ETH Library Optimizing the electricity demand of electric vehicles Creating value through flexibility Doctoral Thesis Author(s): González Vayá, Marina Publication date: 2015 Permanent link: https://doi.org/10.3929/ethz-a-010546604 Rights / license: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information, please consult the Terms of use. DISS. ETH NO. 22785 Optimizing the electricity demand of electric vehicles: creating value through flexibility A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by ´ ´ MARINA GONZALEZ VAYA Dipl.-Ing. TU Mu¨nchen, Diplˆome d’Ing´enieur Sup´elec born on 10.10.1985 citizen of Spain accepted on the recommendation of Prof. Dr. G¨oran Andersson, examiner Prof. Dr. Ian Hiskens, co-examiner 2015 ETH Zurich EEH - Power Systems Laboratory Physikstrasse 3 8092 Zurich, Switzerland (cid:13)c Marina Gonz´alez Vay´a, 2015 [email protected] For a copy visit: http://www.eeh.ee.ethz.ch Printed in Switzerland by Druckzentrum ETH, Zurich, 2015 Preface This thesis was written during my time as a researcher at the Power Systems Laboratory of the ETH Zurich between 2010 and 2015. I would like to thank my thesis supervisor Prof. Dr. G¨oran Andersson for his guidance. I really appreciated the trust and freedom given to conduct this work. ThanksalsotoProf.Dr.IanHiskens,the co-examinerofthis thesis,for his feedback and fruitful discussions. It was a pleasure to share my time at the Power Systems Laboratory withwonderfulcolleagues,whohavesupportedandinspiredmeinmany different ways. During my time at the Power Systems Laboratory I had the chance to supervise many Semester and Master thesis. I’d like to thank the students whose projects I supervised for their hard work and excellent results, that have certainly contributed to this thesis. I would also like to thank the colleagues I worked with in the research projects THELMA and PlanGridEV for the successful cooperation. Finally I would like to thank my family and my partner for all their support in the past years. iii Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . xv List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . xvii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . xxi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii 1 Introduction 1 1.1 Backgroundand motivation . . . . . . . . . . . . . . . . 2 1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . 9 1.4 List of publications . . . . . . . . . . . . . . . . . . . . . 10 2 Modeling PEVs’ demand flexibility 15 2.1 Driving patterns . . . . . . . . . . . . . . . . . . . . . . 16 2.1.1 Driving pattern generation . . . . . . . . . . . . 17 2.1.2 Fromdeterministictoprobabilisticdrivingpatterns 19 2.2 From driving patterns to an individual PEV flexible de- mand model . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 Literature survey . . . . . . . . . . . . . . . . . . 23 2.2.2 Linear PEV flexible demand model . . . . . . . . 23 2.3 Fromdrivingpatterns to anaggregatedPEVflexible de- mand model . . . . . . . . . . . . . . . . . . . . . . . . . 25 v vi Contents 2.3.1 Literature survey and contributions . . . . . . . 26 2.3.2 Deriving individual power and energy trajectories 30 2.3.3 Virtual battery model . . . . . . . . . . . . . . . 33 2.3.4 Accountingfordrivingpatternuncertaintyinthe virtual battery model . . . . . . . . . . . . . . . 35 2.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . 41 3 Charging cost minimization 43 3.1 Literature survey and contributions. . . . . . . . . . . . 45 3.1.1 Centralized control, unidirectional communication 46 3.1.2 Centralized control, bidirectional communication 47 3.1.3 Decentralized control, unidirectional communica- tion . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.1.4 Decentralized control, bidirectional communication 49 3.1.5 Comparison of the different approaches . . . . . 51 3.1.6 Contributions of the proposed charging schedul- ing models . . . . . . . . . . . . . . . . . . . . . 52 3.2 Social welfare maximizing centralized scheduling of PEVs 53 3.3 Strategic centralized scheduling of PEVs . . . . . . . . . 55 3.3.1 Bilevel model with perfect information . . . . . . 57 3.3.2 Bilevel model under market bid uncertainty . . . 58 3.3.3 MILP formulation . . . . . . . . . . . . . . . . . 60 3.4 SocialwelfaremaximizingdecentralizedschedulingofPEVs 63 3.4.1 Optimal charging problem formulation . . . . . . 65 3.4.2 Solving the optimal charging problem with ADMM 67 3.4.3 Driving pattern sampling . . . . . . . . . . . . . 71 3.5 Strategic decentralized scheduling of PEVs . . . . . . . 