ebook img

Optimum Receivers for the Additive Receivers for the Additive White PDF

154 Pages·2010·4.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimum Receivers for the Additive Receivers for the Additive White

OOppttiimmuumm RReecceeiivveerrss ffoorr tthhee AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee CChhaannnneell WWiirreelleessss IInnffoorrmmaattiioonn TTrraannssmmiissssiioonn SSyysstteemm LLaabb.. IInnssttiittuuttee ooff CCoommmmuunniiccaattiioonnss EEnnggggiinneeeerriinngggg NNaattiioonnaall SSuunn YYaatt--sseenn UUnniivveerrssiittyy TTaabbllee ooff CCoonntteennttss Optimum Receiver for Signals Corrupted by Additive ◊ WWhhiittee GGaauussssiiaann NNooiissee Correlation Demodulator ◊ MMaattcchheedd-FFiilltteerr DDeemmoodduullaattoorr ◊◊ The Optimum Detector ◊ PPerfformance off tthhe OOpttiimum RReceiiver ffor MMemorylless ◊ Modulation Probability of Error for Binary Modulation ◊ Probability of Error for M-ary Orthogonal Signals ◊ Probability of Error for M-ary Biorthogonal Signals ◊ Probability of Error for M-ary PAM ◊ Probability of Error for M-ary PSK ◊ 2 TTaabbllee ooff CCoonntteennttss Differential PSK (DPSK) and Its Performance ◊ PPrroobbaabbiilliittyy ooff EErrrroorr ffoorr QQAAMM ◊◊ Comparison of Digital Modulation Methods ◊ OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss wwiitthh RRaannddoomm PPhhaassee iinn ◊◊ AWGN Channel OOpttiimum RReceiiver ffor BBiinary SSiignalls ◊ Optimum Receiver for M-ary Orthogonal Signals ◊ PProbbabbiilliitty off EError ffor EEnvellope DDettecttiion off MM-ary OOrtthhogonall ◊ Signals 3 OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss CCoorrrruupptteedd bbyy AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee We assume that the transmitter sends digital information by use of ◊ M siggnals waveforms {{s ((t))=1,,2,,…,,M }}. Each waveform is mm transmitted within the symbol interval of duration T, i.e. 0≤t≤T. The channel is assumed to corrupt the signal by the addition of white ◊ Gaussian noise, as shown in the following figure: r(t) = s (t) + n(t) , 0 ≤ t ≤ T m where n(t) denotes a sample function of AWGN process with power spectral density Φ ( f )=½N W/Hz. nn 0 4 OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss CCoorrrruupptteedd bbyy AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee Our object is to design a receiver that is optimum in the sense that it ◊ minimizes the pprobabilityy of makingg an error. It is convenient to subdivide the receiver into two parts—the signal ◊ demodulator and the detector. The function of the signal demodulator is to convert the received waveform r(t) ◊ iinnttoo aann NN-ddiimmeennssiioonnaall vveeccttoorr rr=[[rr rr ....…rr ]] wwhheerree NN iiss tthhee ddiimmeennssiioonn ooff tthhee 11 22 NN transmitted signal waveform. The function of the detector is to decide which of the M possible signal ◊ wavefforms was ttransmiittttedd bbasedd on tthhe vecttor r. 5 OOppttiimmuumm RReecceeiivveerr ffoorr SSiiggnnaallss CCoorrrruupptteedd bbyy AAddddiittiivvee WWhhiittee GGaauussssiiaann NNooiissee Two realizations of the signal demodulator are described in the ◊ followingg section: One is based on the use of signal correlators. ◊ The second is based on the use of matched ffilters. ◊ The optimum detector that follows the signal demodulator is ◊ desiggned to minimize the pprobabilityy of error. 6 CCoorrrreellaattiioonn DDeemmoodduullaattoorr We describe a correlation demodulation that decomposes the ◊ receiver siggnal and the noise into N-dimensional vectors. In other words, the signal and the noise are expanded into a series of ◊ lliinneeaarrllyy wweeiigghhtteedd oorrtthhoonnoorrmmaall bbaassiiss ffuunnccttiioonnss {{ff ((tt))}}. n It is assumed that the N basis function {f (t)} span the signal space, ◊ n ssoo eevveerryy oonnee ooff tthhee ppoossssiibbllee ttrraannssmmiitttteedd ssiiggnnaallss ooff tthhee sseett {s (t)=1≤m≤M } can be represented as a linear combination of m {f (t)}. n In case of the noise, the function {f (t)} do not span the noise space. ◊ n However we show below that the noise terms that fall outside the signal space are irrelevant to the detection of the signal. 7 CCoorrrreellaattiioonn DDeemmoodduullaattoorr Suppose the receiver signal r(t) is passed through a parallel bank of ◊ N basis functions {f (t)}, as shown in the following figure: n T T [[ ]] ∫∫ r((tt)) ff ((tt))ddtt = ∫∫ s ((tt)) ++ n((tt)) ff ((tt))ddtt k m k 0 0 ⇒ r = s + n , k = 1, 2,.....N k mk k T s = ∫ s (t) f (t)dt , k =1,2,......N mk m k 0 TT n = ∫ n(t) f (t)dt , k =1,2,.......N k k 0 The signal is now represented by the vector s with components s , ◊ m mk k=1,2,…N. Their values depend on which of the M signals was ttrraannssmmiitttteedd.. 8 CCoorrrreellaattiioonn DDeemmoodduullaattoorr In fact, we can express the receiver signal r(t) in the interval 0 ≤ t ≤ ◊ T as: N N r((tt)) = ∑∑ s ff ((tt)) + ∑∑ n ff ((tt)) + n′′((tt)) mk k k k k=1 k=1 N = ∑∑ r ff ((t)) + n′′((t)) k k k=1 TThhee tteerrmm nn'((tt)),, ddeeffiinneedd aass ◊◊ N n′(t) = n(t) − ∑ n f (t) k k kk=11 is a zero-mean Gaussian noise process that represents the difference between origginal noise pprocess n((t)) and the ppart corresppondingg to the projection of n(t) onto the basis functions {f (t)}. k 9 CCoorrrreellaattiioonn DDeemmoodduullaattoorr We shall show below that n'(t) is irrelevant to the decision as to ◊ which siggnal was transmitted. Conseqquentlyy,, the decision mayy be based entirely on the correlator output signal and noise components r =s +n , k=1,2,…,N. k mk k The noise components {n } are Gaussian and mean values are: ◊ k T [[ ]] E(n ) = ∫∫ E n(t) f (t)dt = 0 for all n. k k PPoowweerr ssppeeccttrraall ddeennssiittyy 00 is Φ (f)=½N W/Hz and their covariances are: nn 0 Autocorrelation T T [[ ]] EE((nn nn )) = ∫∫ ∫∫ EE nn((tt))nn((ττ)) ff ((tt)) ff ((ττ))ddttddττ CCoonncclluussiioonn:: TThhee NN nnooiissee k m k m 0 0 Components {n } are k 1 T T zero-mean uncorrelated = N ∫∫ ∫∫ δ((t −τ)) ff ((t)) ff ((τ))dtdτ 00 kk mm 2 0 0 GGaussiian randdom variables with a common 1 1 T = N ∫∫ f (t) f (t)dt = N δ varianceσ 2=½N . 0 k m 0 mk n 0 22 00 22 10

Description:
Optimum Receiver for Signals Corrupted by. Additive White Gaussian Noise. ◊ Our object is to design a receiver that is optimum in the sense that it minimizes the
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.