ebook img

Optimisation of Manganese Alloy Multi-plant Production Planning PDF

165 Pages·2017·13.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Optimisation of Manganese Alloy Multi-plant Production Planning

Optimisation of Manganese Alloy Multi- plant Production Planning Martin Naterstad Digernes Lars Rudi Industrial Economics and Technology Management Submission date: June 2017 Supervisor: Magnus Stålhane, IØT Co-supervisor: Brage Rugstad Knudsen, ITK Henrik Andersson, IØT Norwegian University of Science and Technology Department of Industrial Economics and Technology Management Problem Description ThepurposeofthisMaster’sThesisistodevelopanoptimisationmodeltomanagemanganesealloy production. Efficient allocation of resources across multiple plants is essential to ensure optimal production. The primary objectives of this thesis are to formulate a model that handles complex chemicalandpoolingrestrictionsandtoapplyasolutionmethodtoverifytheglobaloptimum. Maincontents: 1. Descriptionoftheproblem. 2. Presentationofthemathematicalformulationdevelopedfortheproblem. 3. Presentationofthesolutionmethodappliedtosolvetheproblem. 4. Implementationandtestingofthemathematicalformulationusingtheappropriatesoftware. 5. Presentationanddiscussionoftheresultsandanevaluationoftheapplicabilityofthemodel. I Preface ThisMaster’sThesisistheconcludingpartofourMasterofScienceinIndustrialEconomicsand Technology Management with a degree specialisation in Managerial Economics and Operations ResearchattheNorwegianUniversityofScienceandTechnology(NTNU),spring2017.TheMas- ter’sThesisisacontinuationoftheworkdonebyDigernesandRudi(2016)inthespecialisation projectinManagerialEconomicsandOperationsResearch,Fall2016. We would like to thank our supervisors Associate Professor Magnus Stålhane (Department of Industrial Economics and Technology Management, NTNU), Professor Henrik Andersson (De- partmentofIndustrialEconomicsandTechnologyManagement,NTNU),andPostdoctoralBrage Rugstad Knudsen (Department of Engineering Cybernetics, NTNU) for their valuable guidance throughoutthework. WewouldalsoliketothankourindustrialpartnerErametNorwayforpro- vidinguswithindustrialdata. Trondheim,June7,2017 MartinNaterstadDigernes LarsRudi III Abstract The average concentration of manganese in the earth’s crust is nearly 0.1%, making it the fourth mostabundantofthemetalsincommercialuse. Manganesealloysaremainlyconsumedasalloy- ing elements in the steel industry. Manganese ores are extracted at mining sites and smelted to manganesealloysatsmeltingsites. Intheproductionofmanganesealloys,theproblemistofind theoptimalcombinationofores,fluxes,coke,andslagtofeedthefurnacesthatyieldsalloysthat meet customer specifications and to optimally decide the volume, composition, and allocation of theproducedslagbetweenfurnaces.Thealloysareeithersoldorfurtherrefinedandthensold.The authorsnametheproblemasthemanganesealloymulti-plantproductionproblem. Currentdecisionsintheindustryarebasedonexperienceandprocessknowledgeandaredenoted assinglefurnaceoptimisation. Singlefurnaceoptimisationisthepracticeofoptimisingtheprofit for each single furnace without considering the overall production. A multi-plant optimisation modelcanprovidedecisionsupporttotheindustryandimprovethecurrentpractice. Apoolingproblemformulationispresentedtosolvetheproblem. Totheauthors’knowledge,little workhasbeendoneonformulatingthepoolingproblemforproductionofmanganesealloys,and noformulationsformulti-plantproductionexistinthisindustry. Theformulationpresentedisflow andqualitybasedandisahybridbetweenthestandardandthegeneralpoolingproblem.Themodel is,however,subjecttosimplifyingassumptionsthatmaylimithowrealisticitisinitscurrentstate. ThebilineartermsinthemathematicalformulationarelinearisedusingtheMultiparametricDis- aggregation Technique (MDT) and the formulation is implemented in the linear solver FICO(cid:13)R Xpress. To the authors’ knowledge, this is the first model that applies the MDT to solve large- scale,realinstances. ThemodelisappliedtotestinstancesbasedontheindustrialpartnerEramet Norway’splantlayoutandsolvedtoaglobaloptimalitywithin3%usingtheMDT-algorithm. The computationalstudyshowsthattheoptimisationmodelpresentedcansolveproblemsizesofupto ten furnaces to a global optimality gap within 8% for the allotted run time, that the MDT scales well with the problem sizes tested, and that our model outperforms single furnace optimisation. It should be noted that the single furnace optimisation practice is based on mimicking the actual practicebyusingourmodelandnotactualpracticeresults. Comparingthemodeltorealproduc- tiondataremainsanobjective,buttheresultsindicatethatmulti-plantproductionplanningcanbe ofconsiderablevaluetomanganesealloyproduction. Apaperbasedonthecontentsofthisthesishasbeenwrittenincooperationwiththesupervisors. Thispaper,withthetitle"OptimisationofManganeseAlloyProduction",isappendedtotheendof thethesis. Asthepaperisbasedonthisthesis,thereisoverlappingcontent. V Sammendrag Gjennomsnittligmangankonsentrasjonijordskorpenerrundt0.1%. Manganerdermeddetfjerde mest forekommende metallet blant metaller i kommersiell bruk. Manganlegeringer blir hoved- sakelig konsumert som legeringselementer i stålindustri. Manganmalm blir utvunnet gjennom gruvedrift og legeringer produseres i smelteverk ved å smelte malm sammen med andre råstof- fer i ovner. Legeringene har gitte kvalitetsspesifikasjoner og kan selges som de er, eller videre raffineresogselges. Problemetimanganlegeringsproduksjoneråfinneenoptimalkombinasjonavmalmer,flussmiddel, koksogslaggåbenytteiovnenetilåproduseredesluttproduktenesomtilfredsstillerkundeneskrav, samt å bestemme volum, komposisjon og transport av slaggstoff som kommer fra ovnene. Dette problemet blir betegnet som multifabrikks-manganlegeringproduksjons-problemet. I dag baseres produksjonsbeslutninger på erfaring og prosesskunnskap, dette blir betegnet som enkeltovnsopti- mering. Enkeltovnsoptimeringerpraksisenmedåoptimereprofittforhverenkeltovnogtarikke hensyntildenhelhetligeproduksjonen. Enmultifabrikkmodellkanbidrasombeslutningsstøttetil industrienogforbedredennåværendepraksisen. Enoptimeringsmodellbasertpåpoolingproblemetpresenteresforåløseproblemet. Etterdetfor- fatternekjennertil,erlitearbeidgjortforåformulereetpoolingproblemformanganlegeringspro- duksjonogingenmultifabrikkmodelleksistererfordenneindustrien.Modellenerflyt-ogkvalitets- basertogerenkombinasjonavenstandardogengenerellpoolingproblemformulering. Modellen inneholderforenklingerogantagelsersombegrenserhvorrealistiskdenerisinnåværendetilstand. Debilineæreleddeneidenmatematiskeformuleringenerlineærisertvedbrukavmultiparametrisk disaggregeringsteknikk (MDT). Formuleringen er deretter implementert i det lineære optimer- ingsprogrammetFICO(cid:13)R Xpress. Tilforfatterneskunnskapermodellensompresenteresdenførste hvor MDT benyttes til å løse store, reelle probleminstanser. Modellen benyttes til å teste prob- leminstanserbasertpåErametNorgesittfabrikkoppsettogdisseløsestiletglobaltoptimalitetsgap innenfor3%vedbrukavMDT-algoritmen. Enberegningsstudieviseratoptimeringsmodellenkan løse probleminstanser på størrelser opp til ti ovner til et globalt optimalitetsgap innenfor 8% på tillatt kjøretid, at MDT skalerer godt med størrelsen på probleminstansene som testes og at vår modell presterer bedre enn enkeltovnsoptimering. Det gjøres oppmerksom på at praksisen med enkeltovnsoptimering er basert på en etterligning av den virkelige produksjonen ved å bruke vår optimeringsmodellogikkeresultaterfraenfaktiskproduksjon. Sammenligningavmodellenmot reelledatagjenstårfremdelessometmål,menresultateneindikereratbrukavvåroptimeringsmod- ellkanværeavbetrakteligverdiformanganlegeringsproduksjon. Enartikkelbasertpåinnholdetidennemasteroppgavenharblittskrevetisamarbeidmedveilederene. Denneartikkelen,medtittelen"OptimisationofManganeseAlloyProduction",erlagtvedislutten avoppgaven. Sidenartikkelenerbasertpåmasteroppgaven,erdetoverlappendeinnhold. VI Table of Contents ProblemDescription I Preface III Abstract V Sammendrag VI TableofContents VII ListofTables XI ListofFigures XIII Dictionary XV 1 Introduction 1 2 IndustryInsight 3 2.1 MarketOverview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 MarketSupplyandDemand . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 TheSupplyChain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 TheProductionProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3.1 TheFeMnProduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.2 TheSiMnProduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3 Ores,Fluxes,Quartz,andCoke . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.4 TheFurnace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.5 TheMOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.6 TheLCSiMnRefiningStation . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.7 TheCrushingProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.8 By-products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 TheProductionMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 TheDiscardSlagPractice . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 TheDuplexMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 FurnacePowerConsumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 ChemicalReactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.7 ErametNorway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3 ProblemDescription 15 3.1 TheManganeseAlloyMulti-plantProductionProblem . . . . . . . . . . . . . . . 15 VII TABLEOFCONTENTS 4 LiteratureReview 17 4.1 TheBlendingProblemVersusthePoolingProblem . . . . . . . . . . . . . . . . . 18 4.2 ThePoolingProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.3 ClassificationsofthePoolingProblem . . . . . . . . . . . . . . . . . . . . . . . . 19 4.4 PoolingProblemFormulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.5 ThePoolingProbleminDifferentIndustries . . . . . . . . . . . . . . . . . . . . . 23 4.6 SolutionMethodsforthePoolingProblem . . . . . . . . . . . . . . . . . . . . . . 25 4.7 TheMulti-periodPoolingProblem . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.8 OurContribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 ModelFormulation 31 5.1 ModellingChoicesandModelAssumptions . . . . . . . . . . . . . . . . . . . . . 31 5.1.1 ProblemStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.1.2 RawMaterialSupplyandCosts . . . . . . . . . . . . . . . . . . . . . . . 32 5.1.3 ChemicalConsiderations . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.4 SlagProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.5 By-products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.1.6 End-productContentSpecifications . . . . . . . . . . . . . . . . . . . . . 34 5.1.7 FurnaceSetup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.8 ProcessTemperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.9 RecoveryofThermalEnergy . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 DefinitionofSets,Indices,Parameters,andVariables . . . . . . . . . . . . . . . . 35 5.3 PoolingProblemStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.4 MathematicalModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4.1 ObjectiveFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.4.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ResourceInventoryConstraints . . . . . . . . . . . . . . . . . . . . . . . 41 FurnaceConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 FurnacePowerConsumptionConstraints . . . . . . . . . . . . . . . . . . 42 Furnace-SlagConnectionConstraints. . . . . . . . . . . . . . . . . . . . 44 MORConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 LCSiMnRefiningStationConstraints . . . . . . . . . . . . . . . . . . . . 46 CrushingConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 FinalInventoryandDemandConstraints . . . . . . . . . . . . . . . . . . 48 ChemicalBalanceConstraints . . . . . . . . . . . . . . . . . . . . . . . . 48 BoudouardReactionConstraints . . . . . . . . . . . . . . . . . . . . . . . 50 ChemicalContentConstraints . . . . . . . . . . . . . . . . . . . . . . . . 50 Non-negativityConstraints . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.5 Multi-periodModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 SolutionMethod 55 6.1 DefinitionofSets,Indices,Parameters,andVariables . . . . . . . . . . . . . . . . 55 6.2 TheMultiparametricDisaggregationTechnique . . . . . . . . . . . . . . . . . . . 57 6.3 TheLowerBoundProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.3.1 HCFeMnFurnace-SlagConnection . . . . . . . . . . . . . . . . . . . . 57 6.3.2 MCSiMnFurnace-SlagConnection . . . . . . . . . . . . . . . . . . . . 59 6.4 TheUpperBoundProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 HCFeMnFurnace-SlagConnection . . . . . . . . . . . . . . . . . . . . 60 6.4.2 MCSiMnFurnace-SlagConnection . . . . . . . . . . . . . . . . . . . . 62 6.5 TheGlobalOptimalityAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 64 VIII

Description:
Department of Industrial Economics and Technology Management Norway's plant layout and solved to a global optimality within 3% using the China dominates the market for low-grade ore by producing more than 90% of the by Alfaki and Haugland (2013), and that convergence is slower for
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.