71 3.5.1 General framework . . . . . . . . . . . . . . . . . 73 3.5.2 PEV demand bids . . . . . . . . . . . . . . . . . 73 3.5.3 Learning algorithm . . . . . . . . . . . . . . . . . 76 3.5.4 Bid aggregation. . . . . . . . . . . . . . . . . . . 77 3.5.5 Market clearing . . . . . . . . . . . . . . . . . . . 79 Contents vii 3.5.6 Driving pattern uncertainty . . . . . . . . . . . . 80 3.5.7 Perfect market information benchmark . . . . . . 80 3.6 Price-based control . . . . . . . . . . . . . . . . . . . . . 80 3.6.1 DefiningaTOUtariffunderperfectfleetinforma- tion . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.6.2 DefiningaTOUtariffunderpartialfleetinformation 85 3.6.3 Constraints on the TOU tariff. . . . . . . . . . . 86 3.6.4 Possible extensions . . . . . . . . . . . . . . . . . 86 3.7 Hierarchical control - Combined centralized and decen- tralized framework . . . . . . . . . . . . . . . . . . . . . 87 3.8 Preliminary considerations on a simplified model . . . . 88 3.8.1 Social welfare maximizing scheduling . . . . . . 89 3.8.2 Strategic centralized scheduling . . . . . . . . . . 92 3.8.3 Strategic decentralized scheduling . . . . . . . . 95 3.9 Case study . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.9.1 Case study setup . . . . . . . . . . . . . . . . . . 98 3.9.2 Additional benchmarks . . . . . . . . . . . . . . 108 3.9.3 Method comparison . . . . . . . . . . . . . . . . 108 3.9.4 Considering several market scenarios in the cen- tralized strategic approach. . . . . . . . . . . . . 124 3.9.5 Hierarchicalcontrol . . . . . . . . . . . . . . . . 127 3.10 Concluding remarks . . . . . . . . . . . . . . . . . . . . 130 4 Ancillary service provision 133 4.1 Literature survey and contributions . . . . . . . . . . . . 136 4.1.1 Secondary frequency control . . . . . . . . . . . . 136 4.1.2 Renewable energy balancing . . . . . . . . . . . . 138 4.1.3 Contributions of the proposed charging and re- serve scheduling models . . . . . . . . . . . . . . 139 4.2 Centralized reserve scheduling . . . . . . . . . . . . . . 140 4.2.1 Virtual battery constraints . . . . . . . . . . . . 140 4.2.2 Bilevel model with co-optimization of regulation and day-ahead markets . . . . . . . . . . . . . . 153 viii Contents 4.2.3 Wind forecast error balancing . . . . . . . . . . . 155 4.3 Decentralized reserve scheduling . . . . . . . . . . . . . 156 4.3.1 Optimal charging and reserve scheduling formu- lation . . . . . . . . . . . . . . . . . . . . . . . . 157 4.3.2 Solvingtheoptimalchargingandreserveschedul- ing problem with ADMM . . . . . . . . . . . . . 158 4.4 Generating scenarios of service requests . . . . . . . . . 161 4.5 Case study . . . . . . . . . . . . . . . . . . . . . . . . . 162 4.5.1 Case study setup . . . . . . . . . . . . . . . . . . 162 4.5.2 Centralized scheduling of regulation reserves . . 166 4.5.3 Centralized scheduling of wind balancing reserves 181 4.5.4 Decentralized scheduling of regulation reserves . 198 4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . 203 5 Case study for Switzerland 205 5.1 Model inputs . . . . . . . . . . . . . . . . . . . . . . . . 206 5.1.1 Power system . . . . . . . . . . . . . . . . . . . . 207 5.1.2 PEV fleet . . . . . . . . . . . . . . . . . . . . . . 211 5.2 Charging approaches . . . . . . . . . . . . . . . . . . . . 215 5.2.1 Uncontrolled charging . . . . . . . . . . . . . . . 215 5.2.2 Indirectly controlled charging . . . . . . . . . . . 215 5.2.3 Directly controlled charging . . . . . . . . . . . . 216 5.3 Regulation provision . . . . . . . . . . . . . . . . . . . . 216 5.3.1 Establishing the regulation capacity potential . . 216 5.3.2 Computing individual responses . . . . . . . . . 217 5.4 Battery degradation . . . . . . . . . . . . . . . . . . . . 218 5.5 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 5.5.1 PEV patterns . . . . . . . . . . . . . . . . . . . . 219 5.5.2 PEV charging patterns. . . . . . . . . . . . . . . 222 5.5.3 Supply and demand mixes . . . . . . . . . . . . . 225 5.5.4 Asset loading and requirements for network ex- pansion . . . . . . . . . . . . . . . . . . . . . . . 233 Contents ix 5.5.5 Regulation capacity potential . . . . . . . . . . . 235 5.5.6 Battery degradation . . . . . . . . . . . . . . . . 235 5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . 236 6 Conclusion and outlook 239 6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 240 6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 241 6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 Bibliography 245 Appendices 265 A Priced-based control MILP problem 267 Curriculum Vitae 271
Description: