ebook img

Optimization and Operations Research: Proceedings of a Workshop Held at the University of Bonn, October 2–8, 1977 PDF

264 Pages·1978·8.642 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimization and Operations Research: Proceedings of a Workshop Held at the University of Bonn, October 2–8, 1977

Lecture Notes in Economics and Mathematical Systems (Vol. 1-15: Lecture Notes in Operations Research and Mathematical Economics, Vol. 16-59: Lecture Notes in Operations Research and Mathematical Systems) Vol. 1: H. Buhlmann, H. Loeffel, E. Nievergelt, EinfUhrung in die Vol. 30: H. Noltemeier, Sensitivitatsanalyse bei diskreten linearen Theorie und Praxis der Entscheidung bei Unsicherheit. 2. Auflage, Optimierungsproblemen. VI, 102 Seiten. 1970. IV, 125 Seiten. 1969. Vol. 31: M. Kuhlmeyer, Die nichtzentrale t-Verteilung. II, 106 Sei Vol. 2: U. N. Bhat, A Study of the Oueueing Systems M/G/l and ten. 1970. GI/M/1. VIII, 78 pages. 1968. Vol. 32: F. Bartholomes und G. Hotz, Homomorphismen und Re Vol. 3: A. Strauss, An Introduction to Optimal Control Theory. duktionen linearer Sprachen. XII, 143 Seiten. 1970. DM 18,- Out of print Vol. 33: K. Hinderer, Foundations of Non-stationary Dynamic Pro Vol. 4: Branch and Bound: Eine EinfGhrung. 2., geanderte Auflage. gramming with Discrete Time Parameter. VI, 160 pages. 1970. Herausgegeben von F. Weinberg. VII, 174 Seiten. 1973. Vol. 34: H. Stormer, Semi-Markoff-Prozesse mit endlich vielen Vol. 5: L. P. Hyvarinen, Information Theory for Systems Engineers. Zustanden. Theorie und Anwendungen. VII, 128 Seiten. 1970. VII, 205 pages. 1968. Vol. 35: F. Ferschl, Markovketten. VI, 168 Seiten. 1970. Vol. 6: H. P. Kunzi, O. MUlier, E. Nievergelt, EinfUhrungskursus in die dynamische Programmierung. IV, 103 Seiten. 1968. Vol. 36: M. J. P. Magill, On a General Economic Theory of Motion. VI, 95 pages. 1970. Vol. 7: W. Popp, EinfUhrung in die Theorie der Lagerhaltung. VI, 173 Seiten. 1968. Vol. 37: H. Muller-Merbach, On Round-Off Errors in Linear Pro gramming. V, 48 pages. 1970. Vol. 8: J. Teghem, J. Loris-Teghem, J. P. Lambotte, Modeles d'Attente M/G/l et GI/M/l a Arrivees et Services en Groupes. III, Vol. 38: Statistische Methoden I. Herausgegeben von E. Walter. 53 pages. 1969. VIII, 338 Seiten. 1970. Vol. 9: E. Schultze, EinfUhrung in die mathematischen Grundlagen Vol. 39: Statistische Methoden II. Herausgegeben von E. Walter. der Informationstheorie. VI, 116 Seiten. 1969. IV, 157 Seiten. 1970. Vol. 10: D. Hochstadter, Stochastische Lagerhaltungsmodelle. VI, Vol. 40: H. Drygas, The Coordinate-Free Approach to Gauss 269 Seiten. 1969. Markov Estimation. VIII, 113 pages. 1970. Vol. 11/12: Mathematical Systems Theory and Economics. Edited Vol. 41: U. Ueing, Zwei Losungsmethoden fUr nichtkonvexe Pro by H. W. Kuhn and G. P. Szego. VIII, III, 486 pages. 1969. grammierungsprobleme. IV, 92 Seiten. 1971. Vol. 13: Heuristische Planungsmethoden. Herausgegeben von Vol. 42: A. V. Balakrishnan, Introduction to Optimization Theory in F. Weinberg und C. A. Zehnder. II, 93 Seiten. 1969. a Hilbert Space. IV, 153 pages. 1971. Vol. 14: Computing Methods in Optimization Problems. V, 191 pages. Vol. 43: J. A. Morales, Bayesian Full Information Structural Analy 1969. sis. VI, 154 pages. 1971. Vol. 15: Economic Models, Estimation and Risk Programming: Vol. 44:-G. Feichtinger, Stochastische Modelle demographischer Essays in Honor of Gerhard Tintner. Edited by K. A. Fox, G. V. L. Prozesse. IX, 404 Seiten. 1971. Narasimham and J. K. Sengupta. VIII, 461 pages. 1969. Vol. 45: K. Wendler, Hauptaustauschschritte (Principal Pivoting). Vol. 16: H. P. Kunzi und W. Oettli, Nichtlineare Optimierung: 11,64 Seiten. 1971. Neuere Veriahren, Bibliographie. IV, 180 Seiten. 1969. Vol. 46: C. Boucher, LeQons sur la theorie des automates ma Vol. 17: H. Bauer und K. Neumann, Berechnung optimaler Steue tMmatiques. VIII, 193 pages. 1971. rungen, Maximumprinzip und dynamische Optimierung. VIII, 188 Vol. 47: H. A. Nour Eldin, Optimierung linearer Regelsysteme Seiten. 1969. mit quadratischer Zielfunktion. VIII, 163 Seiten. 1971. Vol. 18: M. Wolff, Optimale lnstandhaltungspolitiken in einfachen Systemen. V, 143 Seiten. 1970. Vol. 48: M. Constam, FORTRAN fUr Anfanger. 2. Auflage. VI, 148 Seiten. 1973. Vol. 19: L. P. Hyvarinen, Mathematical Modeling for Industrial Pro Vol. 49: Ch. SchneeweiB, Regelungstechnische stochastische cesses. VI, 122 pages. 1970. Optimierungsveriahren. XI, 254 Seiten. 1971. Vol. 20: G. Uebe, Optimale Fahrplane. IX, 161 Seiten. 1970. Vol. 50: Unternehmensforschung Heute - Obersichtsvortrage der Vol. 21: Th. M. Liebling, Graphentheorie in Planungs-und Touren Zuricher Tagung von SVOR und DGU, September 1970. Heraus problemen am Beispiel des stiidtischen StraBendienstes. IX, gegeben von M. Beckmann. IV, 133 Seiten. 1971. 118 Seiten. 1970. Vol. 51: Digitale Simulation. Herausgegeben von K. Bauknecht Vol. 22: W. Eichhorn, Theorie der homogenen Produktionsfunk und W. Nef. IV, 207 Seiten. 1971. tion. VIII, 119 Seiten. 1970. Vol. 52: Invariant Imbedding. Proceedings 1970. Edited by R. E. Vol. 23: A. Ghosal, Some Aspects of Oueueing and Storage Bellman and E. D. Denman. IV, 148 pages. 1971. Systems. IV, 93 pages. 1970. Vol. 24: G. Feichtinger, Lernprozesse in stochastischen Automaten. Vol. 53: J. Rosenmuller, Kooperative Spiele und Markte. III, 152 V, 66 Seitan. 1970. Seiten. 1971. Vol. 25: R. Henn und O. Opitz, Konsum-und Produktionstheorie I. Vol. 54: C. C. von Weizsacker, Steady State Capital Theory. III, 11,124 Seiten. 1970. 102 pages. 1971. Vol. 26: D. Hochstadter und G. Uebe, Okonometrische Methoden. Vol. 55: P. A. V. B. Swamy, Statistical Inference iQ Random Coef XII, 250 Seiten. 1970. ficient Regression Models. VIII, 209 pages. 1971. Vol. 27: I. H. Mufti, Computational Methods in Optimal Control Vol. 56: Mohamed A. EI-Hodiri, Constrained Extrema. Introduction Problems. IV, 45 pages. 1970. to the Differentiable Case with Economic Applications. III, 130 Vol. 28: Theoretical Approaches to Non-Numerical Problem Sol pages. 1971. ving. Edited by R. B. Banerji and M. D. Mesarovic. VI, 466 pages. Vol. 57: E. Freund, Zeitvariable MehrgroBensysteme. VIII,160 Sei 1970. ten. 1971. Vol. 29: S. E. Elmaghraby, Some Network Models in Management Vol. 58: P. B. Hagelschuer, Theorie der linearen Dekomposition. Science. III, 176 pages. 1970. VII, 191 Seiten. 1971. continuation on page 273 Lectu re Notes in Economics and Mathematical Systems Managing Editors: M. Beckmann and H. P. KUnzi 157 Optimization and Operations Research Proceedings of a Workshop Held at the University of Bonn, October 2-8, 1977 Edited by R. Henn, B. Korte, and W. Oettli Springer-Verlag Berlin Heidelberg New York 1978 Editorial Board H. Albach A. V. Balakrishnan M. Beckmann (Managing Editor) P. Dhrymes J. Green W. Hildenbrand W. Krelle H. P. KOnzi (Managing Editor) K. Ritter R. Sato H. Schelbert P. Schonfeld Managing Editors Prof. Dr. M. Beckmann Prof. Dr. H. P. Kunzi Brown University UniversitiH Zurich Providence, RI 02912/USA 8090 Zurich/Schweiz Editors Rudolf Henn Werner Oettli Institut fOr Statistik und Fakultat fOr Mathematik Mathematische Wirtschaftstheorie und Informatik UniversiUit Karlsruhe Universitat Mannheim Kollegium am SchloB SchloB 7500 Karlsruhe 1 6800 Mannheim Bernhard Korte Institut fOr Okonometrie und Operations Research Universitat Bonn NassestraBe 2 5300 Bonn 1 AMS Subject Classifications (1970): 49-XX, 65 K 05,90 B XX, 90 C XX ISBN-13: 978-3-540-08842-4 e-ISBN-13: 978-3-642-95322-4 DOl: 10.1007/978-3-642-95322-4 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, re printing, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1978 2142/3140-543210 PREFACE This volume constitutes the proceedings of the workshop "Optimierung und Operations Research", held at the Elly Holterhoff Backing Stift (Bad Honnef) of the University of Bonn, October 2-8, 1977. This conference was devoted to recent advances in the field of mathe matical programming, optimization techniques, and operations research. It was attended by about 50 invited participants. Furthermore many scholars in these areas showed a great interest in this workshop, despite several other conferences and activities on similar topics in the year 1977. The organizers regret that considerations of avail able space for conference activities limited the number of participants. This widespread interest, the high quality of the lectures presented and the active and stimulating discussions at the conference mani fested the breadth of the activity ongoing in the field covered by this workshop and the necessity that this field be cultivated to a greater extent by the scientific community. The workshop was organized by the Institute of Operations Research (Sonderforschungsbereich 21), University of Bonn and was generously sponsored by the Gesellschaft der Freunde und Forderer der Rheinischen Friedrich-Wilhelms-Universitat and by IBM Germany. Only through this invaluable support was this workshop possible; for this the editors wish to express their sincere thanks and appreciation. Bonn, December 1977 R. Henn B. Korte W. Oettli III TABLE OF CONTENTS A. Bachem The theorem of Minkowski for polyhedral monoids and aggregated linear diophantine systems • • • . • • • • • • • S. Baum and L.E. Trotter, Jr. Integer rounding and polyhedral decomposition for totally unimodular systems ••..•..•..••••.. 15 D. Bierlein 25 Measure extensions according to a given function B. Brosowski 37 On parametric linear optimization P. Brucker 45 On the complexity of clustering problems R.E. Burkard and U. Zimmermann The solution of algebraic assignment and transportation problems • • • • • • • • • • • • •• •• • • • • • • 55 L. Collatz Application of optimization methods to the solution of 67 operator equations ••••••••• .•••• • B. Dejon A note on directional differentiability of flow network equilibria with respect to a parameter ••••••• 73 U. Derigs On solving symmetric assignment and perfect matching 79 problems with algebraic objectives • • • • • • • • • • • • • R. Euler Generating maximum members of independence systems 87 ~·r. Gaul 95 Remarks on stochastic aspects on graphs M. Grotschel and M.W. Padberg On the symmetric travelling salesman problem: Theory and computation • • • • • • • • • • • • • • • • • • •• •• 105 J. Gwinner On the existence and approximation of solutions of pseudomonotone variational inequalities • • • • • • • • • • 117 J. Hartung Minimum norm solutions of convex programs • • • • • • • • • 127 D. Hausmann and B. Korte Oracle-algorithms for fixed-point problems - an axiomatic approach • • • •• • • • • • • • • • • • 137 v K. Hinderer and D. Kadelka The general solution of a classical stochastic inventory problem and its generalization 157 R. Kannan and C.L. Monma On the computational complexity of integer programming problems • • • • • • • • • • • • • • • • • •• 161 P. Kosmol On stability of convex operators ••••••••- . • • •• 173 F. Lempio and H. Maurer Differentiable perturbations of infinite optimization problems • • • • • • • • • • • • • •• 181 L. Matthews Matroids on the edge sets of directed graphs • • • • • •• 193 Ph. Michel A disc~ete time maximum-principle in a stochastic case • 201 • • • • • e. • • • • • • • E.J. Muth and K. Spremann A class of stationary EOQ problems and learning effects •• 209 E. Sachs Optimal control for a class of integral equations •••• 223 M. Sch1il On the M/G/l-queue with controlled service rate 233 C.P. Schnorr Multiterminal network flow and connectivity in ...... unsymmetrical networks " ••••. • • • • 241 M. Vlach Augmented penalty function technique for optimal control problems • • • • • • • • •• •• • • • • • • • 255 J. Zowe and H. Maurer Optimality conditions for the programming problem in infinite dimensions • • • • • • • • • • • • • • • • •• 261 VI THE THEOREM OF MINKOWSKI FOR POLYHEDRAL MONO IDS AND AGGREGATED LINEAR DIOPHANTINE SYSTEMS Achim Bachem Institut fur Okonometrie und Operations Research Universitat Bonn Nassestr. 2 D-5300 Bonn Abstract We study polyhedral mOnO ids of the form M = {XEZn / Ax ~ a} for (m,n) integer matrices with rank m and prove in an elementary and constructive way that M has a finite basis, i.e. every XEM is the nonnegative integer linear combination of a finite set of vectors. We show that this theorem holds also for monoids M(N,B)={XEZ! / Nx + By=o, YEZn}. We consider the aggregated system GNxtGBy=o where G is an (r,m) aggregation matrix and show how the cardinality of a span of M(GN,GB) and M(N,B) relate to each other. Moreover we show how the group order of the Gomory group derived from M(N,B) changes if we aggregate Nx+By=o to GNx+GBy=o. 1. A Basistheorem For Polyhedral Monoids Definition oEMcZn is a monoid iff x,YEM in~lies x+YEM. The monoid is called polyhedral if there is an (m,n) integer matrix A such that M={XEZn / Ax ~ o}. By (x)={nx/nEZ+} (XEZn and Z+=Nu{o}) we denote an integer ray. (Note that two integer rays (x) and (y) are equal iff x=y). An integer ray (x) c: M is an integer extreme ray of the monoid M iff for all (y), (z)cM (y)*(z) implies (x)*(y+z). If there are integer rays (xl), •.• ,(xk)cM such that M=(xl)+ ••• +(xk), {x\ .•• ,xk} is called a span for M. If in addition xi(i=l, ... ,k) are pairwise distinct and integer extreme rays, {xl, •.. ,xk} is called a basis of M. The well known theorems of Minkowski (1896) and Weyl (1935) state that Kc~n is a polyhedral cone iff K equals the sum of its finite extreme rays. Do these theorems have an integer analogon, i. e. is M c Zn a polyhedral monoid iff M equals the sum of its finite integer extreme rays? David Hilbert (1890) was probably the first who gave a partial answer (namely the "only if" part) that is he proved that every polyhedral monoid has a finite basis. More direct and elegant proofs can be found in Jeroslow (1975) and implicitly in Graver (1975). A drawback of these proofs is that they are either not constructive (Hilbert, Graver) or in using the theorems of Minkowski, Weyl and Caratheodory they show no way to construct - 2 - a finite basis in an efficient way. Here we give (for the case (rank(A}=m}) an elementary and constructive proof without using Minkowski's or Caratheodory's theorems and show how to construct (in a very easy way) an integer span of a polyhedral monoid M. The proof is based on a result of Fiorot (1972). We show in theorem 1.2 how Fiorot's approach can be generalized in a way to minimize the cardinality of a span of a polyhedral monoid. Moreover we give a bound on the cardinality of a basis. Concerning the 'if part' i.e. the integer version of the Weyl theorem it is very easy (as Jeroslow (1975) remarked) to give a counterexample. Consider for instance the monoid with Basis (021) which is obviously not polyhedral. 201 Definition If x,tEZn and T=diag(t}, x(=modT} denotes a vector whose -1 components are taken modulo t (i.e. x(=modT}=x-Tl1 ~, where y denotes the largest integer vector not greater than y. If A is an (m,n) integer matrix denotes the Smith normal form of A. Here UA and KA are unimodular matrices which transform A into Smith normalform. -S-+-(A-)- = diag(t1, .•. ,tr } denotes the nonsingular part of the Smith normalform of A (r=rank(A}) and inv(A}=det(S+(A}} is the product of the invariant factors of A called the invariant of A. Theorem 1.1 Let A be an (m,n) integer matrix with rank m. Then the polyhedral monoid has a finite basis with at most 2(n-m+1} inv(A}m-1(d 1}-m m- 2 - 3 - elements. Here dm-1 denotes the greatest common divisor of all (m-1) minors. Moreover there are matrices S,T and vectors v such that n M = {g(v)+Sw / V,WEZ+ v ~ h} where Proof: We divide the proof into two parts: Case 1) m=n Let f(x)=-Ax and we get immediately: n -1 n f(M) {f(x) / XEZ Ax ~ o}= {y/-A YEZ , Y > o} = n n {ye:lR+ / y=.o mod A}={y€Z+ / UAy=o mod SeA)} n -1 {YEZ+ / Z:O mod S(A),y=UA z}. Let S(A) = diag (t1, ... ,tn) and T=diag(t1(n), .•• ,t (n» where -1 n ti ~ ti(n) ~ tn and ti/ti(n) such that UA T=TK holds with an unimodular matrix K. Obviously such a matrix always exists setting -1 -1 ti(n) = tn(i=l, ... ,n) and K=T ·UA ·T. Theorem 1.2 will show how to choose ti(n) in order to get a span with minimal cardinality. Now it is easy to get a representation of all solutions of the congruences t:1 t.(n)z.:o mod t.(n) i=l, ••• ,n ~ ~ ~ ~ which are equivalent to z.:o mod t. i=l, ..• ,n ~ ~ namely z = S(A)v + Tw o < v. < t:1. t.(n) ~ ~ ~ Let us denote by h=(h1, .•. ,hn)' Re s ubst~·tu·t~n g y= UA-1 z we get 3 - 4 - f(M) = {UA-1 S (A)v + Tw / 0 2 v 2 h, W€z n } = {UA-1 S(A)v(=modT)+Tw / 0 2 v 2 h, W€Zn+ } because o 2 U~1S(A)v(=modT)«t1(n), ••• ,tn(n»" i -1 Setting x =UA S(A)v(=modT) for each 0 < v < h (V€Zn) in any order i=1, ... ,m (m=h1 ... ·hn) and xm+i=(o, ... ,o,ti (n) ,0, .•• ,0)' i=1, ... ,n we get a span for f(M) by f(M) = (x1)+ '" +(xm+n) and xi > 0 for all i. Because is a bounded set, it es easy (polynomially easy in a fraction of some coordinates of some xj ) to check KiiJ. ¢. If Ki=¢ put x i into the basis B. Let us prove that B is a basis for f(M). Clearly f(M) =.E (xi). x~EB Assume now (x i )=(y+z) for some y,z€f(M) (y+z). Because y= .E A .xj xJEB J and z= .E Vj xj we get x i = .E (A.+ v.)xj . But since xho (for xJEB x? €B J J all j) this implies A. + V· = 0 and therefore K. + ¢ in contradiction ~ .~ ~ to our construction. So x ~ is an integer extreme ray and B a basis. It is easy to see that if B is a basis for f(M),f-1(B) is a basis for M (because f is a linear bijection). Because ti(n) 2 tn we have h. < t~l t and get h1' ..• ·h < det(A)-1(t )n. Therefore ~ - ~ n n-1 n - n hi" .·hn 2 det(A) (dn_1)-n = (tn)n (det(A»-1 = inv(A)m-1 (d 1)-m m- < 2 inv(A)m-1(d 1)-m m- Case 2) m < n Let K be a unimodular matrix which transforms A into Hermite normalform H(A) = (H I 0 ) I where H is an (m,m) integer matrix of full rank. M = K-1({XEZn / Ax 2 o}) n-m x Z • 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.