ebook img

Optimization and approximation on systems of geometric objects van Leeuwen, EJ PDF

265 Pages·2017·2.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimization and approximation on systems of geometric objects van Leeuwen, EJ

UvA-DARE (Digital Academic Repository) Optimization and approximation on systems of geometric objects van Leeuwen, E.J. Publication date 2009 Document Version Final published version Link to publication Citation for published version (APA): van Leeuwen, E. J. (2009). Optimization and approximation on systems of geometric objects. [Thesis, externally prepared, Universiteit van Amsterdam]. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:15 Feb 2023 Optimization and Approximation on Systems of Geometric Objects Erik Jan van Leeuwen This research has been carried out at the Centrum Wiskunde & Informatica in Amsterdam. Part of this research has been funded by the Dutch BSIK/BRICKS project. Copyright (cid:13)c 2009 by Erik Jan van Leeuwen. Printed and bound by Ipskamp Drukkers B.V., The Netherlands. ISBN 978-90-9024317-7 Optimization and Approximation on Systems of Geometric Objects ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Universiteit van Amsterdam op gezag van de Rector Magnificus prof. dr. D.C. van den Boom ten overstaan van een door het college voor promoties ingestelde commissie, in het openbaar te verdedigen in de Agnietenkapel op dinsdag 16 juni 2009, te 10:00 uur door Erik Jan van Leeuwen geboren te Utrecht Promotiecommissie: Promotor: prof. dr. A. Schrijver Overige leden: prof. dr. M.T. de Berg prof. dr. H.M. Buhrman prof. dr. T. Erlebach prof. dr. G.J. Woeginger dr. L. Torenvliet Faculteit der Natuurwetenschappen, Wiskunde en Informatica Do not disturb my circles! – last words of Archimedes (287 BC – 212 BC) Contents 1 Introduction 1 1.1 Optimization Problems and Systems of Geometric Objects . . . 1 1.2 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Wireless Networks . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Wireless Network Planning . . . . . . . . . . . . . . . . 3 1.2.3 Computational Biology . . . . . . . . . . . . . . . . . . 4 1.2.4 Map Labeling . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.5 Further Applications . . . . . . . . . . . . . . . . . . . . 4 1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3.1 Published Papers . . . . . . . . . . . . . . . . . . . . . . 7 I Foundations 9 2 Primer on Optimization and Approximation 11 2.1 Classic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Asymptotic Approximation Schemes . . . . . . . . . . . . . . . 14 3 Guide to Geometric Intersection Graphs 17 3.1 Intersection Graphs. . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 Interval Graphs and Generalizations . . . . . . . . . . . 18 3.1.2 Intersection Graphs of Higher Dimensional Objects . . . 20 3.2 Disk Graphs and Ball Graphs . . . . . . . . . . . . . . . . . . . 21 3.2.1 Models for Wireless Networks . . . . . . . . . . . . . . . 23 3.3 Relation to Other Graph Classes . . . . . . . . . . . . . . . . . 25 3.3.1 Relation to Planar Graphs. . . . . . . . . . . . . . . . . 26 4 Geometric Intersection Graphs and Their Representation 29 4.1 Scalable and (cid:15)-Separated Objects . . . . . . . . . . . . . . . . . 29 4.2 Finite Representation . . . . . . . . . . . . . . . . . . . . . . . 33 4.3 Polynomial Representation and Separation. . . . . . . . . . . . 34 4.3.1 From Representation to Separation . . . . . . . . . . . . 35 4.3.2 From Separation to Representation . . . . . . . . . . . . 37 II Approximation on Geometric Intersection Graphs 41 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 vii viii Contents 5 Algorithms on Unit Disk Graph Decompositions 49 5.1 Graph Decompositions . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3 Algorithms on Strong, Relaxed Tree Decompositions . . . . . . 54 5.3.1 Maximum Independent Set and Minimum Vertex Cover 55 5.3.2 Minimum Dominating Set . . . . . . . . . . . . . . . . . 56 5.3.3 Minimum Connected Dominating Set . . . . . . . . . . 59 5.4 Unit Disk Graphs of Bounded Thickness . . . . . . . . . . . . . 62 6 Density and Unit Disk Graphs 67 6.1 The Density of Unit Disk Graphs . . . . . . . . . . . . . . . . . 67 6.2 Relation to Thickness . . . . . . . . . . . . . . . . . . . . . . . 68 6.3 Approximation Schemes . . . . . . . . . . . . . . . . . . . . . . 70 6.3.1 Maximum Independent Set . . . . . . . . . . . . . . . . 71 6.3.2 Minimum Vertex Cover . . . . . . . . . . . . . . . . . . 74 6.3.3 Minimum Dominating Set . . . . . . . . . . . . . . . . . 77 6.3.4 Minimum Connected Dominating Set . . . . . . . . . . 79 6.3.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . 82 6.4 Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.5 Connected Dominating Set on Graphs Excluding a Minor . . . 88 7 Better Approximation Schemes on Disk Graphs 91 7.1 The Ply of Disk Graphs . . . . . . . . . . . . . . . . . . . . . . 91 7.2 Approximating Minimum Vertex Cover . . . . . . . . . . . . . 92 7.2.1 A Close to Optimal Vertex Cover . . . . . . . . . . . . . 93 7.2.2 Properties of the size- and sol-Functions . . . . . . . . . 93 7.2.3 Computing the size- and sol-Functions . . . . . . . . . . 95 7.2.4 An eptas for Minimum Vertex Cover . . . . . . . . . . . 98 7.3 Approximating Maximum Independent Set . . . . . . . . . . . 99 7.4 Further Improvements . . . . . . . . . . . . . . . . . . . . . . . 104 7.5 Maximum Nr. of Disjoint Unit Disks Intersecting a Unit Square 106 8 Domination on Geometric Intersection Graphs 113 8.1 Small (cid:15)-Nets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 8.2 Generic Domination . . . . . . . . . . . . . . . . . . . . . . . . 116 8.3 Dominating Set on Geometric Intersection Graphs . . . . . . . 119 8.3.1 Homothetic Convex Polygons . . . . . . . . . . . . . . . 119 8.3.2 Regular Polygons . . . . . . . . . . . . . . . . . . . . . . 123 8.3.3 More General Objects . . . . . . . . . . . . . . . . . . . 125 8.4 Disk Graphs of Bounded Ply . . . . . . . . . . . . . . . . . . . 126 8.4.1 Ply-Dependent Approximation Ratio . . . . . . . . . . . 127 8.4.2 A Constant Approximation Ratio . . . . . . . . . . . . . 129 8.4.3 A Better Constant . . . . . . . . . . . . . . . . . . . . . 138 8.5 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . 145 8.5.1 Intersection Graphs of Polygons . . . . . . . . . . . . . 146 Contents ix 8.5.2 Intersection Graphs of Fat Objects . . . . . . . . . . . . 148 8.5.3 Intersection Graphs of Rectangles . . . . . . . . . . . . 150 III Approximating Geometric Coverage Problems 157 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 9 Geometric Set Cover and Unit Squares 165 9.1 A ptas on Unit Squares . . . . . . . . . . . . . . . . . . . . . . 165 9.1.1 Geometric Budgeted Maximum Coverage . . . . . . . . 175 9.1.2 Optimality and Relation to Domination . . . . . . . . . 177 9.2 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . 178 10 Geometric Unique and Membership Coverage Problems 181 10.1 Unique Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.1.1 Approximation Algorithm on Unit Disks . . . . . . . . . 182 10.1.2 Budgets and Satisfactions . . . . . . . . . . . . . . . . . 185 10.1.3 Approximation Algorithm on Unit Squares . . . . . . . 187 10.2 Unique Coverage on Disks of Bounded Ply . . . . . . . . . . . . 188 10.2.1 Properties of the cost- and sol-Functions . . . . . . . . . 189 10.2.2 Computing the cost- and sol-Functions . . . . . . . . . . 192 10.2.3 The Approximation Algorithm . . . . . . . . . . . . . . 194 10.3 Geometric Membership Set Cover . . . . . . . . . . . . . . . . . 196 10.4 Hardness of Approximation . . . . . . . . . . . . . . . . . . . . 199 11 Conclusion 207 Bibliography 209 Author Index 237 Index 243 Samenvatting 249 Summary 251 Acknowledgments 253

Description:
To keep the exposition simple, we will only use R(x, y) in Geometric Intersection Graphs and Their Representation. = (ru + rv) ·. √. 1 −. 1. (ru + rv)2 .. The purpose of this part of the thesis is to advance insight into some of these U., “Topics in Discrete Mathematics”, Algorithms and
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.