ebook img

Optimizing and Applying Graphene as a Saturable Absorber For Generating Ultrashort Pulses PDF

135 Pages·2011·4.05 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimizing and Applying Graphene as a Saturable Absorber For Generating Ultrashort Pulses

Optimizing and Applying Graphene as a Saturable Absorber For Generating Ultrashort Pulses by Jonah Maxwell Miller A thesis submitted to the faculty of the University of Colorado in partial fulfillment of the requirements for the award of departmental honors in the Department of Physics 2011 This thesis entitled: Optimizing and Applying Graphene as a Saturable Absorber For Generating Ultrashort Pulses written by Jonah Maxwell Miller has been approved for the Department of Physics Thomas Schibli John Cumalat Jeanne Clelland Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Miller, Jonah Maxwell (BA Physics) Optimizing and Applying Graphene as a Saturable Absorber For Generating Ultrashort Pulses Thesis directed by Professor Thomas Schibli Over the last decade, a variety of exciting applications have been found for lasers that generate ultra- short pulses of light with durations of just a few femtoseconds, known as femtosecond lasers (fs-lasers) [1]. Peoplenowroutinelymeasureopticalfrequencies[2,3],atomicandmolecularspectra,lengths, distances[4], and displacements [5] with fs-lasers, and new applications are constantly being discovered. Pulses of such short duration can be achieved from passively mode-locked lasers—that is, lasers in which the longitudinal electromagnetic waves in the laser cavity, or “modes,” are locked into phase with each other [6, 7, 8, 9]. To lock the phase of the modes, a saturable absorber—a device which absorbs some percentage of low-intensity light, but which allows high-intensity light to pass through with reduced absorption—is used [6, 7, 8, 9]. To produce short pulse-width, high repetition-rate (many pulses per second) lasers, a saturable ab- sorberthatbecomesopaquequicklyafterbeing“saturated”bylightandthatsaturatesveryeasilyisneeded [6]. In this work, the potential for single atomic-layer graphene—a honeycomb lattice of carbon atoms only oneatomthick,whichhasalreadyprovenitselftobeanextraordinarymaterial[10,11,12,13,14,15,16,17]— asasaturableabsorberisexplored,andamethodforproducinghigh-qualitygraphenesaturableabsorbersis developed. Thishigh-qualitygraphene’snonlinear(saturable)absorptionwasprobedopticallybydifferential transmission and pump-probe measurements and the possibility of tuning graphene’s optical properties by chemical doping is explored by Raman spectroscopy and compared to doping concentration and measure- ments made in differential transmission and spectrophotometry. It is concluded that while graphene could be a highly desirable saturable absorber, it is currently limited by its relatively high saturation fluence com- paredtoitsdamagethreshold. Thepossibilityofagraphene-basedhigh-speedelectro-opticmodulatorisalso briefly discussed. This work is a step in the development of graphene as a saturable absorber comparable to but substantially cheaper than semiconductor saturable absorber mirrors (SESAMs), and towards the development of graphene-based optical and electro-optical devices for lasers. To Alexandra Fresch Without your emotional support throughout my college career, or your presence as a role model, I might never have pursued an honors thesis. v Acknowledgements I would like to thank the Principal Investigator, Professor Thomas Schibli, for his patience, guidance and support throughout this project. IoweagreatdealalsotoProfessorSchibli’sstudent,Chien-ChungLee,withwhomIhaveworkedvery closely. He has shared with me a great deal of his knowledge of optics, lasers, and semiconductor physics. He guided me through the construction of the differential transmission setup and helped me first learn my way around an optics lab, performed all of the pump-probe measurements on graphene, built the ultra-low pressure CVD furnace we use to grow our samples, doped the graphene I measured in Raman, measured its Fermi Level by spectrophotometer, and measured its nonlinear absorption by the differential transmission setup we built together. I would also like to thank the other members of Professor Schibli’s group, both past and present, for their support and for many helpful discussions, including: Brian Benton, David Miller, Wanyan Xie, Seiya Suzuki, Linna Cooley, and Jeffrey Hart. I would also like to express profound gratitude towards Doctor Kaoru Minoshima, AIST/NMIJ Tsukuba, Japan, who provided the Schibli group with an Er:Yb:glass gain medium, and from the Uni- versityofColoradoatBoulder: ProfessorMarkusRaschkeforlendingmetheuseofhismicro-Ramansetup, ProfessorJohnCumalatforthediamondsample,andSamuelBerwegerandDoctorJoannaAtkinforlending me their expertise in Raman spectroscopy. This research was supported in part by the NNIN at the Colorado Nanofabrication Laboratory, The National Science Foundation under Grant No. ECS-0335765, and the Innovative Seed Grant Program and the Undergraduate Research Opportunities Fund (UROP) at the University of Colorado at Boulder. vi Finally, I would like to thank my parents and my grandparents, whose continued love, encourage- ment, support, and belief in my abilities have made it possible for me to go from a very mediocre student to anhonorsstudent,andwhohavealwaysencouragedmetoaskasmanyquestionsabouttheworldaspossible. Thank you, everyone; this project would not have been possible without you. Contents Chapter 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mode-Locked Lasers: Their Potential and Their Challenges . . . . . . . . . . . . . . . 1 1.1.2 Graphene: The Wonder Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.3 Graphene and Mode-Locked Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 General Background 5 2.1 The Mechanics of Mode-Locking in Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The Physics of Semiconductor Saturable Absorbers . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.2 The Interaction Between Light and Matter . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.3 The Dynamics of Saturable Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.2 Ultrafast Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Methods for Measuring the Saturable Absorption of Graphene 27 3.1 Experimental Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 General Experimental Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 viii 3.2.1 The Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 Lock-in Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Differential Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 The Goals and Theory of Differential Transmission . . . . . . . . . . . . . . . . . . . . 32 3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Time-Resolved Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Optimizing Graphene Growth and Transfer Methods 43 4.1 A Brief Overview of Methods to Produce Graphene. . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Recipe Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 Optical Damage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Characterization of Doped Graphene 56 5.1 Doping and State Blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.2 Spectrophotometry and Differential Transmisson of Doped Graphene . . . . . . . . . . . . . . 58 5.2.1 Spectrophotometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.2.2 Differential Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3 Raman Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.1 Theory of Raman Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.3.2 The Raman Spectrum of Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.3.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.3.4 Our Study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6 Conclusions And Outlook 88 Appendix A Final Graphene Growth Recipes and Transfer Method 91 ix A.1 Transfer Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 A.2 Selected Recipes for Graphene Sheets and for Large Domain-Size Graphene Flakes. . . . . . . 93 A.2.1 Recipe for Graphene Sheets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 A.2.2 Recipe for Large Domain-Size Graphene Flakes . . . . . . . . . . . . . . . . . . . . . . 93 B Calibration of the Home-Built Raman System 95 B.1 Y-Axis Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 B.2 X-Axis Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 C Python Scripts Used to Analyze Raman Data 100 C.1 rayleigh.py: The Offset Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 C.2 RamanRecalibration.py: Batch Data Preparation For The Holographic Grating . . . . . . . . 103 C.3 raman fs.py: Batch Data Preparation for the 600BLZ Grating . . . . . . . . . . . . . . . . . . 108 C.4 LorentzFit.py: Batch-Fitting Curves to Raman Spectra . . . . . . . . . . . . . . . . . . . . . 113 Bibliography 119 Figures Figure 2.1 Electromagnetic Modes in a Laser Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Pulse Narrowing Through Saturable Absorption. . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Examples of Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 The Different Conduction Phases of a Semiconductor . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Absorption, Stimulated Emission, and Saturable Absorption . . . . . . . . . . . . . . . . . . . 14 2.6 Lattice and Band Structure of Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7 Saturable Absorption of Graphene Near the Dirac Point . . . . . . . . . . . . . . . . . . . . . 26 2.8 Saturable Absorption of Graphene as a Function of Time . . . . . . . . . . . . . . . . . . . . 26 3.1 Er:Yb:Glass Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Differential Reflectivity for a Slow SESAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.3 The Differential Measurement Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.4 The Differential Transmission System Used to Study Graphene . . . . . . . . . . . . . . . . . 35 3.5 Nonlinearity in Our Differential Transmission System. . . . . . . . . . . . . . . . . . . . . . . 38 3.6 Sample Differential Transmission Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.7 Time-Resolved Spectroscopy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1 Saturable Absorption of Low-Pressure Graphene . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Ultra-Low Pressure Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.3 Comparison of Graphene Grown by ULP One- and Two-Step Processes . . . . . . . . . . . . 50

Description:
This high-quality graphene's nonlinear (saturable) absorption was probed optically Windows, Unix for Apple's MacOS, and the Linux kernel for any
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.