ebook img

Optimum design of ablative thermal protection systems for atmospheric entry vehicles PDF

12 Pages·2017·2.86 MB·English
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimum design of ablative thermal protection systems for atmospheric entry vehicles

AppliedThermalEngineering119(2017)541–552 ContentslistsavailableatScienceDirect Applied Thermal Engineering journal homepage: www.elsevier.com/locate/apthermeng Research Paper Optimum design of ablative thermal protection systems for atmospheric entry vehicles Aniello Riccioa, Francesco Raimondoa, Andrea Sellittoa, Valerio Carandenteb,⇑, Roberto Sciglianob, Domenico Tescioneb aDepartmentofIndustrialandInformationEngineering,SecondUniversityofNaples,Italy bStructuresandMaterialsDepartment,ItalianAerospaceResearchCentre(CIRA),Italy h i g h l i g h t s (cid:1)ImplementaFEMbasedmodelforthethermalanalysisofablativeTPSs. (cid:1)Presentanoptimizationprocedureforthedesignofablativeheatshields. (cid:1)ApplythenumericalmethodtotheablativeTPSofthereentrycapsuleStardust. a r t i c l e i n f o a b s t r a c t Articlehistory: The Thermal Protection System (TPS) provides spacecrafts entering the atmosphere with the thermal Received8January2016 insulationfromtheaerothermodynamicheating.Thedesignofsuchasubsystemisverycritical,consid- Revised3March2017 eringthatitsdamagecanleadtoacatastrophicfailureofthewholeentrysystem,inparticularifablative Accepted11March2017 materialsareconsidered.InordertodesignanablativeTPS,infact,areliablenumericalprocedure,ableto Availableonline20March2017 computesurfacerecessionrate,pyrolysisandinternaltemperaturehistoriesundersevereheatingcondi- tions,isnecessary.Indeed,theTPSneedstobesizedtoeffectivelyshieldthespacecraftfromthehighheat Keywords: fluxesactingduringtheatmosphericentryphase.Atthesametime,itsweighthastobetheminimum TPS valueabletoguaranteeasuitableprotection. Ablativematerials Thisarticleaimstodescribeanoptimizationprocedureforthedesignofablativeheatshields.Inpar- Thermalanalysis FEM ticular,inthepresentwork,thenumericalmethodisappliedtotheablativeTPSofthehypersonicreentry Optimization capsuleStardust. (cid:1)2017ElsevierLtd.Allrightsreserved. 1.Introduction describethisphenomenonarestillindevelopment[1,2].Thecom- plexityofthephenomenaunderconsiderationsisremarkedbythe Duringtheatmosphereentry,hypersonicvehiclesaresubjected unsatisfying analytical methods proposed [3,4]. Moreover, in the to strong shocks, equilibrium or non-equilibrium gas chemistry, experimental field, tests are not easy to implement considering large heat fluxes, and, as consequence, very high temperatures thecomplexenvironmentalconditionsencountered.Thusfar,the are reached on the structure. Those conditions require a proper mostcompletemethodologyfordealingwiththeproblemsrelated designed Thermal Protection System (TPS). For very high entry to ablation is the numerical resolution of differential equations speeds, in particular, the use of ablative material is mandatory. governingthephenomenaofinterest.Forthispurpose,onepossi- TodesignanablativeTPS,areliablenumericalprocedureisneeded bleapproachassumesthatthesoliddecomposesifacriticaltem- to compute surface recession rate, pyrolysis effects, and internal perature is reached. This critical temperature is a material temperaturehistoriesundersevere heatingconditions. Ascanbe propertyanditisindependentfromtheincomingheatflow.Afur- seenfromahistoricalliteratureoverview,consideringthecomplex ther approach considers the chemical reactions in the char layer phenomenologyoftheablativeprocess,numericalmodelsthatcan accordingtothe‘‘frozenchemistry”modelorthe‘‘chemicalequi- librium” model [5]. Despite the wide amount of research carried outsofar,thedesignmethodologiesofablativeheatshieldsneed ⇑ Correspondingauthorat:StructuresandMaterialsDepartment,ItalianAero- not-negligible improvements. A fundamental aspect that these spaceResearchCentre(CIRA),ViaMaiorisesnc,81043Capua,Italy. methodshavetoconsiderisrelatedtothefactthattheTPSusually E-mailaddress:valerio_carandente@hotmail.it(V.Carandente). http://dx.doi.org/10.1016/j.applthermaleng.2017.03.053 1359-4311/(cid:1)2017ElsevierLtd.Allrightsreserved. 