn 0 Autocorrelation T T [[ ]] EE((nn nn )) = ∫∫ ∫∫ EE nn((tt))nn((ττ)) ff ((tt)) ff ((ττ))ddttddττ CCoonncclluussiioonn:: TThhee NN nnooiissee k m k m 0 0 Components {n } are k 1 T T zero-mean uncorrelated = N ∫∫ ∫∫ δ((t −τ)) ff ((t)) ff ((τ))dtdτ 00 kk mm 2 0 0 GGaussiian randdom variables with a common 1 1 T = N ∫∫ f (t) f (t)dt = N δ varianceσ 2=½N . 0 k m 0 mk n 0 22 00 22 10
Description: