ebook img

Optimizing and approximating eigenvectors in max-algebra PDF

246 Pages·2010·1.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimizing and approximating eigenvectors in max-algebra

CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Archive, E-theses Repository O PTIMIZING AND APPROXIMATING - EIGENVECTORS IN MAX ALGEBRA By KIN PO TAM Athesissubmittedto TheUniversityofBirmingham fortheDegreeof DOCTOR OF PHILOSOPHY (PHD) SchoolofMathematics TheUniversityofBirmingham March,2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract This thesis is a reflection of my research in max-algebra. The idea of max-algebra is replac- ingtheconventionalpairsofoperations(+,×)by(max,+). It has been known for some time that max-algebraic linear systems and eigenvalue- eigenvector problem can be used to describe industrial processes in which a number of pro- cessors work interactively and possibly in stages. Solutions to such max-algebraic linear system typically correspond to start time vectors which guarantee that the processes meet givendeadlinesorwillworkinasteadyregime. The aim of this thesis is to study such problems subjected to additional requirements or constraints. These include minimization and maximization of the time span of completion times or starting times. We will also consider the case of minimization and maximization of thetimespanwhensomecompletiontimesorstartingtimesareprescribed. The problem of integrality is also studied in this thesis. This is finding completion times or starting times which consists of integer values only. Finally we consider max-algebraic permutedlinearsystemswherewepermuteagivenvectoranddecideifthepermutedvector isasatisfactorycompletiontimeorstartingtime. For some of these problems, we developed exact and efficient methods. Some of them turnouttobehard. Forthesewehaveproposedandtestedanumberofheuristics. i Contents 1 Introduction 1 1.1 AimsandScopesoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 LiteratureReview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 MotivationoftheProblem . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 OverviewofChapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 IntroducingMax-PlusAlgebraSystem 11 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 BasicConceptsandDefinitions . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 AlgebraicPropertiesofMax-Algebra . . . . . . . . . . . . . . . . 13 2.3 Max-AlgebraicLinearSystem . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.1 SystemofLinearEquations . . . . . . . . . . . . . . . . . . . . . 18 2.3.2 SystemofLinearInequalities . . . . . . . . . . . . . . . . . . . . 24 2.3.3 ImageSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3.4 StronglyRegularMatricesandSimpleImageSet . . . . . . . . . . 26 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3 Max-algebraicEigenvaluesandEigenvectors 31 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 TheSteadyStateProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ii 3.3 BasicPrinciples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 PrincipleEigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.5 FindingAllEigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.6 FindingAllEigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.7 FormulationoftheProblem . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 OptimizingRangeNormoftheImageSet 58 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 MinimizingtheRangeNorm . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2.1 TheCasewhentheImageVectorisFinite . . . . . . . . . . . . . . 61 4.2.2 TheCasewhentheImageVectorisNotFinite . . . . . . . . . . . . 64 4.3 MaximizingtheRangeNorm . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.1 TheCasewhentheMatrixisFinite . . . . . . . . . . . . . . . . . 72 4.3.2 TheCasewhentheMatrixisNon-Finite . . . . . . . . . . . . . . . 74 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5 OptimizingRangeNormoftheImageSetWithPrescribedComponents 76 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2 MinimizingtheRangeNorm . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.1 TheCasewhenOnlyOneMachineisPrescribed . . . . . . . . . . 78 5.2.2 TheCasewhenAllbutOneMachinearePrescribed . . . . . . . . 79 5.2.3 TheGeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2.4 CorrectnessoftheAlgorithm . . . . . . . . . . . . . . . . . . . . . 90 5.3 MaximizingtheRangeNorm . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.3.1 TheCasewhenOnlyOneMachineisPrescribed . . . . . . . . . . 96 5.3.2 TheCasewhenAllbutOneMachinearePrescribed . . . . . . . . 97 iii 5.3.3 TheGeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6 IntegerLinearSystems 103 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2 TheCaseofOneColumnMatrix . . . . . . . . . . . . . . . . . . . . . . . 106 6.3 TheCaseofTwoColumnsMatrix . . . . . . . . . . . . . . . . . . . . . . 107 6.4 StronglyRegularMatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.4.1 BasicPrinciple . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.4.2 IntegerSimpleImageSet . . . . . . . . . . . . . . . . . . . . . . . 126 6.4.3 IntegerImageSet . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.5 TheGeneralCase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 7 OnPermutedLinearSystems 151 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7.2 DecidingwhetheraPermutedVectorisintheImageSet . . . . . . . . . . 153 7.2.1 TheCaseofTwoColumnsMatrix . . . . . . . . . . . . . . . . . . 153 7.2.2 ComputationalComplexityofAlgorithm6 . . . . . . . . . . . . . 156 7.2.3 Thecasewhenn = 3 . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.2.4 ComputationalComplexityofAlgorithm7 . . . . . . . . . . . . . 158 7.2.5 Thecasewhenn > 3 . . . . . . . . . . . . . . . . . . . . . . . . . 159 7.3 FindingthePermutedVectorClosesttotheImageSet . . . . . . . . . . . . 160 7.3.1 TheOneColumnProblem . . . . . . . . . . . . . . . . . . . . . . 161 7.3.2 TheTwoColumnsProblem . . . . . . . . . . . . . . . . . . . . . 164 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 iv 8 HeuristicsforthePermutedLinearSystemsProblem 177 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 8.2 TheSteepestDescentMethod . . . . . . . . . . . . . . . . . . . . . . . . 178 8.2.1 FullLocalSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 8.2.2 Semi-fullLocalSearch . . . . . . . . . . . . . . . . . . . . . . . . 184 8.3 TheColumnMaximaMethod . . . . . . . . . . . . . . . . . . . . . . . . 189 8.3.1 FormulationoftheAlgorithm . . . . . . . . . . . . . . . . . . . . 191 8.4 TestResultsfortheThreeMethods . . . . . . . . . . . . . . . . . . . . . . 197 8.5 SimulatedAnnealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 8.5.1 SimulatedAnnealingFullLocalSearch . . . . . . . . . . . . . . . 212 8.5.2 SimulatedAnnealingSemi-FullLocalSearch . . . . . . . . . . . . 213 8.6 TestResultsforSimulatedAnnealing . . . . . . . . . . . . . . . . . . . . 215 8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 9 ConclusionandFutureResearch 226 9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.2 PossibleFutureResearch . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 A Onsomepropertiesoftheimagesetofamax-linearmapping 231 ListofReferences 244 v List of Tables 2.1 BasicAlgebraicProperties . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Propertiesforoperationsovermatricesandvectors . . . . . . . . . . . . . 14 7.1 Theresultsobtainedwhenthevalueforx increasecontinuously. . . . . . . 170 2 7.2 Summaryontheresultsobtained. . . . . . . . . . . . . . . . . . . . . . . . 170 7.3 Theslacksobtainedfromallthepossiblesolution. . . . . . . . . . . . . . . 172 8.1 TheFirstIterationoftheFullLocalSearch. . . . . . . . . . . . . . . . . . 182 8.2 TheSecondIterationoftheFullLocalSearch. . . . . . . . . . . . . . . . . 183 8.3 TheThirditerationoftheFullLocalSearch. . . . . . . . . . . . . . . . . . 183 8.4 TheSecondIterationoftheFullLocalSearchwhenadifferentvectorischosen.184 8.5 TheFirstIterationoftheSemi-fullLocalSearch. . . . . . . . . . . . . . . 186 8.6 TheSecondIterationoftheSemi-fullLocalSearch. . . . . . . . . . . . . . 186 8.7 TheThirdIterationoftheSemi-fullLocalSearch. . . . . . . . . . . . . . . 187 8.8 The Second Iteration of the Semi-full Local Search when a different vector ischosen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.9 Results obtained using Full Local Search Method for 20 matrices with dif- ferentdimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 8.10 Results obtained using Semi-full Local Search Method for 20 matrices with differentdimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 vi 8.11 Results obtained using The Column Maxima Method for 20 matrices with differentdimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.12 Comparisonoftheresultsobtainedfromthethreemethods. . . . . . . . . . 209 8.13 Results obtained using Simulated Annealing Full Local Search Method for 20matriceswithdifferentdimensions. . . . . . . . . . . . . . . . . . . . . 218 8.14 ResultsobtainedusingSimulatedAnnealingSemi-fullLocalSearchMethod for20matriceswithdifferentdimensions. . . . . . . . . . . . . . . . . . . 221 8.15 Comparisonoftheresultsobtainedfromthetwosimulatedannealingmethods.224 vii List of Figures 3.1 Example3.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Condensationdigraphformatrix(3.6) . . . . . . . . . . . . . . . . . . . . 49 3.3 Condensationdigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 Condensationdigraphformatrix(3.7) . . . . . . . . . . . . . . . . . . . . 56 viii

Description:
permuted linear systems where we permute a given vector and decide if the .. The idea of max-plus algebra was first seen in the 1950s or even at an earlier cycle. He proved that the greatest eigenvalue called the principal been developed by Akian, Quadrat and Viot in [4], by Del Moral and Salut.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.