542 A.Riccioetal./AppliedThermalEngineering119(2017)541–552 representsalargefractionofthetotalspacecraftvolume[6].The areencountered,butreactionsareexclusivelylocalizedonthesur- objectiveofthisworkistoestimatetheheatshieldminimumvol- faceofthematerial[13].Inconclusion,ablationperformsitsfunc- ume able to keep the mission requirements for a blunt-nosed tion of thermal barrier through the dissipation of the incoming sphere-coniccapsule.ThecapsuleinexamisinparticulartheStar- thermalenergythankstothe‘‘sacrifice”ofapartoftheprotecting dustprobe.StardustmissionwasthefirstU.S.missionsolelyded- material,whichabsorbsaconsiderableamountofheatand,atthe icatedtoacometstudyandwasthefirsttoreturntoEarthin2006 sametime,createsabarriereffectduetothegeneratedgasflow.A cosmicdustandsamplesfromawell-preservedcometcalledWild- furtherclassificationcanbemadeaccordingtotheoperatingper- 2 [7]. The heat shield of this probe was composed by a material formanceof the surface layer: ‘‘melting” and ‘‘non-melting” [14]. calledPICA(PhenolicImpregnatedCarbonAblator),whichispart Thefirsttypeconsistsofthermoplasticmaterials:aliquidsurface of the Lightweight Ceramic Ablators (LCAs) family. This material layerproducedbyfusionisremovedimmediatelybytheaerody- consists of a commercially available middle density carbon fiber namic shear stresses. The non-melting materials can be further matrixsubstrateimpregnatedwithaphenolicresin[8]. divided into two sub-categories: ‘‘Low Temperatures Ablators” The work is organized as follows. In Section 2 the theoretical (LTA) and ‘‘High Temperatures Ablators” (HTA). The carbon- background for the ablative phenomena, ablative classification carbon and carbon-silicon ablatives are examples of HTA, whose and optimization process are presented. Section 3 reports the main characteristic is to preserve mechanical properties even at numericalmodelimplemented.InSection4,theresultsareillus- hightemperatures.FortheLTAs,thechemicalablationispreceded trated and properly commented.Section 5 reports the main con- bythedeteriorationofthemechanicalpropertieswithincreasing clusionsofthework. temperature, while the thermal ablation (sublimation) becomes appreciable only from around 2500K. This type of material is mainly used in return missions where very high heat fluxes are 2.Theoreticalbackground reached.AnexampleofLTAistheablativefamilyconsistingofcar- bonfibersandphenolicresins,suchasPICA.Theyarerecognizable TheTPSisasubsystemprovidingprotectionandinsulationtoa for their excellent ability to form char and to ignite pyrolysisfor spacecraft from the aerodynamic heating due to high enthalpy highvaluesoftheheatflux. flows encountered in the atmospheric entry phase at hypersonic Thechoiceofanablativematerialrequiresacarefulevaluation speeds. Thermal protection systems for spacecrafts make use of oftheentryconditions,lookingforthebestcompromisebetween different physicochemical mechanisms for their thermal energy ablation effectiveness and heat insulation performance. In this management:dissipation,cooling,insulationandablation.Leaving wayitispossibletoidentifythemostfittingmaterialforapartic- asidetheisolationandcoolingmechanisms,theheatshieldscanbe ularmission. dividedintotwobigcategories:reusableandablative. ThePICAisinparticulararelativelynewmaterial,developedat ThereusableTPSsdonotchangethemassandcompositionof NASA Ames Research Center, and is characterized by a lower- materialsduringtheexposuretotheaerothermodynamicenviron- density value than other ablative materials, in particular with ment.Theireffectivenessisbasedpartiallyontheabsorptionand respecttothecarbonphenolic,whilemaintainingahighablative partiallyonthere-radiationoftheincomingheatflux.Thisfeature capacity for high heat fluxes [8]. Moreover, it presents a lower guarantees the possibility to reuse these materials for different thermal conductivity of other ablative materials for same levels missions. Such systems, however, are utilized for relatively low of incoming heat fluxes [8]. PICA is made with a thermosetting thermal loads. The main characteristic of such heat shields is to resin, a commercial phenol-formaldehyde (SC 1008) [15]. This re-radiate a large part of the energy coming from the convective resin acts as a matrix for carbon fibers chopped as shown in andtheradiativecomponentsoftheaerothermodynamicheatflux, Fig.1[16]. andtoaccommodateonlyarelativelysmallamountofenergyby Itpresentsafinaldensityof0.22–0.32g/cm3andischaracter- conduction within the material. Another key factor is linked to izedbythefollowingmasscomposition:92%carbon,4.9%oxygen, the use of insulating materials. They are often inorganic because 2.2% hydrogen and 0.9% nitrogen [17]. Its ablation rate increases of their low thermal conductivity and the need to minimize the withtheincomingheatflowandthechemicalspeciespredominant overallmassoftheheatshield[9]. inthecharareCandCO.Thehighporositypossessedbysuchcom- Theterm‘‘ablative”referstoanumberofphysicochemicalpro- positeisthemainreasonforthelowdensityandconductivityval- cesses, including vaporization, chemical reactions and erosion, ues.Completepropertiesofthismaterialarereportedin[8]. leadingtothesurfacematerialremoval.Forthisclassofmaterials, the incoming thermal loads are restrained thanks to the phase 2.1.PhysicalphenomenainanablativeTPS changeofthematerial[10].Aclassificationfromaphenomenolog- ical point of view divides ablative materials in two classes: non- The ablation process involves multiple physical and chemical charringandcharring[11,12].Thecharringtypeablativesarebest phenomena, in particular for charring type materials considered usedforatmosphericentrymissions.Inthisclass,oncetheresinis in this study. During hypersonic flight conditions, the formation heated,adecompositionphenomenoncalledpyrolysistakesplace ofthebowshock,interactingwiththeboundarylayer,leadstoa inthebulkofthematerial.Thepyrolysisgeneratesgaseousprod- temperature increase in the proximity of the vehicle surface. In ucts,usuallyhydrocarbons,whichblowthroughtheheatedsurface additiontoconvectiveheating,andradiationproducesnonnegligi- into the boundary layer, with the consequent reduction of the bleeffects,inparticularatsuper-orbitalentryspeeds.Thisresult- effectiveconvectivefluxaffectingthespacecraft.Thepyrolysisof ing heat flux is partially transferred by conduction within the the resin also produces a carbonaceous residue (char), which is materialoftheshield.Forcharringtypematerials,decomposition depositedonthecompositefibrousreinforcement. Moreover,the reactionsoriginategaseousproducts,leavingacarbonizedporous chemical reactions between the material at the surface and the residue. The pyrolysis gases originated by the underlying virgin boundary layer species can lead to a recession of the aforesaid material,generateegaseousflowthat,passingthroughtheporous material surface. These reactions can be endothermic (vaporiza- structure of the char, blows in the boundary layer. One of the tion, sublimation) or exothermic (oxidation). The interaction of effectsofthesegasesistoreducetheeffectiveconvectiveheatflow theablativematerialsand theirproductswiththeambientgases actingontheTPS.Ontheotherhand,thesegasescantriggernew is much more complex than here described. On the other hand, corrosiveprocessesduetotheirinteractionwithcarbonresidues. inanon-charringtypeablative,nointernalpyrolysisphenomena The carbonaceous residues may endure oxidation processes due A.Riccioetal./AppliedThermalEngineering119(2017)541–552 543 Fig.1. MicrographsofPICAatdifferentmagnifications[16]. tothesurroundingfluidand,finally,willalsobepresentmechan- icalerosionphenomena.Theconsequenceofallthesephenomena isathicknessreductionoftheablativeandshapevariationofthe heatshield.Inconclusion,theablationphenomenonconsistsinto a number of physicochemical interaction between the TPS and theexternalenvironment. 2.2.Numericalmodelforthermalanalyses Inthepresentworkthecomplexphysicochemicalphenomena occurring in ablative TPSs are numerically modelled assuming a numberofsimplifyinghypotheses,widelyimplementedinseveral works reported in literature [17–20]. As already discussed, PICA material is considered. Figs. 2–4 report thermal experimentally measuredproperties[8]. The material decomposition, or the density variation, is com- putedexplicitlyasamaterialproperty.Thematerialdensityvaria- tion has been implemented applying the Arrhenius relation for each ithcomponentof thePICAas in [18,19]. In Eq. (1), Band w q q areconstants,Eistheactivationenergy, and arethedensi- 0 ch tiesofthevirginandcharmaterial. @@qti¼(cid:3)(cid:1)Bi(cid:4)e(cid:3)RETi(cid:3)(cid:4)q0i(cid:4)(cid:4)qiq(cid:3)qci(cid:5)wii¼A;B;C ð1Þ Fig.3. PICAspecificheatasafunctionofthematerialtemperature[8]. 0i ThevaluesassumedforcalculationsarereportedinTable1. Fig.4. PICAeffectiveheatofablationasafunctionoftheconvectiveheatfluxacting Fig.2. PICAthermalconductivityasafunctionofthematerialtemperature[8]. onthematerial[8]. 544 A.Riccioetal./AppliedThermalEngineering119(2017)541–552 Table1 ConstantparametersimplementedinEq.(1). Component B(1/s) W(–) E/R(K) q0(kg/m3) qc(kg/m3) A 1.40E4 3 8555.6 229 0 B 4.48E9 3 20444.4 972 792 C 0 0 0 160 160 q r The material density has been therefore obtained as the cient,calculatedonthebasisofthemodelreportedin[13], the weightedmeanofitscomponents(inEq.(2),Cistheresinvolume Stefan-Boltzmann constant, e the material emissivity, T1 the fraction,AandBrepresenttheresincomponentsandCthecarbon asymptoticflowtemperature. Fiberform).Theseparametershavebeensetaccordingto[18,20]. Asfarasthematerialrecessionisconcerned,theassumptionof steady-stateablationhasbeenconsidered.Ateachinstantoftime q¼CðqA(cid:3)qBÞþð1(cid:3)CÞqC ð2Þ theablationratehasbeenestimatedbyEq.(9),inwhichQ⁄isthe socalledheatofablation,qisthematerialdensityandq_ isthe The internal decomposition transforms part of the solid in hw hotwallconvectiveheatflux,evaluatedfromEq.(8)as: pyrolysis gas. Moreover, thanks to the hypothesis of mono- (cid:4) (cid:5) dwiimthenthseiovniarlgiflnomw,aqteuraiasli-asrteaatisc,tahnedmimaspseflrmoweaobfiltihtyeopfytrhoelyisnistegrafascies q_hw¼q_cw 1(cid:3)cHpTw ð8Þ tot connectedtothedecompositionbythesimplerelationreportedas Eq.(3). q_ @m_ @q s_¼qQhw(cid:5) ð9Þ g ¼ ð3Þ @x @t According to the structure scheme reported in Fig. 5, the in- 2.3.Verificationandvalidationofthenumericalmodel depthtemperatureresponse ofthematerial has beencarried out setting as boundary conditions the expressions reported in Eqs. Ashighlightedin[22]themainobjectiveofthewell-established (4–7).Inparticular,Eq. (4)refers totheexternalsurfaceexposed Verification and Validation (V&V) methodology is to progress in to the aerothermodynamic environment (y=hi). This approach the development of predictive numerical models. Oberkampf hasbeenwidelydiscussedin[21]. et al. [23] published a very detailed review paper about V&V. In (cid:4) (cid:5) (cid:4) (cid:5) (cid:1) (cid:3) thisreferencepaper,theauthorsstated:‘‘Howshouldconfidence q_ ¼(cid:3)k @T ¼q_ 1(cid:3)cpTw / (cid:3)re T4 (cid:3)T4 ð4Þ in modelling and simulation be critically assessed? Verification in @y y¼hi cw Htot blow w 1 andValidation(V&V)ofcomputationalsimulationsaretheprimary methodsforbuildingandquantifyingthisconfidence’’.Inapaper (cid:4) (cid:5) q_ ¼(cid:3)k @@Ty ¼0 ð5Þ dmeedcihcaatneidcstmootdheels,reTlhaaticoknerb[e2t4w]epenresuenncteedrtaailnstoietshiasnpdroVc&esVs ffoorr y¼0 the‘‘developmentofmodelsthatcanbeusedtomakeengineering (cid:4) (cid:5) predictionswithhighconfidence’’. q_ ¼(cid:3)k @T ¼0 ð6Þ Theverificationphasedealswithonlynumericalaspects.Dur- @x x¼0 ingtheverificationstage,onedistinguishesbetweencodeverifica- tion and solution verification. Code verification leads to the (cid:4) (cid:5) q_ ¼(cid:3)k @@Tx ¼0 ð7Þ ifidleens,tiifinctahtieonnuomfperriocgarlaamlgmorinitghmersr,oirnsitnhethceominppiuletrasnadnoduotppuertadtiantga x¼b systems. The present study has been performed using Matlab InEq.(4),q_ istheincomingnetheatflux,q_ thecoldwallcon- [25] and APDL Ansys languages [26]. Therefore, code verification in cw vectiveheatflux,c isthespecificheatatconstantpressure,T the is assumed to be completed. As far as solution verification is p w walltemperature,H thetotalenthalpy,/ theblowingcoeffi- concerned, the main source of errors is due to the spatial tot blow Fig.5. Structureschemeandheatfluxesforcharringablative. A.Riccioetal./AppliedThermalEngineering119(2017)541–552 545 discretization.Inordertoensurethetimeandmesh-independency Table3 afullconvergenceanalysishasbeenperformedonthemodel[21]. Numberofelementsinradialandaxialdirectionsforthedifferentanalyzedcases. In addition, the model has been also validated crosschecking Case# Numberofelements numerical results with analogous outcomes of experimental and Axialdirection(n) Radialdirection(m) numericaltestsreportedinliterature[21,27]. 1 10 20 For reader convenience, we briefly report, what is extensively 2 25 45 presented in [21], i.e. a full convergence analysis realized repro- 3 50 95 ducing the same experimental conditions adopted by Covington 4 75 135 [27]. A cylindrical material sample geometry with a radius of 5 100 185 5.08cm and an initial height of 2.74cm has been taken into account with a material emissivity of 0.9 for the evaluation of the re-radiated heat flux. Reference test conditions are reported inTable2,wheret isthetransientanalysisduration. max The mesh has been realized using a growing number of ele- mentsinradialandaxialdirections,accordingtovaluesreported inTable3. Twocomparisonshavebeentakenintoaccounttoevaluatethe modelrobustness.Thefirstisacomparisonintermsoferrorofpre- dicted final thickness and the second is in terms of final surface temperature. Inconclusion,resultsintermsofbulkandsurfacetemperature can be considered sufficiently accurate even for a relatively low number of elements (Fig. 6), while a larger number of elements (Fig.7)isrequiredtoincreaseaccuracyonthediscreteevaluation of the material thickness and to reduce the surface temperature Fig.6. Erroronthefinalsurfacetemperaturefortheanalyzedcases. dropconnectedwiththeelementkilling. Finally, the results obtained with the n=100 have been com- pared with both numerical and experimental results presented by Covington in [27] showing a very satisfying results cross- checking. 2.4.Optimizationprocess Ageneticoptimizationprocedurehasbeenappliedtothether- malprotectionshieldinordertoevaluatetheminimumweightfor thecapsuleTPSabletoguaranteeaneffectivethermalprotection. GeneticAlgorithms(GAs)fallwithinnaturalmethodsandcanbe used to solve problems of research and optimization. GAs are applicable to the resolution of a wide variety of problems not appropriate for classic optimization algorithms, including those in which the objective function is discontinuous, non- differentiable,stochastic,orstronglynonlinear[28–30]. GAsworkwithapopulationofindividuals,eachofwhichrepre- Fig.7. Erroronthefinalthicknessfortheanalyzedcases. sentsapossiblesolutionoftheanalyzedproblem.Eachindividual is assigned a score, called ‘‘fitness”, representing the goodness of 3.Numericalmodelling thesolutiontotheproblem.Thespecimenwiththebestfeatures (i.e.thosewithhigherfitnessvalues),havegreateropportunityto CalculatingthethermalresponseofanentryvehicleTPSisvery ‘‘mate”withotherindividualsofthepopulationthatwillgenerate important for its correct sizing. On one hand the instantaneous otherspecimensofthepopulation.Iftheresultingindividualshave materialrecessionratehastobeestimatedand,ontheotherhand, asufficientlylargefitnessvalue,theywillreplacetheworstindi- thein-depthtemperatureresponseoftheTPShastobecomputed viduals of the previous generation. In such a way, in the further inordertoevaluatetheamountofmaterialrequiredasinsulation generation there will be a higher number of characteristics pos- to keep the bond-line temperature (i.e., the temperature of the sessedbythebestindividualsofthepreviousgeneration.Thiswill materialsurfacenotdirectlyexposedtotheflow)belowaspecified ensurethatthebestfeatureswillbepropagatedtomoreindividu- limit. alsinthepopulation.Moreover,featuresnotincludedamongthose Inordertoappreciatethematerialablationoftheexternalsur- of the original genetic species can sporadically be created by the face of the heat shield, a Finite Element Analysis has been per- introductionofrandommutationsinthegenerationofnewindi- formed within this work. An advanced finite element model has viduals. If the optimization is well designed, the population will beenintroducedtopredictthefinalthicknessandshapeoftheheat convergetoanoptimalsolutionoftheproblem. shield,attheendoftheatmosphericentryphase. Table2 Testconditionformodelverificationandvalidation. 3.1.Analyzedgeometry Q_cw(MW/m2) p(atm) Htot(MJ/kg) tmax(s) In this work the Stardust probe has been analyzed. It has six 5.80 0.450 29.5 15 majorcomponents:a heatshield,abackshell,a samplecanister, 546 A.Riccioetal./AppliedThermalEngineering119(2017)541–552 Fig.8. SchematicdiagramoftheStardustSampleReturnCapsule(SRC)[31]. Fig.10. ConvectiveandradiativeheatfluxesprofilesestimatedalongtheSRCentry trajectory. Fig.9. GeometryoftheanalyzedcapsuleinFEmodel. a parachute system and avionics. The Stardust Return Capsule (SRC) is a short truncated cone, having a 0.811m diameter, 0.499mhighandatotalmassof45.8kg,includingtheparachute system[7].InFig.8a2DschematicdiagramoftheSRCisreported. Fig.11. Designvariables. The geometry described above was discretized in the axisym- metricmodeldepictedinFig.9. TheAnsys(cid:3)MechanicalFEcode[26]hasbeenusedtoapplythe itwasnecessarytonumericallysolvetheequationcharacterizing numerical procedure hereinafter discussed to the computational the dynamics of the entry capsule [32], taking advantage of the mesh shown in Fig. 9. In particular, 2D elements PLANE55 have Runge-Kuttamethod[33].Oncethedataofthere-entrytrajectory been selected to perform thermal calculations. Each element has have been calculated, the convective heating at the stagnation- four nodes with a single degree of freedom, the temperature, at point of axisymmetric blunt bodies has been estimated by eachnode. Sutton-Graves formulation [34]. This model is characterized by q Eq. (10), according to [34], where V is the velocity in m/s, is 3.2.Ablationandoptimizationmodellingboundaryconditions theatmosphericdensityinkg/m3,R isthenoseradiusinmand n 1.73(cid:4)10(cid:3)4isaconstantderivedfortheEarthatmosphere. rffiffiffiffiffi The cold wall convective heat flux, the total enthalpy and the q radiation flux profiles along the entry trajectory of the SRC have q_conv ¼1:73(cid:4)10(cid:3)4(cid:4)V3 R ð10Þ beenimportedasexternalarrays.Inordertocalculatethesearrays, n A.Riccioetal./AppliedThermalEngineering119(2017)541–552 547 Fig.12. ObjectfunctionVsIDnumber. Fig.13. ObjectfunctionVsIDnumber–DetailofthebestID. However,convectiveheatfluxisnottheonlythermalloadact- A preliminary estimation, valid in hypersonic regime for high ingonare-enteringcapsule:radiativeheatfluxesarealsosignifi- Machnumbers,ofthenon-dimensionalheatfluxdistributionalong cant for the thermal protection system. Among the different the capsule surface has been obtained implementing the Lees’ engineering models for radiative heating available in literature, theory [36]. The corresponding dimensional values have been theoneprovidedbyTauberandSutton[35]hasbeenconsidered obtainedmultiplyingthenon-dimensionalheatfluxspatialdistri- in the present work. Tauber and Sutton’s engineering correlation butionbythetemporalvariationofthestagnation-pointheatflux is reported in Eq. (11), being C a constant that depends on the alongthetrajectory. atmosphere and f(V) tabulated values, functions of both flight Once these arrays containing the external loads have been velocitiesVandatmosphericcomposition.Theexponentsaandb imported,thenetheatfluxisappliedateachinstantoftime,taking can be either constants or functions of density and free stream intoaccountthesurfacetemperaturecalculatedassolutionofthe velocity,asspecifiedin[35]. thermaltransientanalysisattheprevioustimeinstant.Forsurface q_ ¼CRaqbfðVÞ ð11Þ temperatureshigherthanathresholdvalue,theablationrates_has rad n been estimated by Eq. (9), according to [8,18,21,34]. Then, the InFig.10,convectiveandradiativeheatfluxesatthestagnation thicknessoftheheatshieldisreducedofthequantitys_(cid:4)dt.When pointestimatedalongtheSRCentrytrajectoryareshown. thethicknessreductionissuchthatmorethanahalfofanelement 548 A.Riccioetal./AppliedThermalEngineering119(2017)541–552 Fig.14. Peakbond-linetemperatureVsID. Fig.15. ScatterMatrix. thickness is not included in the computational domain, this ele- Thisnumericalmodelhasbeenimplementedinanoptimization ment is disabled by the ‘‘ekill” function of the Ansys(cid:3) code [26]. tool,allowingtoobtaintheconfigurationwiththelowestablative Oncetheanalysisiscompleted,thevalueofthenodestemperature volume,whileobservingthetemperatureconditionsofthebond- onthebondlinearecomparedwiththedesignlimits[37,38]. line[37,38].Inparticular,thisoptimizationprocessconsidersthe A.Riccioetal./AppliedThermalEngineering119(2017)541–552 549 Fig.16a. InitialcomputationalmeshforID0. Fig.17a. FinalcomputationalmeshforID0. Fig.16b. InitialcomputationalmeshforID1336. Fig.17b. FinalcomputationalmeshforID1336. volumeoftheablativeshieldastheobjectfunction,whilethecon- straintfunctionisthemaximumtemperatureonthebond-line.An initialpopulationof50individualshasbeenconsideredforthefirst Each individual of the population is described with six design generation,andatotalof50generationshavebeenanalyzed.The variables. These variables represent the value of thickness of the choiceofthefirst50individualsisbasedona randomsequence, PICAheatshield,measuredstartingfromthebondlinetotheouter fillingrandomly,withauniformdistribution,thedesignspace[39]. surface,insevencontrolpoints,asshowninFig.11. 550 A.Riccioetal./AppliedThermalEngineering119(2017)541–552 Fig.19a. Finaltemperatureonthebond-linenodesforID0. Fig.18a. FinalnodaltemperaturedistributionforID0. Fig.19b. Finaltemperatureonthebond-linenodesforID1336. Astheindividualskeepgrowing,theytendtoconcentratealong acertainpathresultinginastabilizationoftheobjectivefunction (seeFig.12).Fig.13isadetailofFig.12clearlyshowingthebest estimatedindividual. InFig.14thevaluesofmaximumtemperatureonthebond-line (constraintfunction)foreachIDareshown.Inthiscasethevalues ofthepeaktemperaturetendstoapproachthelimitsetto394K Fig.18b. FinalnodaltemperaturedistributionforID1336. [37,38],indicatedintheFig.14bythedottedline. 4.Numericalresults Fig.15showsthescattermatrix,representingtheinfluenceof optimizationparametersontheanalysis. In this section, the results of the FE model optimization are Scatter matrix shows how the variable sp9 (see Fig. 12) has shown.Inparticular,inFig.12,theobjectfunctionvariationversus moreinfluencewithrespecttotheothervariablesontheobjective theDesignIDisshown.Theminimumoftheobjectfunctionoccurs function. The ID ‘‘0” refers to the initial configuration while ID fortheindividual‘‘1336”. ‘‘1336” is the configuration with the lowest volume. In Figs. 16a

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.